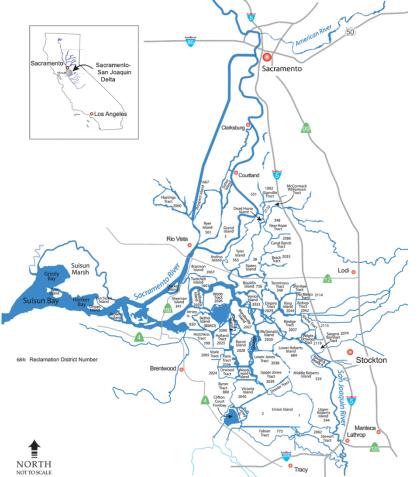

Is flood risk in the Sacramento-San Joaquin River Delta increasing?

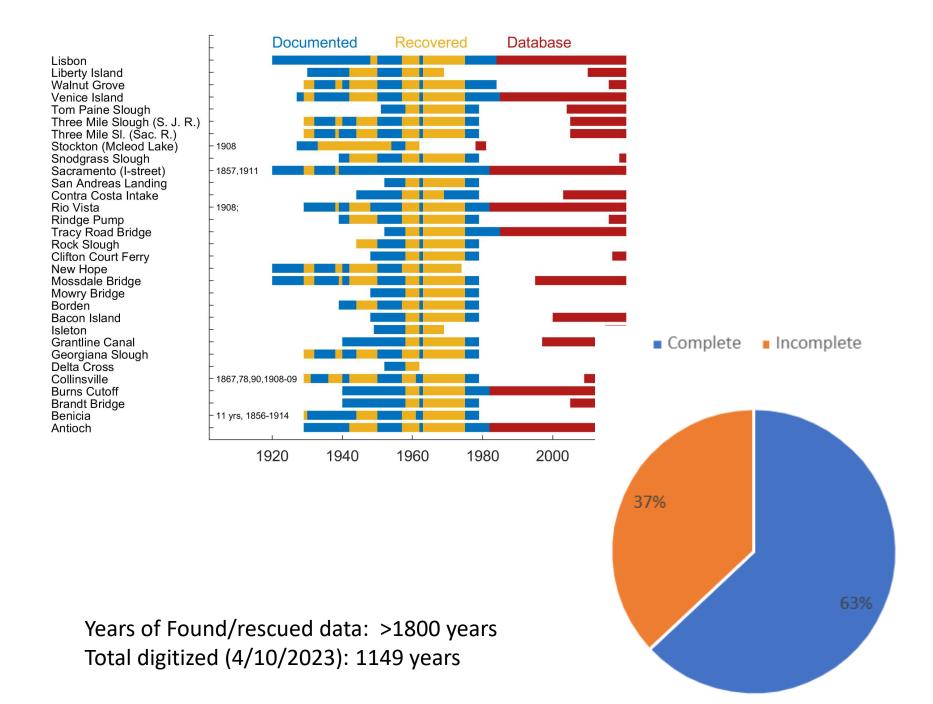
Stefan Talke Nick McGuire Hannah Baranes Steve Dykstra Serena Lee

Cal-Poly San Luis Obispo


The Delta is influenced by both rivers and coastal processes

Will sea-level rise and more intense mega-storms increase water levels and flood risk?

https://www.nytimes.com/2023/01/17/us/california-weather.html


Approach:

- Analyze 100+ Water level gauges from 1982-present in the Delta to determine factors that influence water level

 -Nonlinear regression
- 2. Recover and evaluate historical records back to the 1800s

Strategy: Rescue, digitize, and analyze 'lost and forgotten' records

Sacramento-San Joaquin Delta	TABLE 108
B91100 Sacramento River at Collinsville	
1952 High Water Bour Low Water Gage High Water Bour Low Water Gage High Water Bour Low Water Gage High Water Bour Low Water Gage High Water Hour Gage Hour Gage 1 2 2:455A 7.47 3:455A 7.27 1:459 6.75 10:159 7.11 9:04 9:04 6.29 2:459 6.57 10:30A 5.46 3:309 5.86 5 2:30A 4:67 5:45A 1:00A 5:451 4:95 11:00A 5:453 10:30A 5:456 3:309 5:23 5 2:30A 4:67 5:454 4:07 5:100A 3:28 5:159 4:309 5:23	SAN JOAQUIN RIVER AT ANTIOCH 7 maximum and minimum tidal stages, in feet. ero on gage set at 0.0 feet, USGS Datum) Season of 1948-1949 10. Jan. Peb. Mar. Apr. May -1.6 3.6 0.7 2.7 -1.0 3.0 -0.4 2.9 -1.0 3.4 -1.2 0.5 2.7 -1.0 2.4 -0.6 3.0 0.2 3.2 -1.0 3.4 -1.2
1700 Derta crosa channer at warnut crove 3 3.6 -1.1 1740 Snodgrass Slough at Twin Cities Road 4 3.1 -1.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1260 Canadimanto Diver at Condenses Cloud PORU CAGS-362 IMAY, 19221 USCGIAN-CE 36435-PEE TIDES: HOURLY HEIGHTS Station: Rio Vista Sact. R., Calif Iat. Iat. Time Meridian: Height datum is	U.S. DEPARTNENT OF COMMERCE 533 COAST AND GEODETIC SUPYEY 287 286 286
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d. d. 281 20 2/ Horf- sontal 137 280 279 279
Bering Hour Fed Fed Fed Fed Ped 0 6.7 6.5 5.8 4.9 4.1 1 70 6.9 6.4 5.7 5.1 2 6.5 6.9 6.9 6.7 5.7 3 6.5 6.9 6.9 6.7 5.7 5740 San Joaquin River at Brandt Bridge 5.7 5.7 5740 San Joaquin River at Brandt Bridge 5.7 5.7 5740 San Joaquin River at Brandt Bridge 5.7 5.7 5910 Contra Costa Canal near Oakley 5.7 5.7 5925 Delta Mendota Canal near Tracy 5.7 5.7	DEPARTMENT OF COMMERCE U.S. COASH NO SCOUTTER SUMMER TIDES: HOURLY READINGS Station: Low Lat. Long. Chief of Party: Lat. Long. Ohief of Party: Lat. Long. Month mo. d.
State publication of gauge data, 1965	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

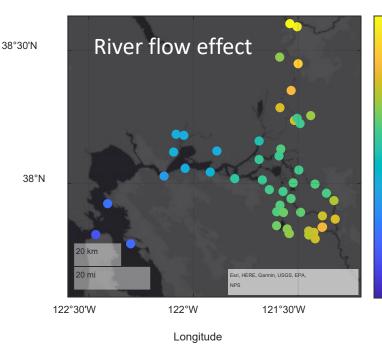
a vSL 5 **Coastal Water** 38°30'N 0.9 level variability 0.8 0.7 unitless 38°N 0.6 0.5 HERE, Garmin, USGS, EPA, 122 W² а imes¹⁰ -3 Wind influence 38°30'N 3.5 3 2.5 ŝ 2 38°N 1.5 1 0.5 HERE Garmin LISGS EPA 122°30'W 122°W 121°30'W

Longitude

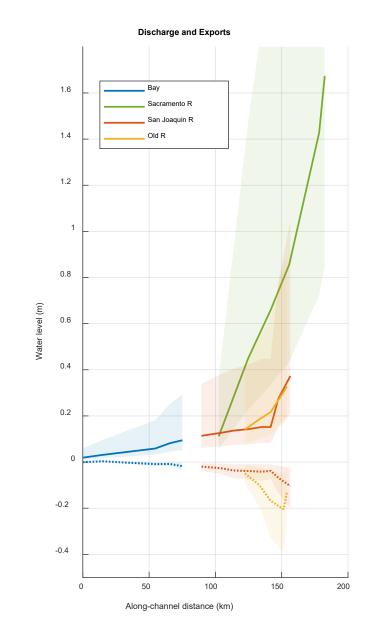
Latitude

Latitude

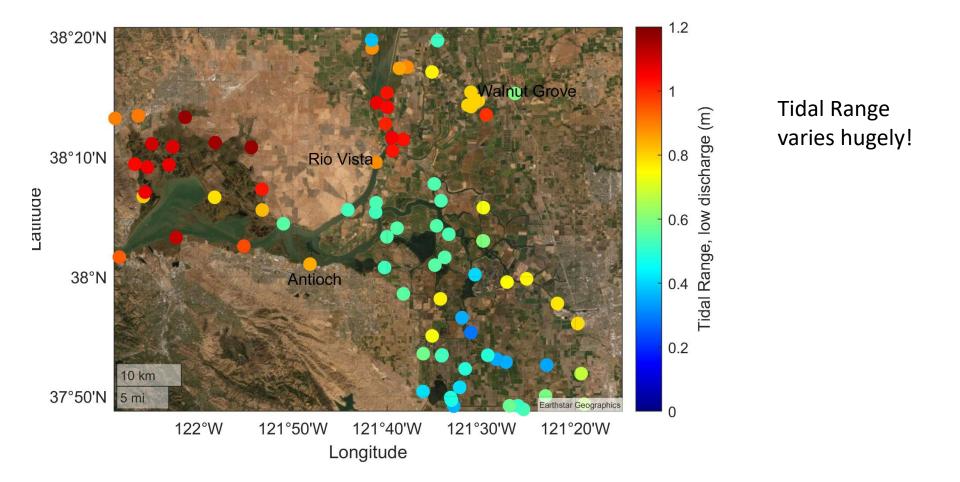
 1 meter of storm surge in San Francisco = 0.5-0.9 meter of increased water level (WL) in Delta


 Westerly winds increases WL by up to 20 cm (average ~ 5cm)

-2 10


-3 10

F


Q а

- A large flood raises water levels much ٠ more in eastern Delta than in western Delta and Bay
- Exports to water project a minor influence in southwestern delta
- Not shown: Spring-Neap tide ٠ variations of up to 20 cm in daily mean. (Water stored in delta during periods of large tides)

Latitude

12 Sea Level Rise 38°30'N 4.28 ⊢^{×10⁶} Lidar Elevation map of Delta 10 Rate (since 2002) 8 4.26 6 mm y 4 38°N 4.24 2 0 4.22 20 km -2 Esri, HERE, Garmin, USGS, EPA, NPS 122° 4.2 Sea Level Rise is highly variable in Delta 4.18

4.16 └─ 5.7

5.8

5.9

6

- ~ -1 to 11 mm/yr •
- Rio Vista: 7.2 mm/yr ٠
- Antioch: 1.6 mm/yr ٠
- San Francisco: 3.5 mm/yr

(Global rate: ~3.5 mm/yr)

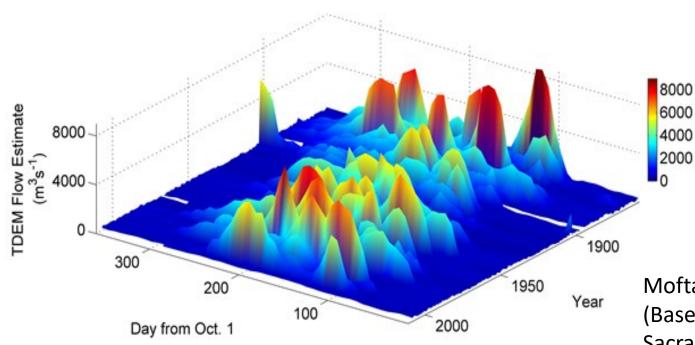
Reason for variation: Subsidence! Many parts of Delta are sinking.

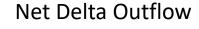
6.1

6.2

6.3

6.4

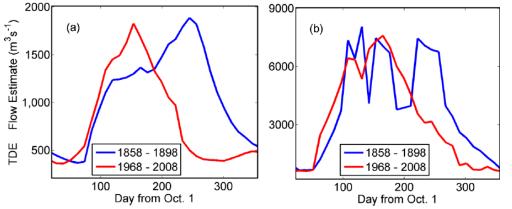

6 5


6.6

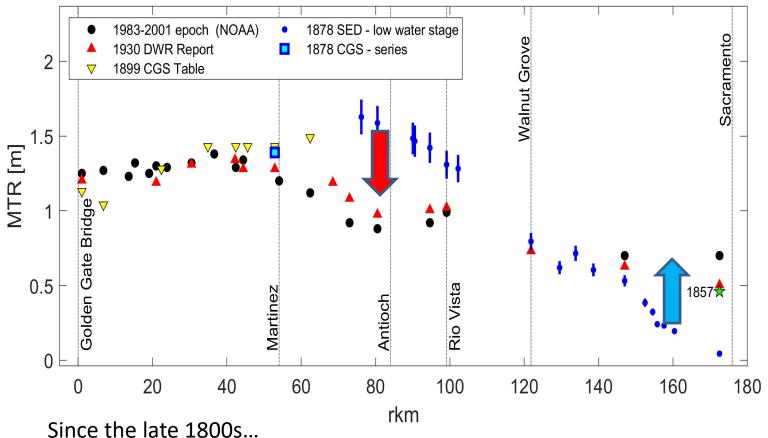
×10⁵

•

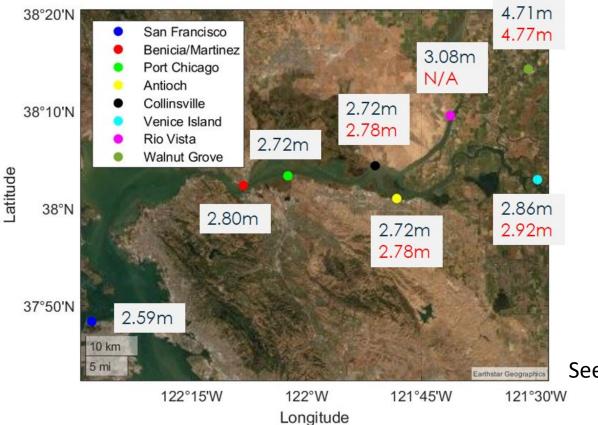
How forcing is changing: River Flow



Moftakhari et al., 2013, 2015 (Based on SF tide gauge and Sacramento river gauge)



- Average flow has shifted to winter from spring-melt
- No evidence (yet) for increasing winter floods
- 25-30% decrease in total volume to ocean
- 1862 flood the largest on record


Changes to Mean Tidal Range (MTR)

- Tidal Bange appears to have decreased in th
 - Tidal Range appears to have decreased in the western delta
 - Tidal Range has increased in the eastern delta
 - Increase of ~7%/century in SF (Jay 2009)

Reasons: End of hydraulic mining sediment pulse, channel deepening, wetland reclamation

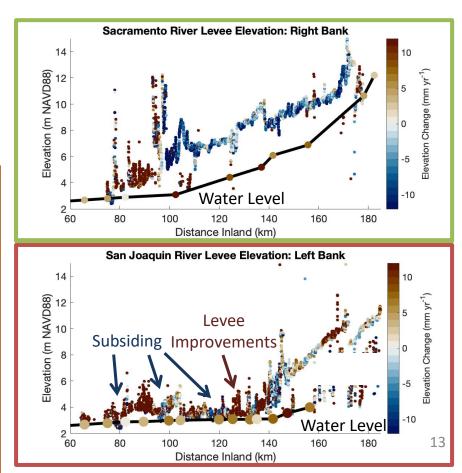
Is there evidence of change to flood risk?

Black: 1976 Army Corps analysis of risk, based on 1930-1970s data

Red: Preliminary Analysis of 100 y flood level, using modern data

See McGuire 2022 thesis

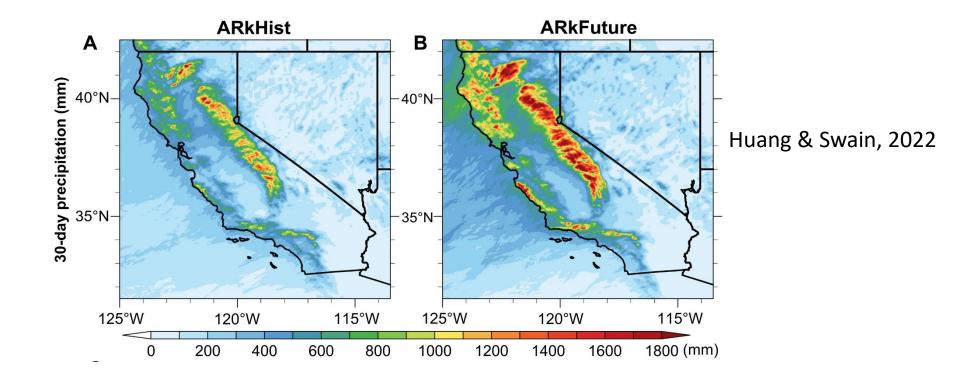
Take Home: No Evidence yet for changed flood risk. More work needed to quality assure and evaluate historical records


But...

Some high waters are now very close to levee crests

- Sacramento River
 - Subsidence in many levees, but...
 - Lots of freeboard in many places because....
 - Upstream reservoirs reduced high water relative to pre-1940 situation
- San Joaquin River
 - Regions of subsidence exist, but
 - High water close to levee crest
 - Flooding more likely

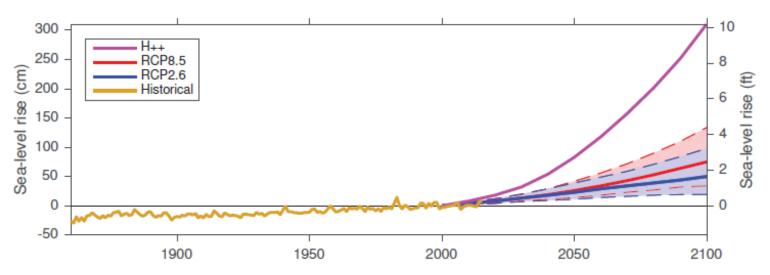
Blue: subsidence between 2007 and 2017 Lidar survey



Also....

The future ain't what it used to be. (Yogi Berra)

Predictions of future Cumulative Precipitation


- Future cumulative precipitation over a 30d period may be 35-60% larger in Northern/Central California in a climate future (2170s) than 1996-2005 decade
 - Based on "Arkstorm" scenario (multiple atmospheric rivers in a month, loosely based on 1862)

Paleoflood research suggests much larger floods have occurred historically, possibly compounding future climate shifts

Water	Annual	Water	Annual		Annual	
year	peak streamflow (ft³/s)	year	peak streamflow (ft ³ /s)	Water year	peak streamflow (ft ³ /s)	Some truly astonishing floods on
650	>600,000	1933	16,500	1961	8,000	—— American River in last 2000 years,
1437	>400,000	1934	22,600	1962	40,000	according to USGS Bulletin 17c
1574	>400,000	1935	60,900	1963	240,000	0
1711	>400,000	1935	58,300	1964	24,000	
1862	>262,000	1937	33,000	1965	260,000	Water year 650: > 600,000 cfs
1905	24,200	1938	114.000	1966	6,500	1437: > 400,000 cfs
1906	59,700	1939	10,900	1967	46,000	1574: > 400,000 cfs
1907	156,000	1940	89,200	1968	30,000	
1908	10,300	1941	38,800	1969	120,000	1711: > 400,000 cfs
1909	119,000	1942	83,200	1970	122,000	
1911	81,300	1943	152,000	1971	48,000	1862, 262,000,225,000 of
1914	74,100	1944	20,100	1972	12,000	1862: 262,000-325,000 cfs
1915	47,900	1945	94,400	1973	69,000	
1916	40,700	1946	42,200	1974	55,000	1986: 134,000 cfs (reservoir affected
1917	42,300	1947	27,900	1975	46,000	
1919	67,500	1948	21,000	1976	15,000	1997: 117,000 cfs (reservoir affected
1920	20,100	1949	37,500	1978	40,000	-
1921	39,200	1950	34,400	1979	33,000	Natural Flow Estimates
1922	31,600	1951	180,000	1980	175,000	
1923	39,000	1952	37,200	1981	20,000	1986: 259,000 cfs
1924	14,000	1953	49,700	1982	152,000	1997: 298,000 cfs
1925	99,500	1954	42,600	1983	93,000	
1926	27,400	1955	10,800	1984	88,000	
1927	67,700	1956	219,000	1025	17,000	
1928	163,000	1957	42,000	1986	259,000	
1930	24,400	1958	54,000	1997	298,000	-
1931	9,900	1959	20,000			England et al., 2017,
1932	21,100	1960	75,000			

USGS Bulletin 17c

Sea Level Rise Projections

(b) Relative sea level in San Francisco, California

San Francisco: 10-300 cm by 2100, depending on scenario and uncertainty in response

Delta: ~0-375 cm by 2100, due to differences in vertical land motion from SF

Conclusions

- Delta is at risk from sea-level rise *and* future extreme floods
- Subsidence is compounding risk
- "Lost and forgotten" records can help us better assess trends and make better, localized projections and risk assessment