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Advanced manufacturing and
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continuous fiber reinforced
polymer matrix composites
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Full-field Creep Results
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THz-TDS Results — Time Domain
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CISE-MSI: Towards Efficient, Reliable, and Secure Chaotic
Communications In Wearable Devices

Ava Hedayatipour—
Department of Electrical Engineering (EE),
California State University Long Beach

Collaborators:
Dr. Amin Rezaei, Dr. Hossein Sayadi, Dr. Mehrdad Aliasgatri,
Department of Computer Engineering & Computer Science (CECS)

California State University Long Beach

Ava Hedayatipour, Assistant Professor
Campus, Department of Electrical Engineering

Email: ava.hedayatipour@csulb.edu




CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Project Overview
Convenience or Complexity?
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CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Project Overview

Internet of Medical Things (IoMT)
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R. S. Bighy, S. Jain, and N. Tewari, “Study of wearable IoT devices in 2021: Analysis amp; future prospects,” in 2021 2nd International Conference on
Intelli Engineering and Management (ICIEM) Bioheart




CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Project Overview

Glance to the Future
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				Market size		Series 2		Series 3

		2021		116.2		2.4		2

		2026		265.4		4.4		2

		Category 3		3.5		1.8		3

		Category 4		4.5		2.8		5






Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Encryption Algo

. . Algorith P
Symmetric Encryption: sorithm urpose
* The shared private key between sender and Advanced encryption Confidentiality
receiver. standard (AES)
* Fast, less computing, but not considered Rivest Shamir Adelman ~ Digital
. .. (RSA)/ Elliptic Curve signatures key
reliable communication. Cryptography (ECC) eanshort
Example: ryptograply P
Advanced Encryption Standard (AES) Diffie-Hellman (DH) Key agreement

SHA-1/SHA-256

Integrality

Asymmetric Encryption:

* The sender provides the public information and the receiver decrypts
that with the private information

* Higher computational requirements and factorization complexity

* Example: Rivest Shamir Adelman (RSA) and the Diffie-Hellman (DH)



CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Project Overview
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Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Phase 1: Transmitter and receiver design based on different chaotic equations for communication

Lorentz

chaotic circuit

equations

Modified Lorentz equations
chaotic circuit

Chuya’s equations
chaotic circuit

Sensor data

T

Transmitter circuit
based on chaotic
equations

Ciphered signal
through public channel

Outcome: A Chaotic transmitter and receiver circuit capable of real-time ciphering of the data

— Deciphered
Chaotic circuit P

i sensor data

based on chaotic |y

o

WDV

T

equations

-

Phase 2: Provably secure logic locking for chaotic communication

f(Data) = g(Data, K*)

Sensor data Original Sensor data Locked Original transmitter (or receiver) and
= Transmitter (or Receiver) » Transmitter (or Receiver) locked transmitter (or receiver) are
f(Data) Key inpu‘r' g(Data, Key) equivalent under correct key K*.

Sensor data

Transmitter with

Ciphered signal
through public channel

Outcome: A secure and digitally locked transmitter and receiver design

Deciphered

Chaotic receiver
sensor data

— B - - B - B B

_I_I_I_l digital locking » with digital locking 5

. bk JU
Key input Key input

= 2
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Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Y

Phase 3: Efficient machine learning algorithms for reliable chaotic encryption

Deciphered
sensor data

Data Preprocessing

A 4

Feature Selection

L J

ML Implementation

Identify the most important features

Identify the most
accurate and cost-
effective ML

Train and test various ML classifiers (Decision Tree,

Random Forest, Regression, Deep Learning, etc.)

Outcome: A digitally locked transmitter and receiver optimized with machine learning algorithms

Sensor data
U

Key input

Transmitter with

digital locking

Ciphered signal

Chaotic receiver

Key mput

e e

—-

with digital locking

Deciphered
sensor data

.
L

U

Accurate and cost-
effective machine
learning algorithms

-

Phase 4 design and outcome: Chip implementation of the reliable and secure chaotic circuit

Sensor

| Transmitter with

data || digital locking

Key
mput

Transmitter and recerver implemented as an integrated chip

Ciphered signal

_..
Key mput

| Chaotic receiver

Deciphered

with digital locking

sensor data

Accurate and cost-
effective machine
learning algorithms
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Demonstration of encryption
architecture on Xilinx’s
Digilent Artix7Nexys7 FPGA
board.

The JTAG port has been
used to deliver the
computation to the board
and bring back the results.

CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Xilinx FPGA BoardrgN EXYS A7



—_.:

. | | | | '| pl 1” | ’” rlfl f l : II: A 1 I | |

| * ll Il ’ l‘.||'L,|I'l. q l r I|‘|"|I 4 |J "'l "|,|||I| ‘ '. |HJI| 1|'| || | :rl | d f’ Il |||l f‘|j||lllq | ||I| l;

[¥]Signal Xr ' J|IJf |I " |||| | |!| | |l [l \ l I | | || | I I|\ I
LW \ FIT \ "' "| AR “l'HH ""“ ;"'l"”{ \ II“ *|U | +..r|

g Raw Decrypted Signal

|1ll1|'!'~n/”fu w'!‘/ i 1]’ HH.". J\w fi.',.\"‘\\\nﬂ‘ '"f'\\m"l\\ "'ﬂmrullul I mm‘h\l | M‘ ..

SR W
Ldagys

rpee § ) . # ina :
G - e ﬁ::;;:,._\ Original Message
e .'=; ,_E-._‘_,

%ﬁﬁmtﬁ - Chig
P S pe Annsu.!m""

g \.P -
£
i
.

» Post-processed Signal




CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices
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FIGURE 5. Different machine learning algorithms used in signal synchronization (a) Original message (b) Decoded message (MSR: 13.00) (c) LSTM
21 synchronization (d) K-means synchronization (MSR: 6.96) (e) DBSCAN synchronization (MSR: 12.56) (f) SVM synchronization (g) AdaBoost synchronization
(MSR: 3.52) (h) RF synchronization (MSR: 4.00)
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CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Lessons Learned
If you are the main PI be ready to PUSH.
Things rarely move forward without follow-ups.
Have alternative planning in line.

The program director is a friend, not a foe.



CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Next Steps/Long-Term Plans

« To expand the scope of the design and get experimental data for real-world bio-medical
signals, i.e, ECG.

« To achieve the initial goal with which this research began, implement the efficient and
low-power chaotic encryption circuit on-chip

« To make the design robust and eliminate the flaws, carry out the testing/validation
against attacks.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No. 2131156.
The work presented is the work of my brilliant students.

23



Senaor

)

24

Sensor data

I- with digital locking

CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Ciphered signal

Chaotic transmitter through public channel Chaotic receiver

Deciphered
sensor data

» | with digital locking

ol inipl

Smart machine
learning algorithm

as a dynamic
feedback




CISE-MSI: Towards Efficient, Reliable, and Secure
Chaotic Communications In Wearable Devices

Questions?

Contact Information:

Ava Hedayatipour

Department of Electrical Engineering (EE),
California State University Long Beach

Website: https://avahedayatipour.com/
Phone #: 562.985.8034

Email: ava.hedayatipour@csulb.edu
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Global Optimization of Chance-Constrained Programming
for Reliable Process Design

Dr. Yu Yang California State University Long Beach

Dr. Yu Yang, Associate Professor
CSULB, Department of Chemical Engineering
yu.yang@csulb.edu
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College of Engineering

Motivation

* Incomplete knowledge of mathematical models used for the optimization-based design of chemical
processes can lead to degraded quality of fuels, vaccines, manufactured foods, and other chemical
products, giving rise to economic, safety, health, and environmental issues.

mEMNLC > Z > |,__<

I:mu—el-'bz‘>l
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College of Engineering

Project Overview

« Chance-constrained Programming (CCP)

min cTx

Jy
st. Fx,v)<d,_____

|P(9Tx<b)>095l

x €R,y€{0,1}.

Unce‘lltainty

Random Algorithm: Scenario Approximation,
Scenario Tree

Analytical Approach: Distribution-based
(Only applicable for Gaussian distribution)
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College of Engineering

Project Overview

 Data-Driven Modeling and Global Optimization

Gaussian Mixture Model (GI.VIM)

29

Global Optimization

Convex relaxation>>Second-order cone relaxation
Branch-and-Bound

Bound tightening

Reformulation linearization technology

Piecewise linear decision-rule
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Project Overview

» Theoretical and Experimental Research

Two-stage CCP with Collaboration &

Develop GMM- Oil Blending Two-stage CCP with iecewise decision hew brobosal
based CCP Experiment line decision rule P prop
rule submission
Oil blending Generate an Refinery Refinery Target:
modeling and edible oil optimization optimization NSF, DOE

optimization blending dataset

30
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College of Engineering
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Activities (Single Stage GMM-CCP)

* Qil Blending (Linear Programming)

I
—\ : Blender 1
_ N
—
— Blender 2
ey 7
VBUNAPH | =/ ~ ~
/ Pl e
e

~
N
N

Gasoline
grade 85

Gasoline
grade 89

Objective: Determine the blending receipt such
that the profit is maximized, and quality
specifications are met with high chance (>95%)

GMM-CCP Scenario Average
(SA)

Profit:

Solution
time:

Conclusion:

$378.49
6,668 s

$354.60
101 s

Slow but guaranteed Fast but needs

optimality

significant tuning
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College of Engineering

Activities (Two-Stage GMM-CCP)

STATE

UNIVERSITY

» Refinery Optimization (Mixed-integer linear programming)

RG

t

REFINERY

LN
/_lﬁ FUEL )
LG RG 1 LG
PG9S
LN RG N Rt
GASOLINE
1o —| ISOMERIZATION =)
R9S R9S ES95
HN
REFORMER[Z——— o0
CN
Crudel~3 —
FLORF2 —
KE
GOi _ RG ;r_\ ADD
( RG ! DES-GOi
. LG DESULFURIZATION|  pgs.cgo| DIESEL
CN
CRACKER [==— T DIESEL
— HF
VRi HF —
___

Objective: Determine the crude oil
procurement (State-l) and refinery operations
(Stage-Il) to maximize the profit and meet the
quality specification with high chance.

GMM-CCP + Scenario Tree
Decision-Rule

Profit:

Solution
time:

Risk:

Conclusion:

$102,467,704
4709 s

2.4%<5%

Faster, Scalable,
More profitable

$101,282,597
7224 s

2%<5%

Slower, Non-scalable
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Activities

« Student Project: Optimization of Blended Vegetable Oil with Viscosity Constraint

Viscosity of Various Oils n—
70

60

40 __

30

Viscosity (cP)

20

10

Canola Soybean Olive Avocado Rapeseed Walnut Flaxseed Chia seed

Type of Oil
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Lessons Learned

* Pre-award: Preliminary data and publication are important to the NSF grant application.

* Yang, Y. (2019). Improved Benders decomposition and feasibility validation for two-stage chance-constrained programs in process optimization. Industrial & Engineering
Chemistry Research, 58, 4853-4865.

* Yang, Y., dela Rosa, L., Chow, T. (2020). Non-convex chance-constrained optimization for blending recipe design under uncertainties. Computers & Chemical Engineering,
139, 106868.

* Yang, Y. and Sutanto, C. (2019). Chance-constrained optimization for nonconvex programs using scenario-based methods. ISA Transactions, 90, 157-168.

* Yang, Y., Vayanos, P., Barton, P. (2017). Chance-constrained optimization for refinery blend planning under uncertainty. Industrial & Engineering Chemistry Research, 56,
12139-12150.

* Yang, Y. (2019). Improved Benders decomposition and feasibility validation for two-stage chance-constrained programs in process optimization. Industrial & Engineering

Chemistry Research, 58, 4853-4865.

» Post-award: Integrate the education with research (CHE 440/450 Chemical Engineering Laboratory)


https://www.sciencedirect.com/science/article/pii/S0098135420300284
https://www.sciencedirect.com/science/article/pii/S0019057819300266
https://pubs.acs.org/doi/abs/10.1021/acs.iecr.7b02434
https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b04777
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Next Steps/Long-Term Plans

» Seek collaborations in the microfluidics and renewable energy

** Lo Lab (@ CSULB **
https://www.csulb.edu/college-of-engineering/dr-roger-c-lo

A. Boyano et al. / Energy 36 (2011) 2202—-2214
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Fig. 1. Schematic of a Steam methane reforming (SMR) plant for hydrogen production: sssss, air; ==, CHy; —-—-— H,; =, exhaust gases; — syngas; — — —, water.

http://www.microfluidics-at-the-beach.net

2205


http://www.microfluidics-at-the-beach.net/
https://www.csulb.edu/college-of-engineering/dr-roger-c-lo
http://www.microfluidics-at-the-beach.net/
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College of Engineering

Questions?
Contact Information:
Name: Yu Yang Campus/Department: California State University
Long Beach, Department of Chemical
Engineering
Website:

Email: yu.yang@csulb.edu


https://sites.google.com/view/yuyang

SJS l l Multi-robot Exploration of Spatial-temporal Varying Fields

Multi-robot Exploration of Spatial-temporal Varying Fields

Wencen Wu — San Jose State University

Wencen Wu, Associate Professor
San Jose State University, Computer Engineering Department

wencen.wu@sjsu.edu



SJS l l Multi-robot Exploration of Spatial-temporal Varying Fields

Environmental Disasters

https://www.independent.co.uk/travel/news-and-

advice/flight-mh370-malaysia-airlines-plane-missing-
https://www.theenergymix.com/2021/07/04/ocean-catches- boeing-777-kuala-lumpur-beijing-2014-documentary-
fire-after-gas-leak-from-underwater-pipeline/ 38 586

: :, :3 ‘,L! | - ..':: By oA
https://www.theatlantic.com/photo/2022/07/photos?' R
wildfires-rage-across-southwestern-europe/670553/

Forest fires Gas leak Air crash

Difficult and dangerous for people to search and rescue
How to explore fields and events in an unknown space?

38



SJS l | Multi-robot Exploration of Spatial-temporal Varying Fields

Host Computer

Problem Formulation g"’) a

w Testbed
Employ multi-robot systems to perform /g W
exploration tasks for safety and efficiency ~ ,,

Robots in
Formation

* Source seeking
* Boundary tracking

°* Environment mapping

Consider a concentration field z(r).

Employ a group of mobile sensors in this field
with noisy discrete measurements

p(ri,ka k) — Z(Ti,ka k) + n;

at time step ¢, foragentiatr;p,i=1,....,N

1

Source seeking Boundary tracking



SJS l l Multi-robot Exploration of Spatial-temporal Varying Fields

Gradient-based vs. Gradient-free Source Seeking

All the five robots form a group
in cooperative exploration.

Estimate Vz(r) first, then use the No explicit gradient estimation
40 estimated Vz(r) in the motion control needed



SJS l | Multi-robot Exploration of Spatial-temporal Varying Fields

Exploring Spatial-Temporal Varying Fields

Challenges
* Unknown distributed parameters
» Spatial-temporal varying state

azg; 2 — (t)¢i(2(r, t),Vz(r,t),Vz(r,t)), r € R ¢t € R,

1=1 0 be estimated

100,

Goal: using a mobile sensor network to achieve =«

100
90
80

* state estimation
. 0T . - @ 150
» parameter identification “

30

* map reconstruction 2 20

10

L 1 L L
41 O0 10 20 30 40 50 60 70 80 90 100
X



SJS l | Multi-robot Exploration of Spatial-temporal Varying Fields

Experimental Results: On-line Parameter Identification

Diffusion Coefficient Identification
Using a Multi-Robot System
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SJSU

Simulation Study

* Consider the field contains

* Obstacles

« Hazard zones

* Online parameter identification

+ state estimation

+ source seeking

0.45

O o !
w o

stimated diffusivity
o o
(S
(6]

t
o
N

Ll
0.15

Q
b

o
»

Diffusivity Estimation with Obstacle Avoidance Algorithm

T T T

[

o

10 20 30 40 50 60
time (s)

70

80

90

Multi-robot Exploration of Spatial-temporal Varying Fields




SJS l l Multi-robot Exploration of Spatial-temporal Varying Fields

Simulated Field-1 Reconstructed Field

RL Based Path Planning and Field Reconstruction

(a) (b) (c)

Representation of an advection-diffusion field grid map in Rviz at 3 time
steps.

Snapshot of the -

mobile robot formation = -
moving in the r sambotz/chassis
simulated advection- N !
diffusion field -

sambol./cnassis




SJ S l l SAN JOSE STATE Multi-robot Exploration of Spatial-temporal Varying Fields
UNIVERSITY

Experimental Study







SJ S l l Multi-robot Exploration of Spatial-temporal Varying Fields

Experimental Study — Comparison with Different Trajectories

Mapping Error

Environment Field End State —— DQN
0 . 36000 - —— Gradient
¢ D . —— LawnMowing
+ Gradient Random
s+ LawnMowing
* Random
34000 A
a M
32000 4
30000 -
40 .
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80
22000 A
.......................
T 20000 4
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SJS l l Multi-robot Exploration of Spatial-temporal Varying Fields

Questions?

Contact Information:

Name: Wencen Wu
Campus/Department. Computer Engineering Department
Website

Phone #: 4089247853
Email: wencen.wu@sjsu.edu

Acknowledgement: the research work is supported by NSF grants
CPS-1446561, CMMI-1663073, CMMI-1917300, and RINGs-2148353


https://sites.google.com/a/sjsu.edu/wencen-wu/
https://sites.google.com/a/sjsu.edu/wencen-wu/
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Pitting Corrosion Background

o Pitting corrosion is a type of localized corrosion that is both autocatalytic and irregular, creating
cavities within a material.

o Pitting damage can potentially lead to structural failure.
Failure occurs at the largest defect on the surface, and cannot be equated wholly to mass loss of
external topography
Fracture mode can change to stress corrosion cracking, a non—ductile, rupture failure for members
under tension stress

- It is challenging to identify, predict, and design against (bypasses corrosion resistance) pitting corrosion.
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Schematics of pitting corrosion Common forms of corrosion pit morphologies

(Source: D&D Coating Ltd) (Source: AMARINE) 51
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Pitting Corrosion Background 2

o Various types of structures can be subjected to pitting corrosion.
Examples include bridges, metal pipes, aircrafts, and so forth.

Pitting corrosion on Nandu River Iron Bridge truss member (left), St. Lawrence Seaway Navigation
Lock vinyl wall system (middle), and skin plate provided by US Army Corps of Engineers (right)
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Existing Technologies for Pitting Corrosion Anal

Existing Cons A B €
Technology DENSITY SIZE DEPTH

* Highly time consuming :
Visual . No technologv required  Difficult if the area is hard to access 1 : _—
Examination gy req (i.e., underwater)
« Subject to human error 2.5 x 10%/m? 0.5 mm A
« Large error in identifying the deepest 5
Metal Ch technol pits (i.e., largest pit may not be ’
: . eap technology S :
Penetration deepest pit especially for loaded L x 1092 2.0 mim? -
members)
«  Great accuracy usin " Expensive 3 R ¢ E—
Eddy Current . y g + Commercial products designed for L
commercial technology . N :
specific applications such as pipes 5 x 10%/m? 8.0 mm? 1.6 mm
« Expensive v Al
- Affected by liquid loading, coatings, 4 * —
Ultrasound  Good gensmwty for pitting and welds 10/ 125 _—
corrosion » Reference standards and large
amount of training and experience is RN
required i ' ® I
» High accuracy : 5 x 10°/m? 24.5 mm? 6.4 mm
: * \Very expensive
Profilometry |« Outputs large amount of useful , f _ o .
surface morphology data * Unable to be taken into the field Standard rating chart for pitting corrosion
(Source: ASTM G46-21)
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Accelerated Pitting Corrosion Experiment

]

]

Materials

Procedures
1.

AlIS| 304 Stainless Steel (50.8 x 63.5 x 4.7625 mm?3) - Sandpaper

Iron (I11) Chloride + Sodium Bicarbonate
Deionized (DI) Water + Glass Thermometer
Hot Plate / Stir Plate +» PH Test Strips

500 mL Beaker

FeCl; solution was prepared by dissolving 16.22 g of FeCl; powders in
200 mL of deionized (DI) water through stirring and was heated to 50°C.

Steel specimens were sanded to remove the surficial protective oxide
layers and wash with DI water.

The specimens were then submerged in the solution for a desired
timeframe (i.e., 1, 2, 3 hr).

Once the desired timeframe was reached, the specimens were
thoroughly washed with DI water and air dried for at least a day.

Beaker containing heated ferric chloride
and a pitted steel specimen
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Load—Coupled Corrosion Experiment

]

Procedures

1. The 0.5M FeCl; corrosive solution and steel specimens (50.8 x 342.9 x 4.7625 mm3) were prepared following
the same procedures as the corrosion experiment.

2. Each steel specimen was submerged in the corrosive solution and subjected to a four—point bending load
simultaneously, generating 28 MPa max stress.

3. Once the desired timeframe was reached (i.e., 1, 2, 3 hr), specimens were washed thoroughly with DI water and
air dried for at least a day.

—
\_/
h

Polyethylene Container

Dead Weight
Ferric Chloride Roller Supports
Steel Specimen \

12

13.5"

18"

Schematics (left) and an optical image of the experimental setup for
the load—coupled corrosion test 55
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- Both optical microscopy and scanning electron microscopy (SEM) have been used to characterize micro—
scale pit morphology

- While microscopic imaging enabled detailed observation of the pits developed at different stages, it was
challenging to perform scalable characterization.

Microscopic Imaging of Pits

Optical image of the cross—sectional view at SEM images of pits after a three—hour
50x magnification accelerated corrosion experiment
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Pit Morphology Characterization

o All specimens were inspected using a Micro Vu
Vertex system equipped with an LSM4-2 laser
distance scanner.

« The resolutions were 4 microns and 0.03 microns
along x and y directions, respectively.

o Python codes were developed for processing and
visualizing the data (3D coordinates for about 2
million data points per scan).

- The code locally adjusts the surface plane by

calculating local neutral axis and shifting nearby
points to zero height.

- A pit is classified as having eight points in proximity
that all fall below the surface threshold.

Micro Vu Vertex system with a laser distance
scanner during scan of load—coupled specimen
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Pit Morphology — 2D and 3D Contours
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Computer Vision Technique

- To detect pit damage in a more efficient and scalable manner, a convolutional neural network (CNN)-
based computer vision technique was implemented to inspect optical images of steel specimens.

A) Unedited High-Resolution Image of Steel Plate B) Sub-Divide Image A into 31-by-31 Images C) Sort Sub Images Into Two Identifiable Classes

[T
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D) CNN Training .

.‘1“"\-$\
Rep cat %N Tmey No Pits
- . — --_\‘: 1\“’;’1
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# ;"’ Network
3x3 Convolutional Kernel 2x2 Max Pooling Lo Classification
(800 Channels)
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Training CNN

An image library was established by partitioning 443x340—-pixel images into smaller 31x31-pixel sub-images
for training and testing the CNN. The training library included two classes:

“Pit” — consists of 740 images
“No Pit” — consists of 353 images

O

o 70% of the images in each class were used for training and 30% are used for validation.

O

Training augmentations that limit the CNN fromm memorizing the training data include:
Randomly reflecting the images horizontally and vertically
Randomly translating the image up to 30 pixels horizontally and vertically

The CNN was trained with a learning rate of 0.0003 over six epochs.
To prevent overfitting that would occur at large epochs due to the limited library size

O
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CNN Performance — Accuracy

o The final classification accuracy was 84.45%.

Further training (i.e., more epochs) would lead to overfitting.

Classification: Pit

100
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TOH

60
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Accuracy (%)

aolk Classification: No Pit
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Epoch 1 ; Epocili 2 | Epoch 3 : Epoclh e i Epoch 5 ; Epc:tfh 6
% 50 100 150 200 250 300 350 400 450
lteration

Accuracy plot during training with blue line showing the smoothed training accuracy and black line showing validation accuracy at the end
of each iteration for MATLAB—-based CNN (left) and examples of validation outputs of the trained MATLAB—based CNN algorithm (right)
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