

A Sampling of CSU California Education Learning Lab (CELL) Awardees

https://www2.calstate.edu/impact-of-the-csu/research/stem-net

Frank A. Gomez

CSU Office of the Chancellor

fgomez@calstate.edu

Speakers

Lark Park, California Education Learning Lab

Introducing the California Education Learning Lab

Ji Son, Cal State LA

The "Better Book" Approach: Using Student Data to Improve Introductory Statistics Materials

Delmar Larsen, UC Davis ADAPT is Built for Multi-modal Use – Application

Sonal Singhal, CSU Dominguez Hills Engaging Students as Scientists Through Authentic Research Inquiry

Earvin Balderama & Bianca Lopez Yendluri, Fresno State

The key to Success in STEM is Empowering all Students to take Ownership of their Learning

Youwen Ouyang & Marisol Clark-Ibáñez, CSU San Marcos

Giving the Ownership of Active Learning to Students in Computer Science (GOALS in CS)

California Education Learning Lab

Lark Park, Director

Program Overview

- Established by Statute in 2018
- Housed in Governor's Office of Planning and Research
- Partnership with Foundation for CA Community Colleges
- Intersegmental by Design (CSU, UC, CCC)
- Initial Focus on STEM Success
- Innovation + Equity + Community
- 3 Core Areas:
 - Grantmaking
 - Community Building
 - Collecting & Promoting Best Practices

Program Overview

OUR MISSION

Improve learning outcomes and **close equity gaps** in California's public higher education institutions.

OUR VALUES

We operate on the premise that **all students are capable learners** with potential for success given the right conditions, supports, and motivations.

We believe that **faculty are our greatest resource** in helping students meet their goals, and that innovation begins with them.

Program Activities

INNOVATION

Award grants to faculty to test and enhance innovative approaches to teaching and learning.

COMMUNITY

Foster collaboration across public higher education systems and build a learning network among faculty.

THEORY & RESEARCH

Contribute to the science of human learning through funded projects and disseminate findings to faculty and other stakeholders.

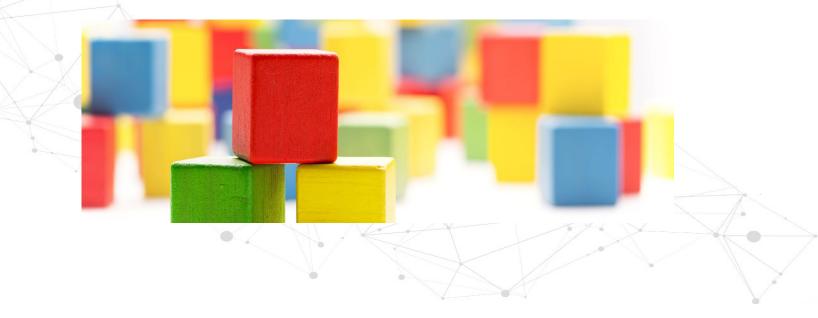
EDUCATIONAL PRACTICE

Collect and promote data-driven teaching and learning practices.

EDUCATIONAL POLICY

Leverage data and findings from Learning Lab projects to influence California educational policy.

Funded Projects


- Seed & Prototype Projects
- Professional Development
- Demonstration Projects
- Institutional Change
- Grand Challenges

Funded Project Building Blocks

- Technology
- Pedagogy
- Equity
- Student-centric
- Faculty-facing

Program Stats

- 23 of 23 campuses
- 160+ CSU faculty and other instructors as key personnel in awarded projects
- \$12.7 million in funding direct to CSUs
- 55 unique projects
- Math & Data Science dominance
- Advisory Board Members Present & Past

Kimberly Tanner

Program Director, Division of Undergraduate Education, National Science Foundation

VON

VERITAS

ITA

Carlos Gutierrez

Distinguished Professor of Chemistry Emeritus & Founding Director of Minority Opportunities & Research Programs, Cal State LA

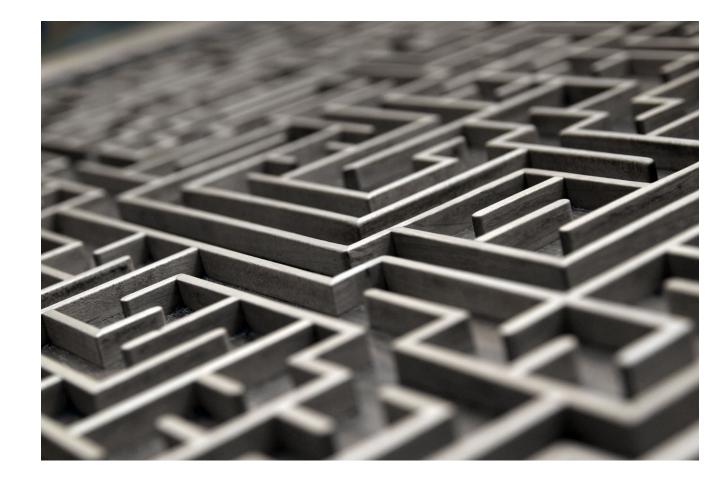
James T. Minor

Chancellor, Southern Illinois University, Edwardsville

10

Why Apply?

- CSU Graduation Initiative
- COVID-19 Impacts
- Equity Matters
- Students Have Changed
- Community
- Generative AI

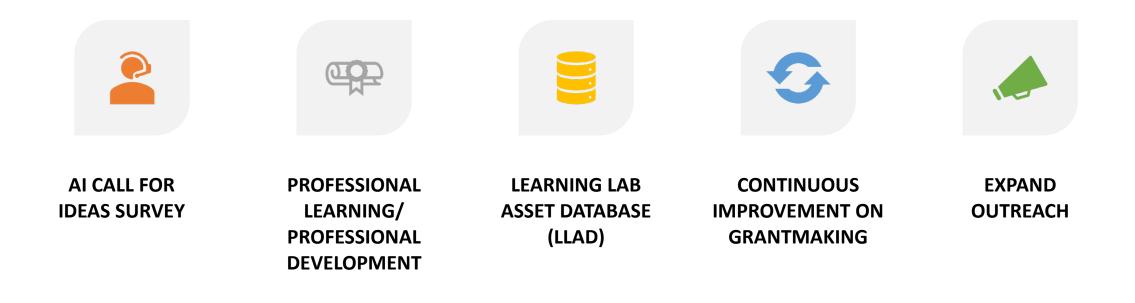

"Support from the Learning Lab was incredibly important to the success of this work. Beyond the fiscal support, the symbolic value of having such an important program provide backing, advice, structure, and connections cannot be overstated." (Increasing Student Flow and Success Along Intersegmental STEM Program Pathways)

"Thank you for this opportunity. The Learning Lab is making a difference!" (Eliminating Equity Gaps in Online Gateway STEM Courses through Humanized Instruction)

Lessons from the Past Five Years

- Change leadership is necessary
- Administrative hurdles can be addressed
- Intersegmental work is rewarding
- Sustainability is inconsistent
- Scalability will require different models
- Difficult, tumultuous times will continue

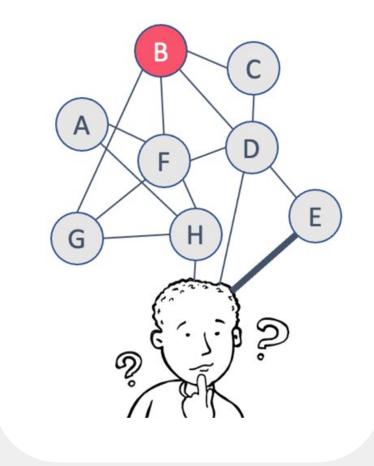
Next Grant Opportunity


Fill Out Our Survey!

https://calearninglab.org/ai-call-for-ideas/

Next Steps for Learning Lab

Our Next Convening


lark.park@calearninglab.org

Activities Results

Lessons Learned

Next Steps

The "Better Book" Approach: Using Data to Improve Statistics Education

Ji Y. Son, PhD, Cal State LA

Collaboration Across Segments and Systems of Education

Jim Stigler

Alice Xu

Jose Salas

Karen Givvin

Eddie Tchertchian

Caylor Davis

Ben Smith

Jinna Hwang

Ben Winjum

Icy Zhang

Claudia Sutter

Matt Jackson

Ken Sorey

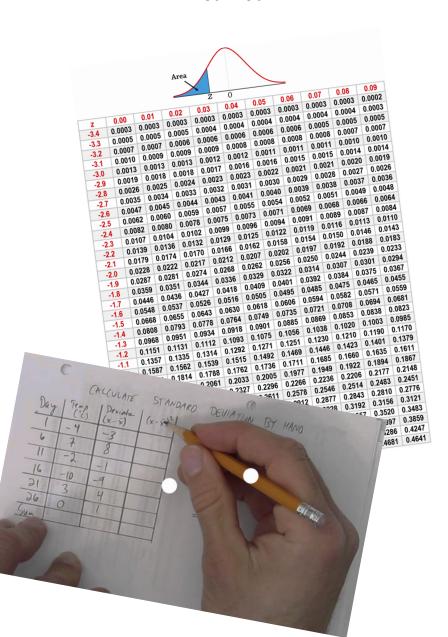
Teaching Hard Things to **All Students**

Results

Activities

Lessons Learned

Next Steps


After CA community colleges reduced developmental math courses (AB705),

50% of math enrollment is now in statistics courses.

A similar (albeit less widely studied) CSU policy is Chancellor's Office EO1110.

SLAM, statistics and liberal arts math: https://www.ppic.org/publication/community-college-math-in-californias-new-era-of-student-access/

OPPORTUNITY TO MODERNIZE STATS

Project Overview

Activities

Results

Lessons Learned

Next Steps

Results

Activities

Lessons Learned

Next Steps

OPPORTUNITY TO MODERNIZE STATS

A Modeling Approach

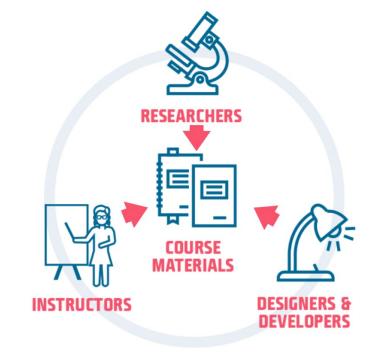
DATA = MODEL + ERROR

Connecting stats to modeling with algebraic functions

Interactive Textbook (R)

Which He in Thumb	ght variable (the three-categor ength?	ry variable or the	two-category vari	iable) explains more	/ariation
А	The three-category variable				
В	The two-category variable				
How can y	ou tell?				
Сору	Cut Paste			0 V	Vord(e)
		sum(1,5,	10)		
Learnosity: C	04_Quantitative_5	Run	Submit	Ready.	Rese

In-Class Jupyter Notebooks


Activities

Results

Lessons Learned

Next Steps

OPPORTUNITY TO MODERNIZE HOW WE STUDY STUDENT LEARNING

Activities

Results

Lessons Learned

Next Steps

Home	Home	ℰ 5.2 The Mean as a Model	
	Discussions		
Account		5.4 Generating Predictions from the Empty Model	
Dashboard		\mathscr{O} 5.5 Venturing into the World of Mathematical Notation	
Courses			
Ealendar		S.7 Statistics and Parameters	
回 Inbox			
() History			
) Help		S.10 Chapter 5 Review Questions	
ныр		5.11 Chapter 5 Review Questions 2	
		Chapter 6 - Quantifying Error	0
		 	

Activities

Results

Lessons N Learned

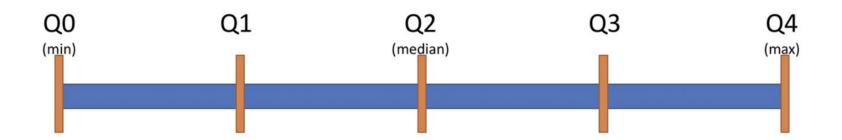
Next Steps

The "Better Book" Model

Using student data to *improve* how we teach statistics.

What did we learn?

Activities Overview


Lessons **Results** Learned

Next Steps

Example 1: Small Improvements! Excerpt:

It is important to note that what is equal about the four quartiles is the number of data points included in each...

Project

Example 1: Small Improvements!

The quartiles are equally sized. What is "equal" about the quartiles?

А	They each have the same range on the variable (i.e., 1-10, 11-20, 21-30, 31-40).	28%
В	They each have the same data points.	1%
С	They each have the same number of data points.	46%
D	They each have the same interval.	25%

Project

Activities Overview

Lessons **Results** Learned

Next Steps

Example 1: Small Improvements! Excerpt:

It is important to note that what is equal about the four quartiles is the number of data points included in each...

Project

Lessons

Learned

Example 1: Small Improvements!

The quartiles are equally sized. What is "equal" about the quartiles?

А	They each have the same range on the variable (i.e., 1-10, 11-20, 21- 30, 31-40).	8%
В	They each have the same data points.	5%
С	They each have the same number of data points.	84%
D	They each have the same interval.	3%

Project

Overview

Results

Lessons Learned

Next Steps

Example 2: COVID x Campus

In-person

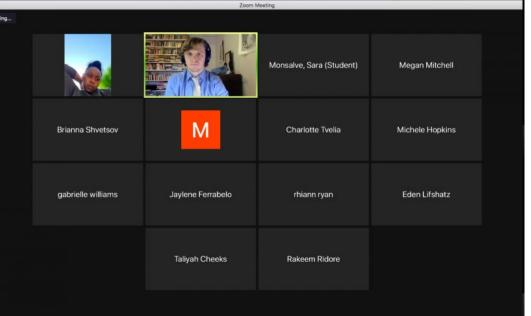
Remote

Activities

Importance of context!

Activities

Results

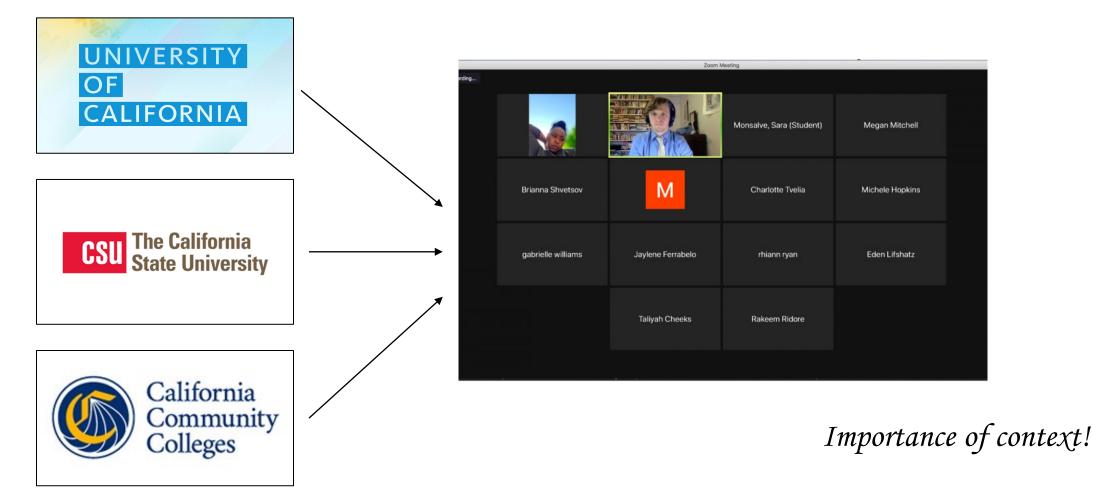

Lessons Learned Next Steps

Example 2: COVID x Campus

In-person

Remote

Importance of context!

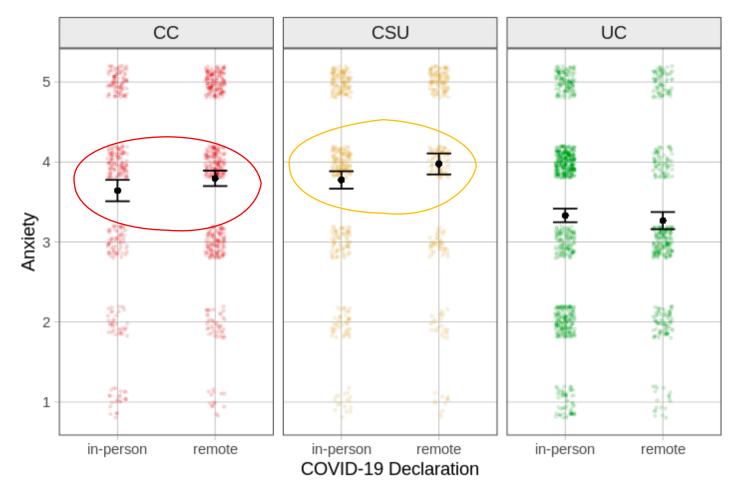

Results

Activities

Lessons Learned

Next Steps

Example 2: COVID x Campus

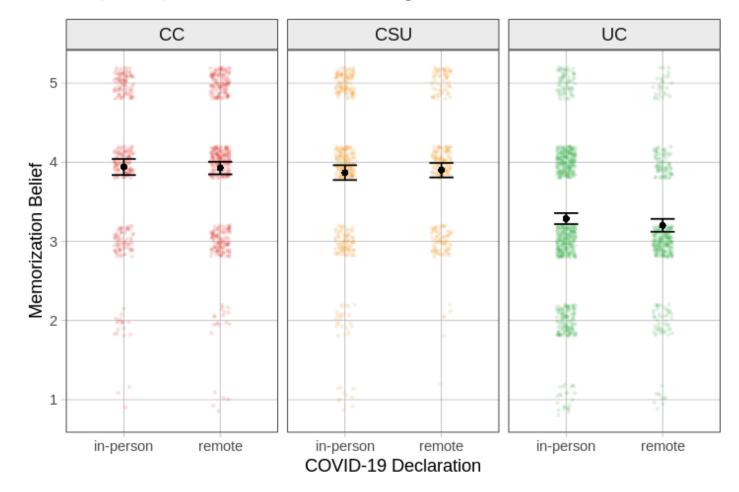


Project Activities Results Lessons Learned

Next Steps

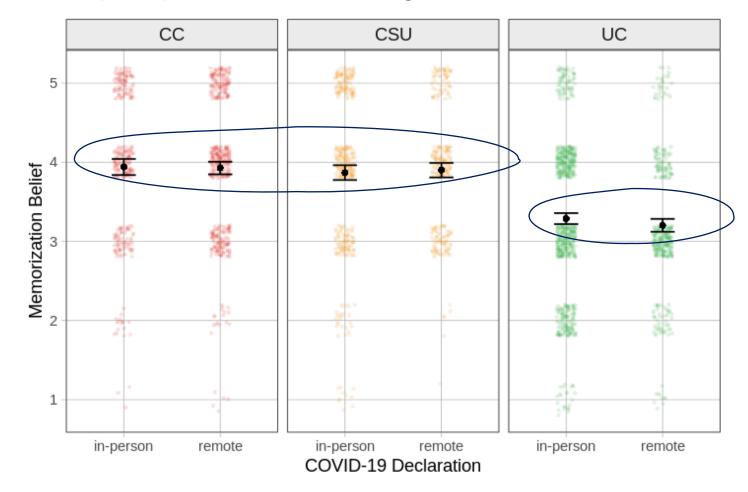
Example 2: COVID x Campus

Increases in Anxiety in CC and CSU



Example 2: COVID x Campus

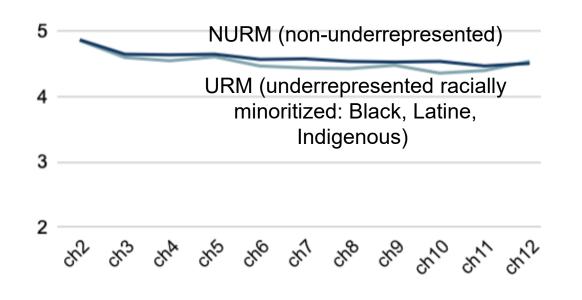
Even with more open policies, no changes in beliefs about memorization



Example 2: COVID x Campus

Even with more open policies, no changes in beliefs about memorization

Project Overview Activities


Results

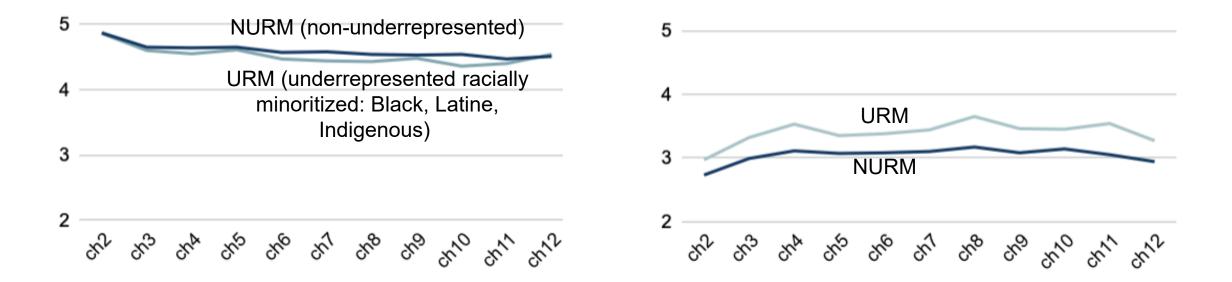
Lessons Learned

Next Steps

Example 3: Design for Equity

Utility Value: the relevance and perceived usefulness of content

Sutter, C.C., Tucker, M., Givvin, K.B., & Hulleman, C.S. (under review). *Concerns and challenges in introductory statistics and correlates with motivation and future interest.*


Project Overview Activities

Lessons Learned Next Steps

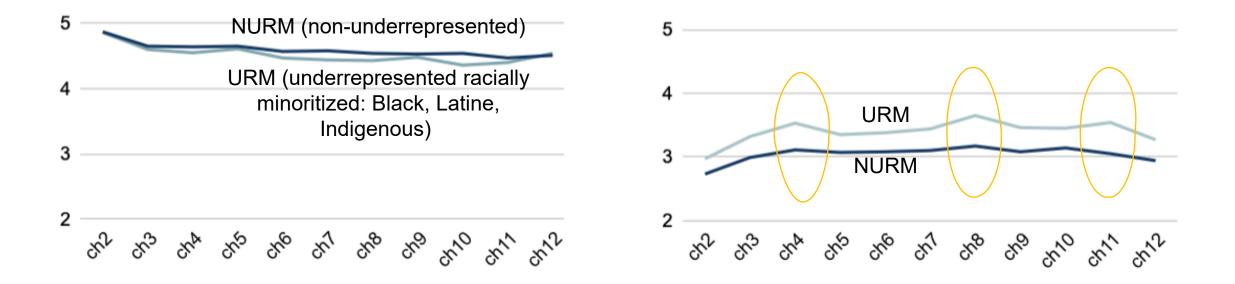
Example 3: Design for Equity

Utility Value: the relevance and perceived usefulness of content

Cost: perceived time and energy needed to succeed in this chapter

Sutter, C.C., Tucker, M., Givvin, K.B., & Hulleman, C.S. (under review). *Concerns and challenges in introductory statistics and correlates with motivation and future interest.*

Project **Activities Overview**


Lessons **Next Steps**

Learned

Example 3: Design for Equity

Utility Value: the relevance and perceived usefulness of content

Cost: perceived time and energy needed to succeed in this chapter

Sutter, C.C., Tucker, M., Givvin, K.B., & Hulleman, C.S. (under review). Concerns and challenges in introductory statistics and correlates with motivation and future interest.

Results

Lessons Learned

Next Steps

Example 3: Design for Equity

V4.0:

- Page lengths inconsistent
- Ch7 twice as long as others
- Notation for models introduced before visual representation

V5.0:

Activities

- More consistent length of pages
- Split contents of Ch7 into 2 chapters
- Visual introduction to models before notation

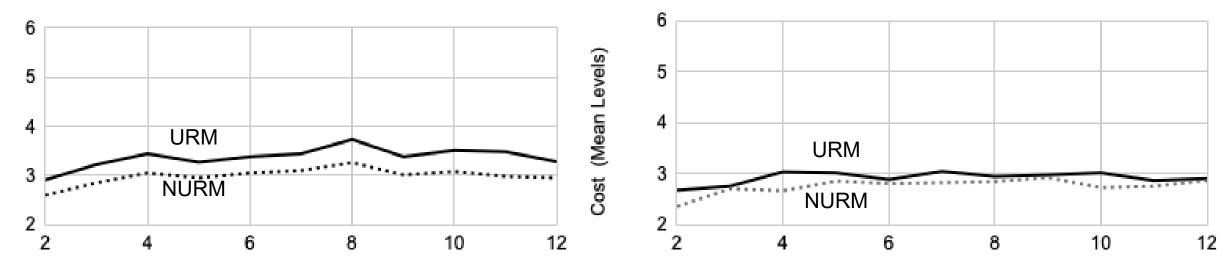
Sutter, C.C., Jackson, M.C., Givvin, K.B., Stigler, J.S., & Son, J.Y. (in preparation). The "Better Book" Approach to Addressing Equity in Statistics. *Education Sciences.*

Results

Lessons Learned

Next Steps

Example 3: Design for Equity


V4.0:

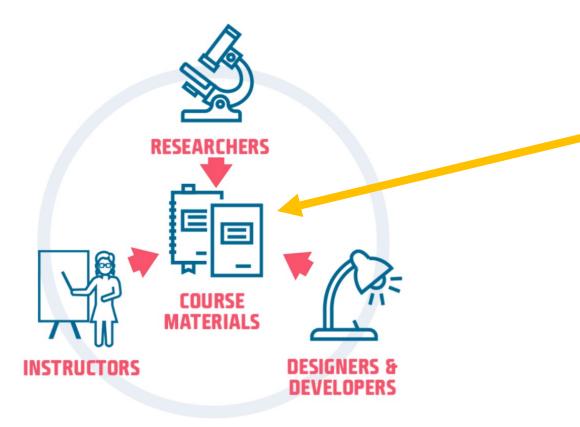
- Page lengths inconsistent
- Ch7 twice as long as others
- Notation for models introduced before visual representation

V5.0:

Activities

- More consistent length of pages
- Split contents of Ch7 into 2 chapters
- Visual introduction to models before notation

Sutter, C.C., Jackson, M.C., Givvin, K.B., Stigler, J.S., & Son, J.Y. (in preparation). The "Better Book" Approach to Addressing Equity in Statistics. *Education Sciences.*



Activities

Results

Lessons Learned

Next Steps

Doing the research and storing innovations *in* the student-facing materials!

Activities

Results Lessons Learned

Next Steps

THANK YOU!

Chan Zuckerberg Initiative 😚

BILL & MELINDA GATES foundation

The California State University

Introducing The ADAPT Open Homework and Assessment Platform

Delmar Larsen

Executive Director, LibreTexts Professor, Department of Chemistry, University of California, Davis

ADAPT

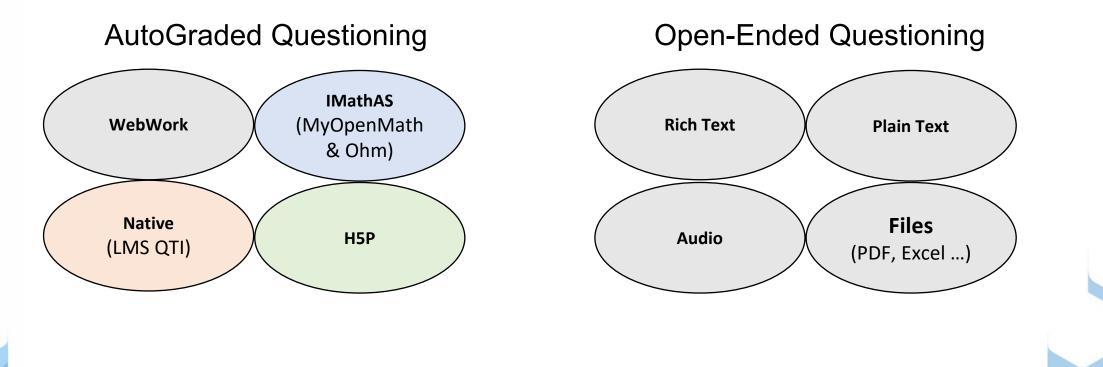
(https://ADAPT.LibreTexts.org)

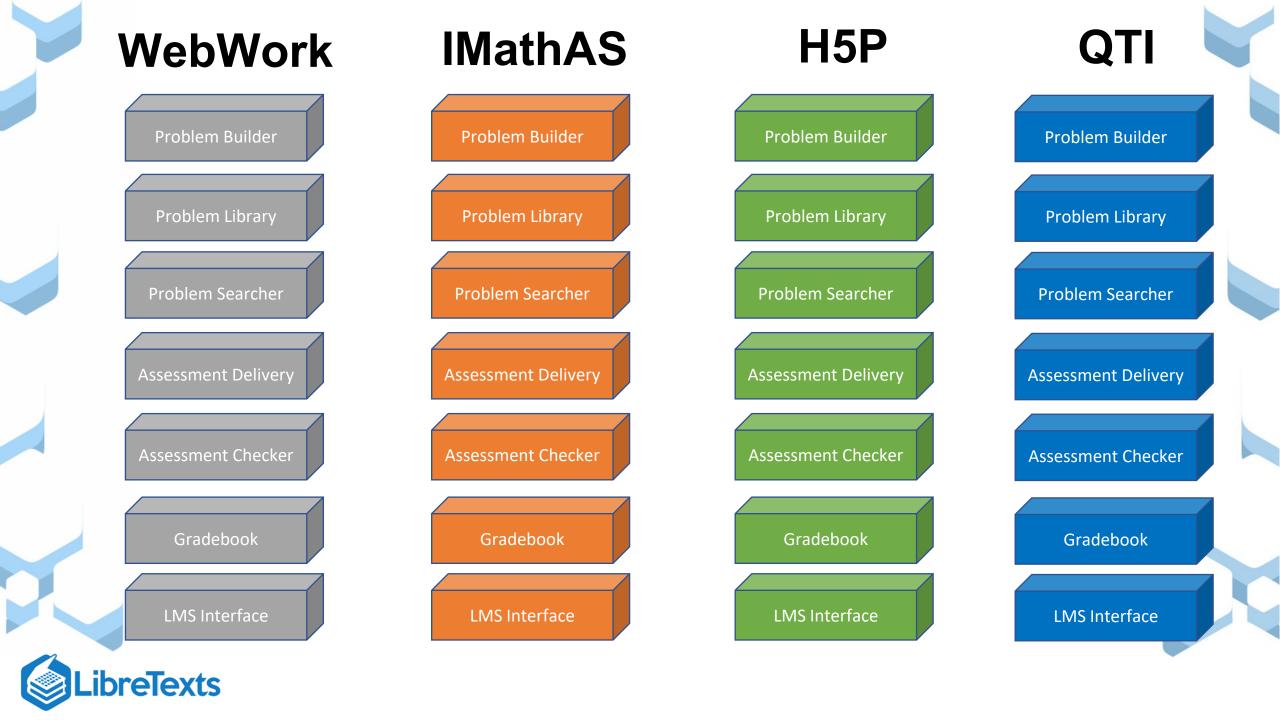
• Studio (https://studio libretexts.org)

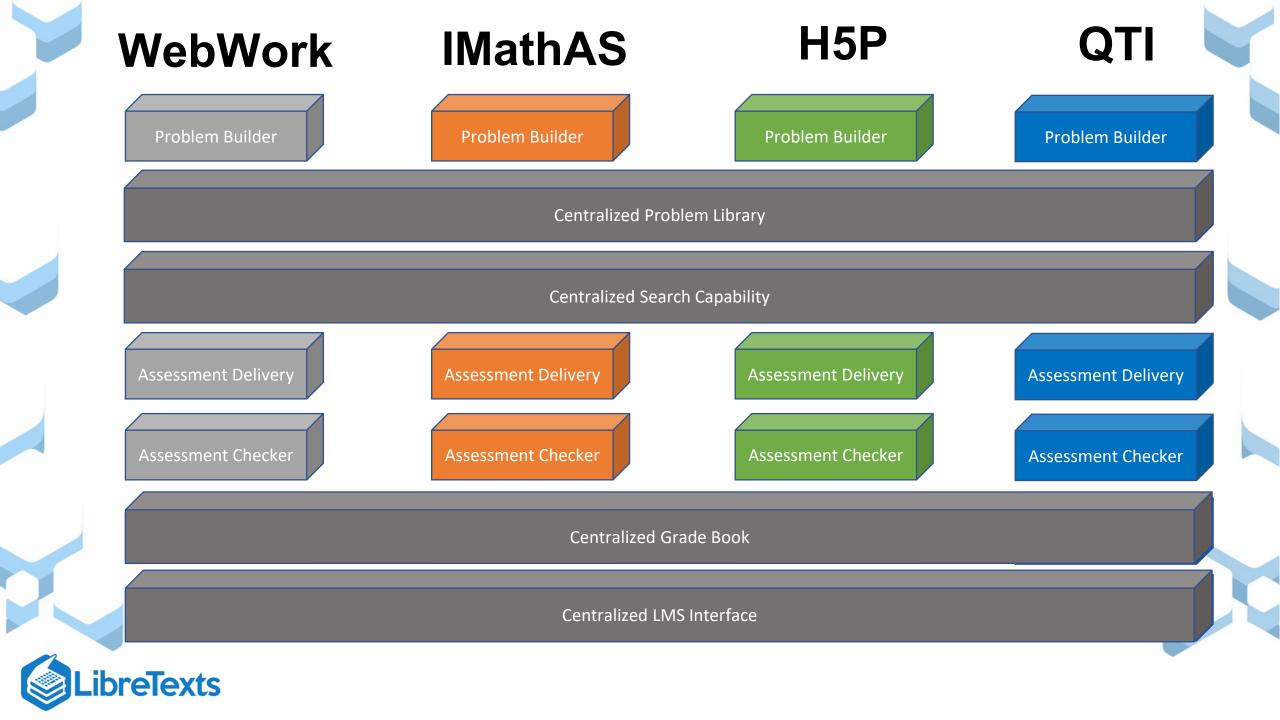
ADAPT is brought to you by the California Education Learning Lab

How do you build an online homework system that complements the utility of the LibreTexts Infrastructure and is:

- Flexible,
- Dynamic,
- Comprehensive,
- Integrated,
- LMS agnostic,
- Powerful, &
- and free or nearly free?

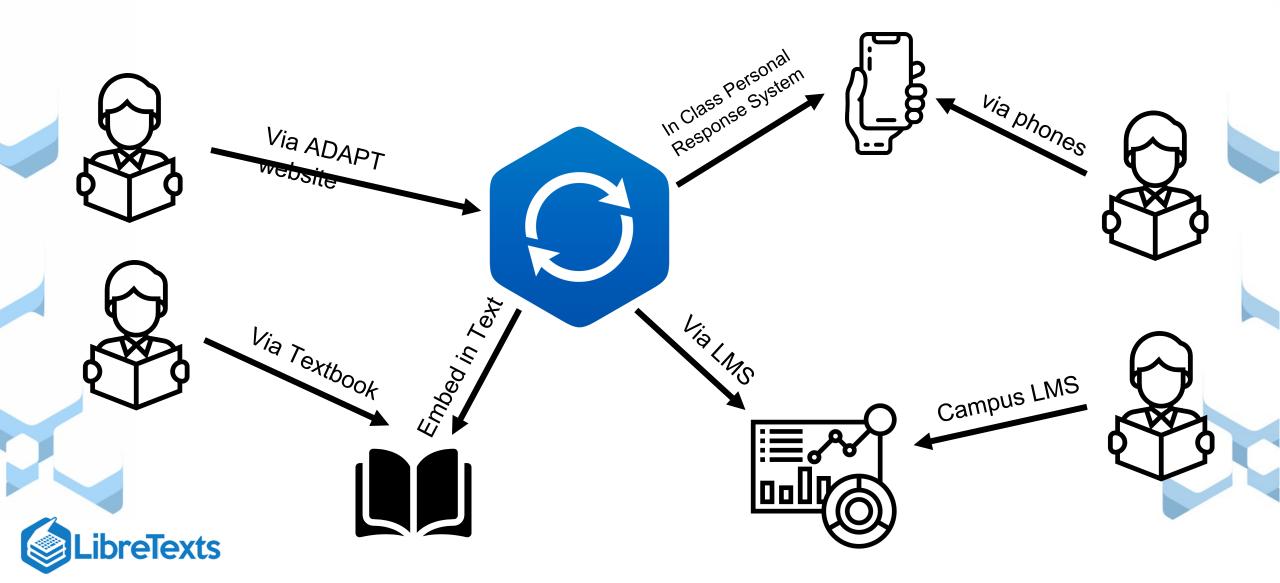


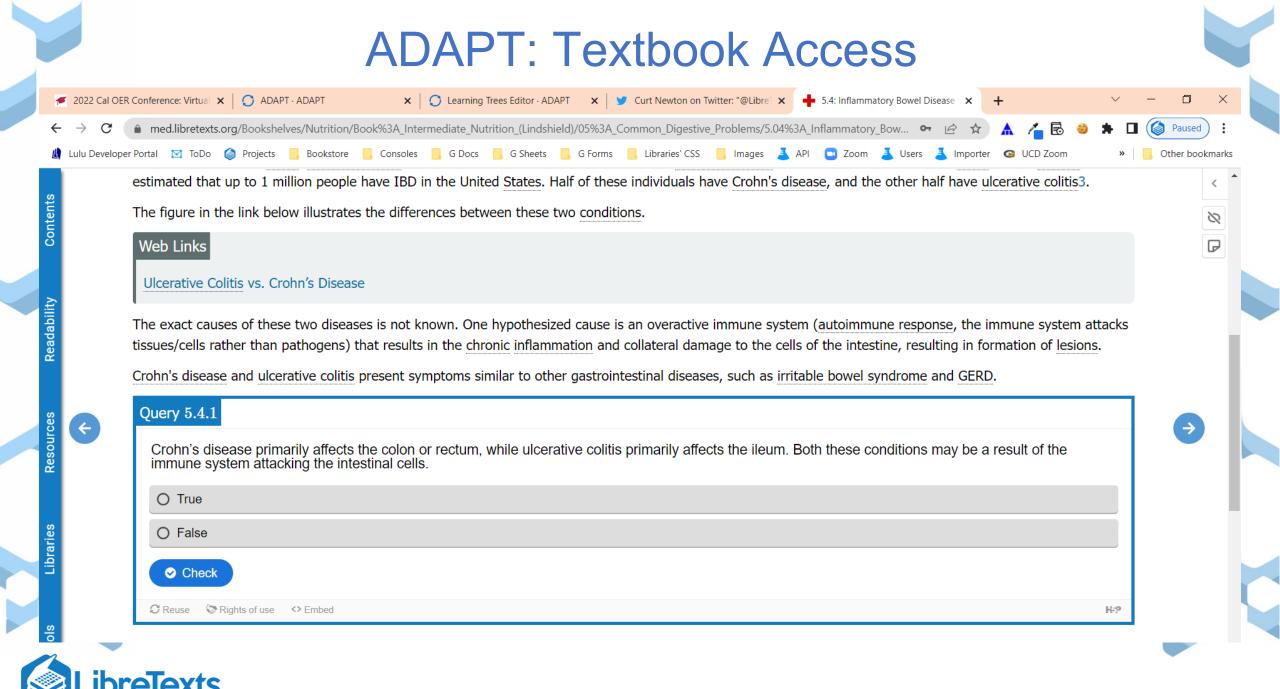

All rights reserved - IBM


ADAPT is Built for Multi-modal Use - Technology

No single technology can handle all use cases. Our solution is to build ADAPT with multiple technologies capable of handling numerous use cases.

Texts

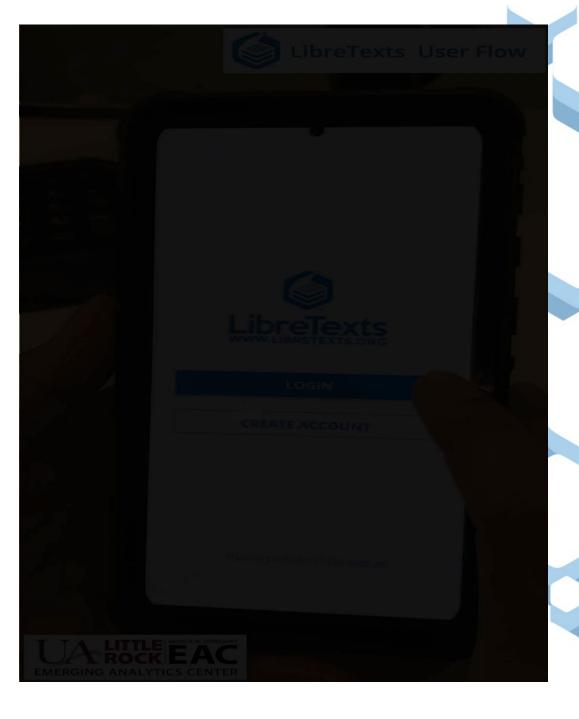




ADAPT is Built for Multi-modal Use – Application

Different Instructors have different pedagogies in their use of Homework.

Ę

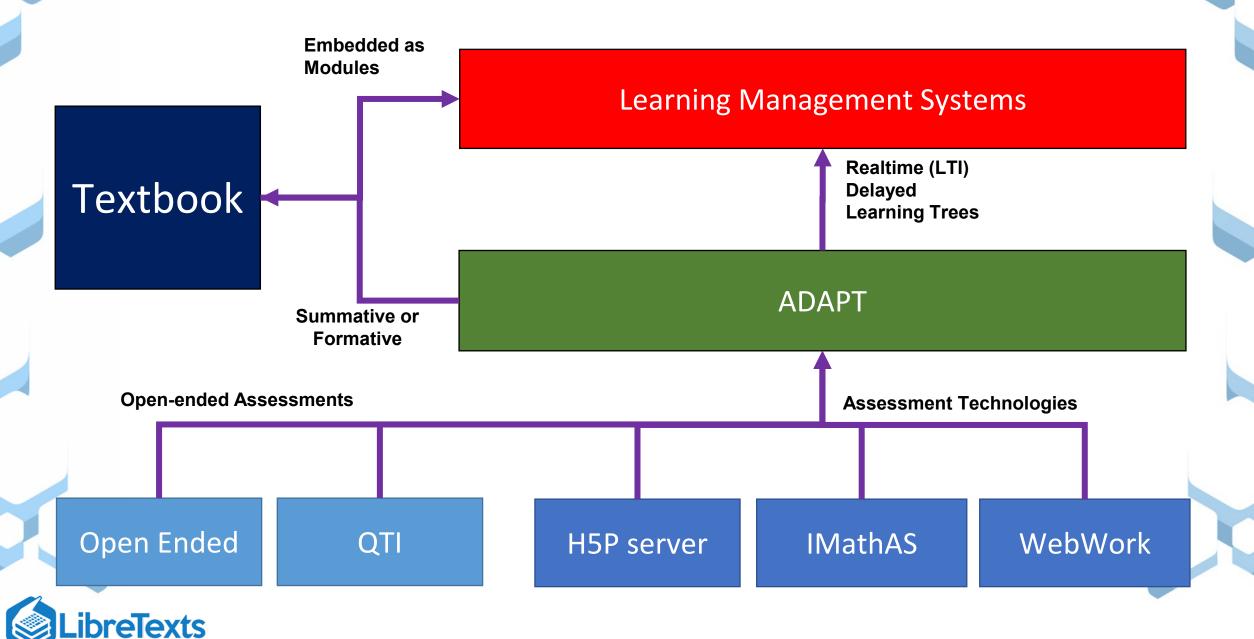


Anywhere and Anytime

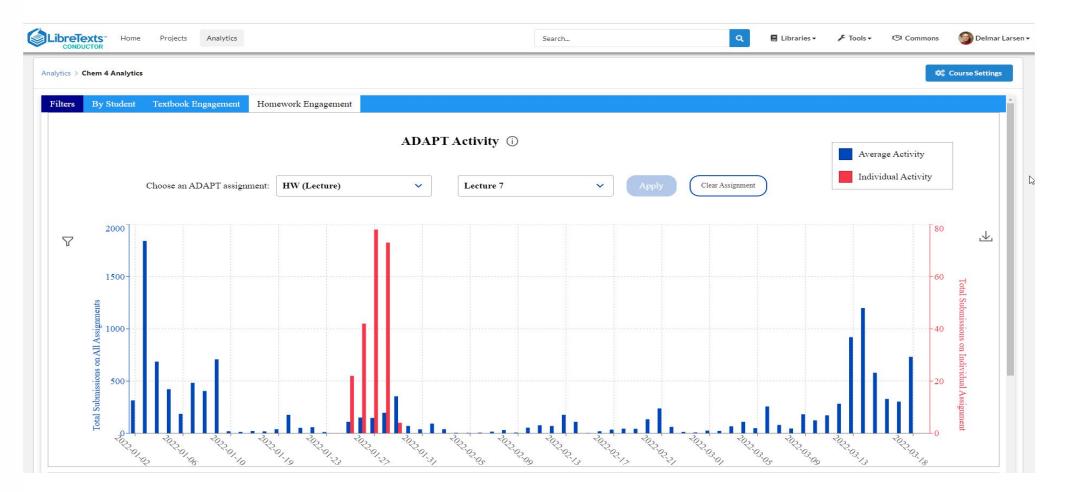
User ADAPT as a handheld homework interface for easy access to homework.

Use ADAPT as a **Personal Response Systems**: This enables instructors to pose questions to students and immediately collect and view the responses of the entire class.

Useful for labs and collaborative projects (e.g., easy submission of pictures of collective or individual work)


ADAPT is Built for Multi-modal Use – Delivery

Students interact with problems via traditional Assignment/Question approach or via an adaptive Learning Tree approach that enables individualized assessment


and learning. Chemistry - 274162 Yes 🔵 = 🔒 Midterm 1 * Midterm 1 3.1: pH calculation of a buff... Yes 🔵 Midterm 1 **≡ Midterm 1 (Corrected for Calculation**) ≡ 🔒 Midterm 2 * (Yes 🔵 Midterm 2 ADAPT - 119836 Chemistry - 274163 **≡ Midterm 2 (Corrected for** Yes 🔵 Midterm 2 1: T/F 3.1.1: pH calculation of a bu... Calculation) No No ≡ 🔒 Final Exam Final ADAPT - 112586 Chemistry - 278275 Chemistry - 278275 ≡ A Exam Practice Problems * Yes 🔵 Practice 3.1.2: pH calculation of a bu... Psych in Real Life- Mor.. 3.1.2: pH calculation of a bu... ≡ 🔒 Nomenclature Quiz * Yes 🔵 Practice Chemistry - 278275 ADAPT - 119836 Chemistry - 278275 Yes 🔵 Practice 3.1.2: pH calculation of a bu... 1: T/F 3.1.2: pH calculation of a bu... (Yes 🔵 Practice

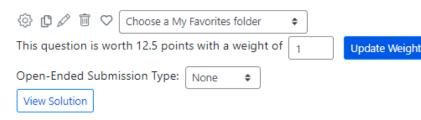
eTexts

Workflows

Learning Analytics – Data at your Fingertips

Snapshot of the homework activity for a class in the learning analytics dashboard showing the activity of all assignments (blue) and of a specific assignment (red).

eTexts


ADAPT in Action

Ideal question is ...

- Autograd (if possible)
- Pedagogical Solution
- Algorithmic
- Significant Figures and precision
- Feedback (Mastering Approach)

W1.7 Ø ADAPT ID: 42134-98033 ()

Question View: Advanced

Reset Submission

During the late spring, icebergs in the North Atlantic pose a hazard to shipping. To avoid them, ships travel routes that are about 30 % longer. Many attempts have been made to destroy icebergs, including using explosives, torpedoes, and bombs. How much heat must be generated to melt 10.1 % of a 1.60000000x10^8 kg iceberg?

kJ

How many kilograms of TNT (trinitrotoluene, $C_7H_5N_3O_6$) would be needed to provide enough energy to melt the ice? (The heat released for explosive decomposition of TNT is $-1035.8\,\frac{kJ}{mol}$.)

kg

Enter the value with the appropriate number of significant figures.

You can earn partial credit on this problem.

Submit Answers

Attribution 🔀

Question Statistics

• 0 student submissions

Over 190,000 questions in the centralized question bank and **growing** rapidly

eTexts

Search Questions

Question Bank													
< 1 2	3 4	5 6	7	8	9 10		39	>	Per pa	age 10 🗧	;		
Type Any	type	\$											
Content Eith	er content ty	ype 🗢											
Technology Any	technology	\$											
Title 🕐 🛛 sto	ichiometry]					
Author]					
Tag(s) ⑦]					
	pdate Result	-	_	uestio	ns Ik Action	4							
ADAPT ID Q	Tit	tle	Cite	505C 50		·	Aut	hor		Technology	Туре	Tags	Acti
88524 🗘	Sto	oichiomet	ry-928	880			Jess	ica G	arber Morales	IMathAS	unknown	problem- 00043485	$\heartsuit \checkmark$
88525 🗘	Sto	pichiomet	ry-928	881				erie I rales	Mott, Jessica Garber	IMathAS	unknown	problem- 00073151	♡\$
88526 🗘	Sto	pichiomet	ry-928	882				erie I rales	Mott, Jessica Garber	IMathAS	unknown	problem- 00073157	$\heartsuit d$
88527 🗘	Sto	oichiomet	ry-928	883				erie I rales	Mott, Jessica Garber	IMathAS	unknown	problem- 00073158	06
88528 🗘	Sto	pichiomet	ry-928	884			Vall	erie I	Mott	IMathAS	unknown	problem- 00073159	$\heartsuit \checkmark$

ADAPT in Action

90 Premade Courses available in the Commons – mostly STEM.

250+ Public "Courses" available

Beginning Chemistry This text introductory chemistry text is aimed for a single semester or guarter beginning experience to the (Ball) field. The textmaps survey some of the basic topics of chemistry. This survey should give student enough knowledge to appreciate the impact of chemistry in everyday life and, if necessary, prepare student for additional instruction in chemistry. **Big Ideas in Cosmology** Development of Big Ideas in Cosmology began with extensive research and vigorous peer review, to ensure the quality of the content and the level of instruction. Field testing was conducted at Sonoma State University to evaluate the effectiveness of the publication's methods and pedagogy, which revealed high levels of engagement and comprehension for science and non-science majors alike. University Physics II University Physics is a three-volume collection that meets the scope and sequence requirements for two-(OpenStax) and three-semester calculus-based physics courses. Volume 2 covers thermodynamics, electricity, and magnetism. University Physics I University Physics is a three-volume collection that meets the scope and sequence requirements for two-(OpenStax) and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. University Physics III University Physics is a three-volume collection that meets the scope and sequence requirements for two-(OpenStax) and three-semester calculus-based physics courses. Volume 3 covers optics and modern physics. The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. General, Organic, and 0 **Biological Chemistry (Ball)** Scott. This textbook is intended for the one-semester GOB course. Although a two-semester GOB sequence is available at many colleges and universities, one-semester GOB offerings are increasing in popularity. This textbook is divided into approximately one-half general chemistry topics, one-fourth organic chemistry topics, and one-fourth biochemistry topics. Microbiology (OpenStax) Microbiology covers the scope and sequence requirements for a single-semester microbiology course for non-majors. The book presents the core concepts of microbiology with a focus on applications for careers in allied health. The pedagogical features of the text make the material interesting and accessible while maintaining the career-application focus and scientific rigor inherent in the subject matter. Microbiology's art program enhances students' understanding of concepts through clear and effective illustrations, diagrams, and photographs. **General Biology** Biology is a natural science concerned with the study of life and living organisms, including their structure, \quad @(OpenStax) function, growth, evolution, distribution, and taxonomy. Modern biology is a vast and eclectic field, composed of many branches and subdisciplines. However, despite the broad scope of biology, there are certain general and unifying concepts within it that govern all study and research, consolidating it into single, coherent fields. Subdisciplines of biology are defined by the scale at which organisms are studied, the kinds of organisms studied, and the methods used to study them.

https://adapt.libretexts.org/open-courses/commons

ADAPT in Action

Browse Learning Trees

000

	1	2	2	1	
× .		2	5	-	1

\$

.

Full or partial-text matches will be counted when searching below.

Title		
Author		
	Update Results	174 learning trees

ID Title Author 8 🗘 Gravitational Energy Question Delmar Larsen 13 🗘 Identifying Significant Figures Andreas Beyersdorf 22 🗘 Rounding Significant Figures Andreas Beyersdorf 23 🗘 Significant Figures Calculations (Addition/Subtraction) Andreas Beyersdorf 24 🗘 Significant Figures Calculations (Multiplication/Division) Andreas Beyersdorf [No Title] 25 🗘 Metric Conversion Basics Andreas Beyersdorf 29 🗘 Molarity Larry Mink 30 🗘 Dilution (154) Larry Mink 31 🗘 Stoichiometry grams to grams (196) Larry Mink 32 🗘 Stoichiometry and Limiting Reagent (197) Larry Mink 33 🗘 Determination of molarity by titration (198) Larry Mink 34 🗘 Combustion Analysis and Empirical Formula (273) Larry Mink

174 Learning Trees (mostly in General Chemistry)

The Future of ADAPT

Development Goal: Building Quantity and Quality

Expanding Scope into other STEM fields:

- Physics,
- Engineering,
- Biology,
- Applied Health
- Mathematics,
- Statistics

Expand technology

- Juypter Tech for statistic and data sciences
- Greater Analytics
- Field specific Technology (e.g., organic chemistry, spreadsheets for statistics, virtual dissection)

Engaging Students as Scientists Through Authentic Research Inquiry

Sonal Singhal

on behalf of our CSU Dominguez Hills, El Camino College & UC Irvine team Associate Professor // CSU Dominguez Hills

Who are we: CSU Dominguez Hills, El Camino College, UC Irvine

CSU Dominguez Hills Carson, CA

- Regional comprehensive university
- Predominantly undergraduate
 institution
- 77% underrepresented minority
- 48% first-generation

El Camino College Torrance, CA

- California Community College
- Offers Associate degrees as terminal degree
- 72% underrepresented minority
- 51% first-generation

UC Irvine Irvine, CA

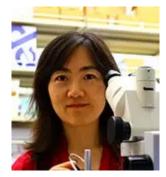
- Part of University of California system
- R1 university
- 33% underrepresented minority
- 50% first-generation

Our team at CSU Dominguez Hills, El Camino College, UC Irvine

Brynn Heckel CSUDH

Sam Leigh **CSUDH**

CSUDH


Kathryn Theiss

CSUDH

Justin Valliere

CSUDH

Fang Wang CSUDH

Darcie McClelland El Camino

Polly Parks El Camino

Karin Kram

CSUDH

Karla Villatoro El Camino

Charlie McCord Sonal Singhal

CSUDH

Rachael Barry UC Irvine

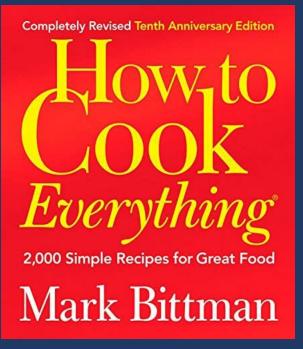
Suzanne Bohlson **UC** Irvine

Brian Sato UC Irvine

Lauren Snow UC Irvine

not pictured: Bryan Carey (El Camino College), Nancy Roback (CSUDH), Carolyn Yarnall (CSUDH)

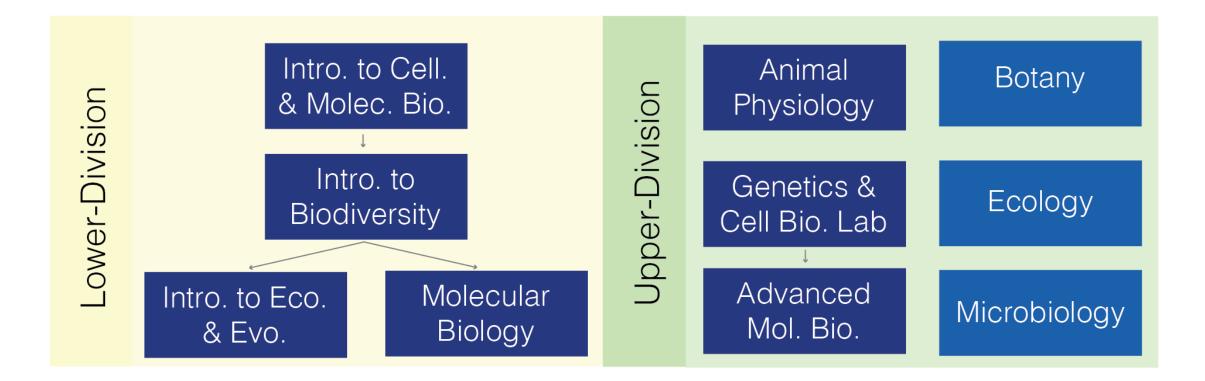
Our project goal was to provide inquiry-based experiences for biology students across our 3 campuses.


What was our approach?

Our starting point was cookbook labs

tps://www.eater.com/2015/3/16/8225163/classic-recipes-for-modern-people-chef-brothers-max-eli-sussman-cookbook

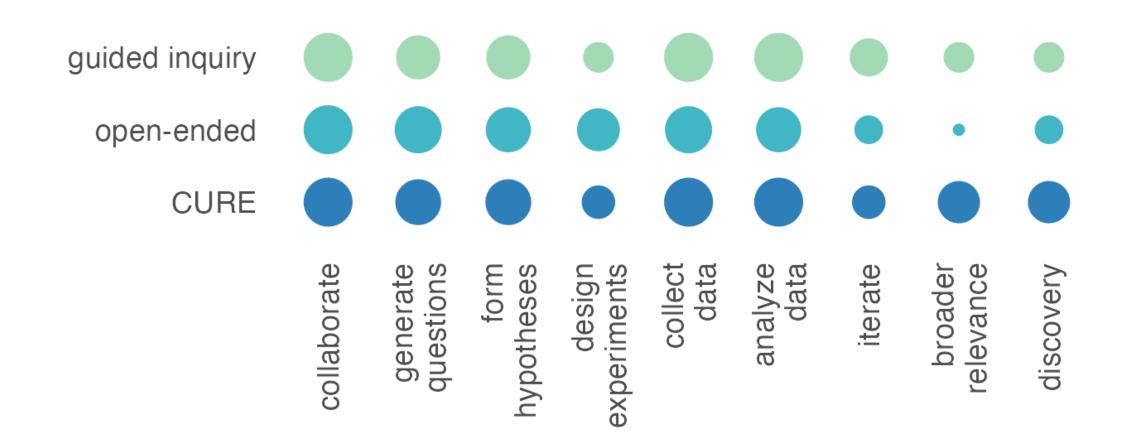
How do we go from here to there?


Collaborative design of learning objectives

Our final learning objectives

- Engage with the tenets of the scientific method
- Communicate effectively
- Work effectively in a team of their peers.
- Recognize the diversity of participants within the scientific community.
- Effectively use quantitative skills to address scientific questions.

Curriculum structure provided natural scaffolding


Collaborative design of content and skill scaffolding

course	Scientific citation	Scientific literature	Lab reports	Figure / table generation	Lab presentation	teamwork	statistics	Hypothesis generation
Bio 121	Parts of a citation	Primary v secondary and trustworthiness	Writing figure legend Writing methods (I find that the easiest)?	Identify dependent & independent variable <u>Make box plot</u> and/or line graph (log scale?)	What should a presentation contain?		Simple t-test	Difference between question and hypothesis Hypothesis should have a direction
Bio 123	Create a literature-cited page in proper CSE format	Finding scholarly sources, reading scientific literature, and evaluating the quality of various types of literature	What is plagiarism and how to avoid it paraphrasing	Make a histogram, understand why/how bar graphs can be misleading; be able to explain relationships among variables	Presentation skills; focus on the skeleton of solid presentations and press into how to make the science presenting better	Goal setting for individual and group norms, expectations, etc at start of term; end of term reflection of teamwork	Descriptive stats; t-test; chi-square	Difference between statistical and biological hypotheses; difference between hypotheses and predictions
Bio 125	How to use a citation manager (Zotero)	How to break down figures	Writing introduction	Making histogram Making tables	What does an effective slide look like?	How to use collaborative tools to help facilitate group work	ANOVAs? Or correlations?	Null vs alternate hypotheses
Bio 221	Find a relevant paper and cite it	Describe a figure from a paper to the class	Create a report with embedded figures and reference them.	Create graph from spreadsheet with axes labeled and a sound legend.	Describe a figure from a paper to the class	Lab groups.		Question vs. hypothesis vs. prediction. Was the hypothesis supported by the data?
Upper div bio courses	Use multiple primary sources for a report and cite them	Describe multiple figures from a paper to the class	Deeper focus on scientific language	Multi-panel figure	Full-story presentation			

This project touched a lot of students.

Institution	Number of courses	Students per course (per semester)	Total students across courses (per year)	
CSU Dominguez Hills	10	~40	~500	
El Camino College	4	~40	~300	
UC Irvine	2	~1500	~3000	

Our learning objectives were implemented across a diversity of inquiry-based experiences

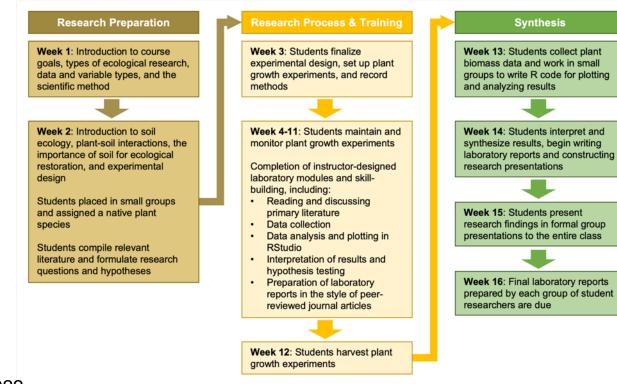
An example of a guided inquiry: Bio Sci 93 @ UC Irvine

Rachael Barry UC Irvine

An example of a guided inquiry: Bio Sci 93 @ UC Irvine

Maria, Metastasis, and Methotrexate

- A case-study centered on cancer biology
- This case study was designed to have students:
 - Apply their knowledge re: the cell cycle
 - Interpret data and figures from primary scientific literature
 - Explore the contributions of scientists from marginalized backgrounds

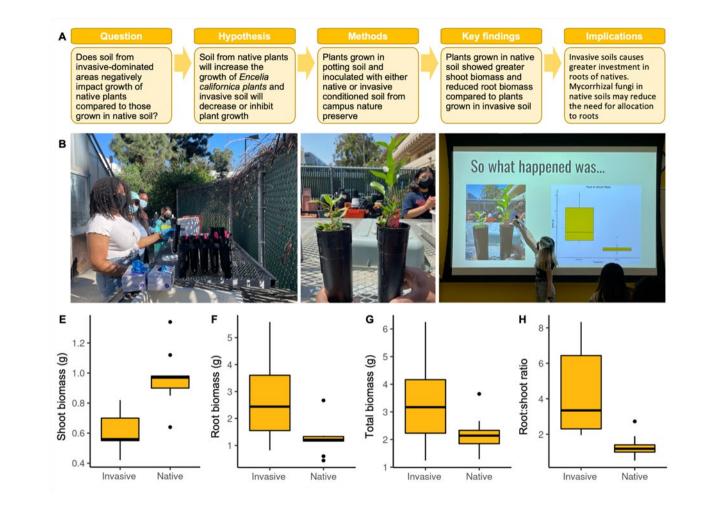


Jewel Plummer Cobb MTX in treatment of childhood cancers

Jane Cooke Wright MTX in treatment of solid tumors

An example of a CURE: BIO 333 @ CSUDH

• Students develop a research question on the role of soils in plant growth



Justin Valliere CSUDH (now UC Davis)

An example of a CURE: BIO 333 @ CSUDH

- This project is designed to have students
 - Develop research questions, hypotheses, and methods
 - Implement experiment with colleagues
 - Use R to analyze and graph data
 - Share results in standard scientific formats

So did it work?

How did we assess?

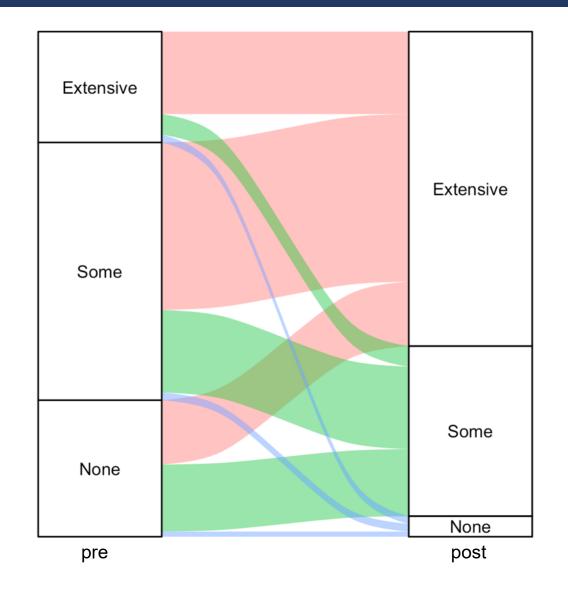
- Informal
 - Group discussions
- Formal
 - Student survey
 - Faculty survey
 - Retention in major (ongoing)

Our anecdata & faculty survey show many positives and some challenges

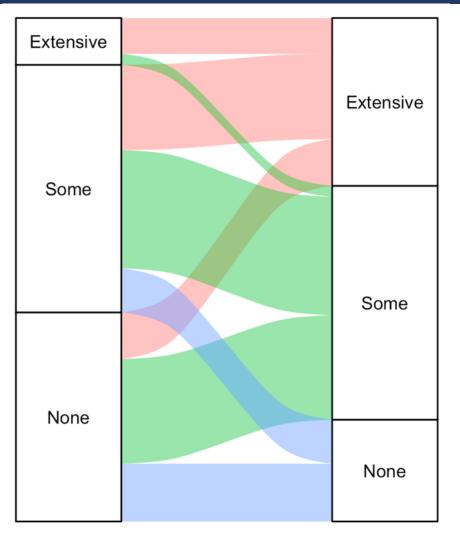
Benefits

- Students were more engaged
- More fun for students & faculty
- Easier to engage with students
- Lab staff liked the changes
- Labs were cheaper

Challenges

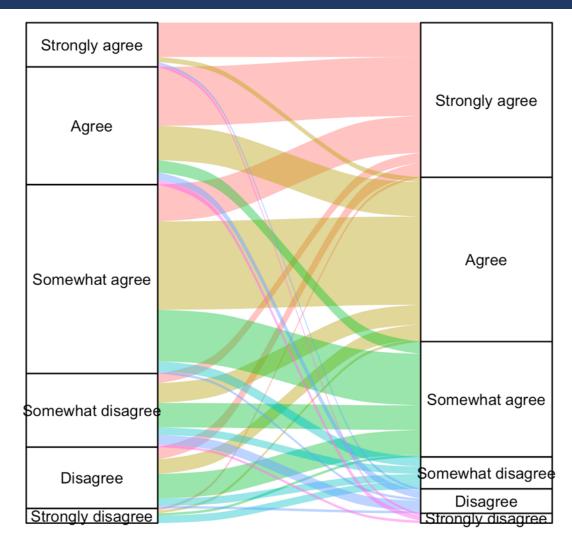

- Needed more examples of authentic inquiry labs
- More time-consuming
- Required more on-your-feet thinking
- Can be challenging to implement curriculum across sections (logistics, instructor buy-in)
- Did not work online
- Logistics non-trivial

How are we measuring success?

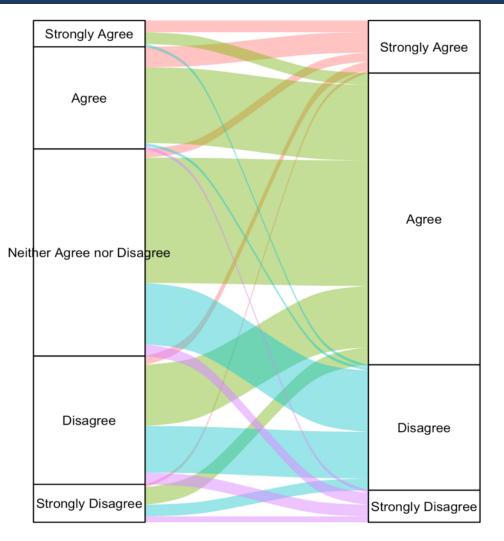

- Increasing student retention in the major
- Increasing student efficacy in their scientific abilities
 - Engage with the tenets of the scientific method
 - Communicate effectively
 - Effectively use quantitative skills to address scientific questions
- Increasing student sense of belonging in the major
 - Work effectively in a team of their peers
 - Recognize the diversity of participants within the scientific community

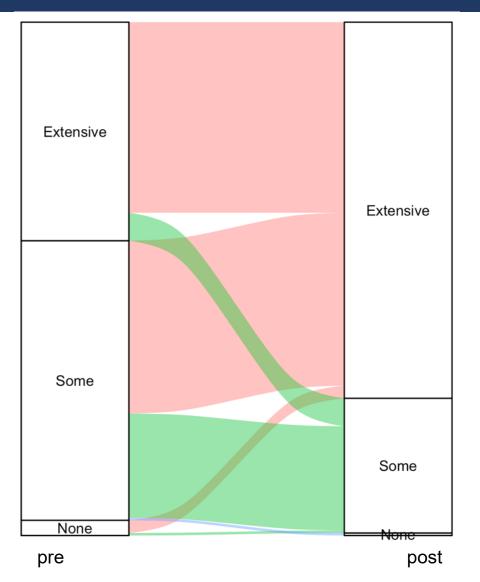
Student outcomes improved!

Engage with the tenets of the scientific method: Level of experience with an independent research project



Communicate effectively: Level of experience with writing a research proposal




Work effectively in a group of your peers: The people near me have learned from me

Recognize the diversity of scientists in our community: I know of one or more scientists with whom I can personally relate

Effectively use quantitative skills to address scientific questions.: Level of experience with analyzing data

Where to next?

Acknowledgements

- Our grant participants
- Our faculty and staff at each institution
- Our funders, CA Learning Lab

For questions, please contact: Sonal Singhal <u>ssinghal@csudh.edu</u>

Picture Credits

- https://www.pngwing.com/en/free-pngithor/download
- https://www.amazon.com/How-Cook-Everything-Recipes-Anniversary/dp/0764578650
- https://www.medicalnewstoday.com/articles/ 325549
- https://www.theguardian.com/science/2013/s ep/15/zebrafish-human-genes-project
- https://news.csudh.edu/overall-mobility/
- https://www.livescience.com/33907-seamonkeys.html

Questions ???

On-ramp to STEM ORZSTEM

The key to success in STEM is empowering all students to take ownership of their learning.

project website: bit.ly/onramptostem

Earvin Balderama, Assistant Professor Fresno State, Department of Mathematics mailto:earvin@mail.fresnostate.edu Bianca Lopez Yendluri, Lecturer

Cal State Fresno, Department of Mathematics byendluri@mail.fresnostate.edu

- For many students, **College Algebra** and **Precalculus** are a roadblock to a STEM degree.
 - Low passing rates
 - Lack of conceptual understanding
 - Lack of confidence and negative mindsets
 - Unprepared for subsequent math courses
 - Large learning/achievement gap for URM students

On-Ramp to STEM project

- **Goal #1**: **Transform the culture of learning** in math classrooms
- **Goal #2**: Develop and utilize suitable **Adaptive Learning Technology** and appropriate pedagogy to assist students of all backgrounds.
- **Goal #3**: Improve the learning outcomes and **close the achievement gaps** among student populations

Impacted courses (~1000 students)

Fall 2022

- 11 Precalculus classes at Fresno State
- 2 Precalculus classes at Clovis Community College
- 4 College Algebra classes at Fresno City College
- 1 Advanced math class at University High School

Spring 2023

- 8 Precalculus classes at Fresno State
- 3 classes (2 Precalculus/1 College Algebra) at Clovis Community College
- 2 College Algebra classes at Fresno City College
- 1 Advanced math class at University High School

Summer 2023

• 1 Precalculus class at Fresno State

Fall 2023

- 10 Precalculus classes at Fresno State
- 1 College Algebra class at Clovis Community College
- 3 College Algebra classes at Fresno City College

Engage instructors in Culturally Responsive Teaching

- Summer Workshops
 - Invited experts in Culturally Responsive Teaching (CRT) pedagogies
- Check-in meetings with instructors during the year
- Peer observations/feedback
- Shared resources CRT implementation journal

New Classroom for PreCalc at Fresno State

- Dedicated classroom for precalculus courses at Fresno State.
- Whiteboards around the room and tables and chairs to promote active learning, collaborations and discourse.

SCALE (Student-Centered Adaptive Learning Environment)

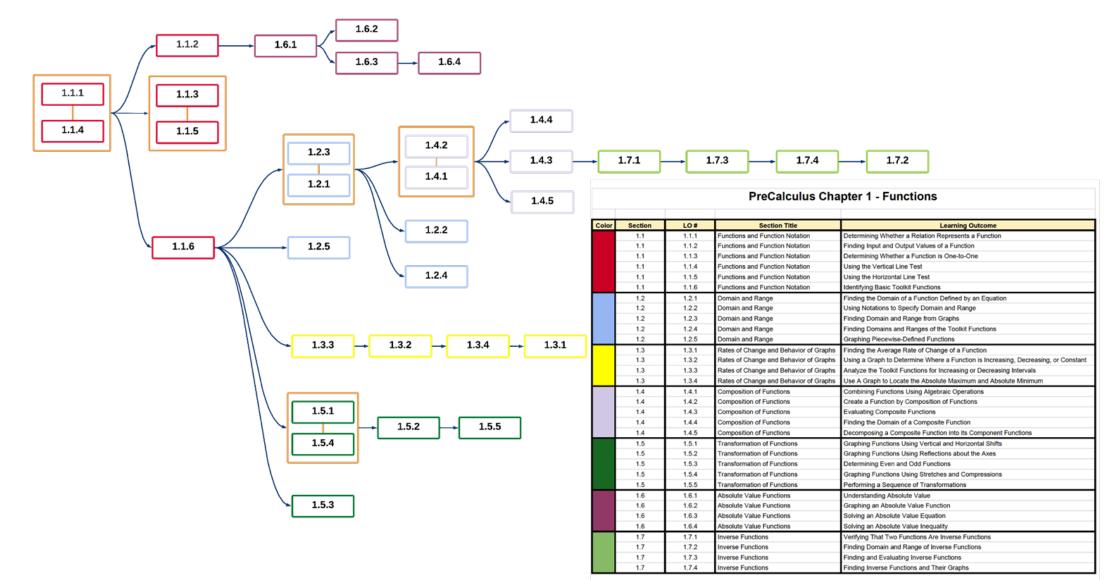
- "A platform for delivering adaptive instruction online, and provides a framework that guides the learner through the instructional content based on proven theories about how people learn effectively."
 - Dr. Bill Ferster, University of Virginia.

SCOOL (Student-Centered Open Online Learning)

- Developed by Dr. Cecotti and students of Fresno State Computer Science.
- To guide students through the learning process
 - Formative and summative assessments
 - Homework or extra credit assignments
 - Independent and autonomous learning
- Integrated through CANVAS LMS API

Knowledge map

- Knowledge map: A hierarchical concept map of learning outcomes.
 - Created by team of expert Math instructors.
 - Learning outcomes derived from **OpenStax textbook**.
 - Connected ~220 learning outcomes from College Algebra and Precalculus.
- Feedback to the user
 - If you master a learning outcome, what is next?
 - If you have problems with activities related to a given learning outcome, what prerequisite learning outcomes were not met?
- Empower students to build and improve on prerequisite skills.
- Enable instructors to identify roadblocks in learning pathways.



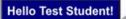
Chapter 1 Learning Outcomes

Section	LO #	Section Title	Learning Outcome
1.1	1.1.1	Functions and Function Notation	Determining Whether a Relation Represents a Function
1.1	1.1.2	Functions and Function Notation	Finding Input and Output Values of a Function
1.1	1.1.3	Functions and Function Notation	Determining Whether a Function is One-to-One
1.1	1.1.4	Functions and Function Notation	Using the Vertical Line Test
1.1	1.1.5	Functions and Function Notation	Using the Horizontal Line Test
1.1	1.1.6	Functions and Function Notation	Identifying Basic Toolkit Functions
1.2	1.2.1	Domain and Range	Finding the Domain of a Function Defined by an Equation
1.2	1.2.2	Domain and Range	Using Notations to Specify Domain and Range
1.2	1.2.3	Domain and Range	Finding Domain and Range from Graphs
1.2	1.2.4	Domain and Range	Finding Domains and Ranges of the Toolkit Functions
1.2	1.2.5	Domain and Range	Graphing Piecewise-Defined Functions
1.3	1.3.1	Rates of Change and Behavior of Graphs	Finding the Average Rate of Change of a Function
1.3	1.3.2	Rates of Change and Behavior of Graphs	Using a Graph to Determine Where a Function is Inc, Dec, or Const
1.3	1.3.3	Rates of Change and Behavior of Graphs	Analyze the Toolkit Functions for Increasing or Decreasing Intervals
1.3	1.3.4	Rates of Change and Behavior of Graphs	Use A Graph to Locate the Absolute Maximum and Absolute Minimum
1.4	1.4.1	Composition of Functions	Combining Functions Using Algebraic Operations
1.4	1.4.2	Composition of Functions	Create a Function by Composition of Functions
1.4	1.4.3	Composition of Functions	Evaluating Composite Functions
1.4	1.4.4	Composition of Functions	Finding the Domain of a Composite Function
1.4	1.4.5	Composition of Functions	Decomposing a Composite Function into its Component Functions
1.5	1.5.1	Transformation of Functions	Graphing Functions Using Vertical and Horizontal Shifts
1.5	1.5.2	Transformation of Functions	Graphing Functions Using Reflections about the Axes
1.5	1.5.3	Transformation of Functions	Determining Even and Odd Functions
1.5	1.5.4	Transformation of Functions	Graphing Functions Using Stretches and Compressions
1.5	1.5.5	Transformation of Functions	Performing a Sequence of Transformations
1.6	1.6.1	Absolute Value Functions	Understanding Absolute Value
1.6	1.6.2	Absolute Value Functions	Graphing an Absolute Value Function
1.6	1.6.3	Absolute Value Functions	Solving an Absolute Value Equation
1.6	1.6.4	Absolute Value Functions	Solving an Absolute Value Inequality
1.7	1.7.1	Inverse Functions	Verifying That Two Functions Are Inverse Functions
1.7	1.7.2	Inverse Functions	Finding Domain and Range of Inverse Functions
1.7	1.7.3	Inverse Functions	Finding and Evaluating Inverse Functions
1.7	1.7.4	Inverse Functions	Finding Inverse Functions and Their Graphs

Chapter 1 Knowledge map

SCOOL - Student-Centered Open Online Learning

MATH 6 (03) - Precalculus 4dcc18e235b9b40a79d81691e155694fe6784683

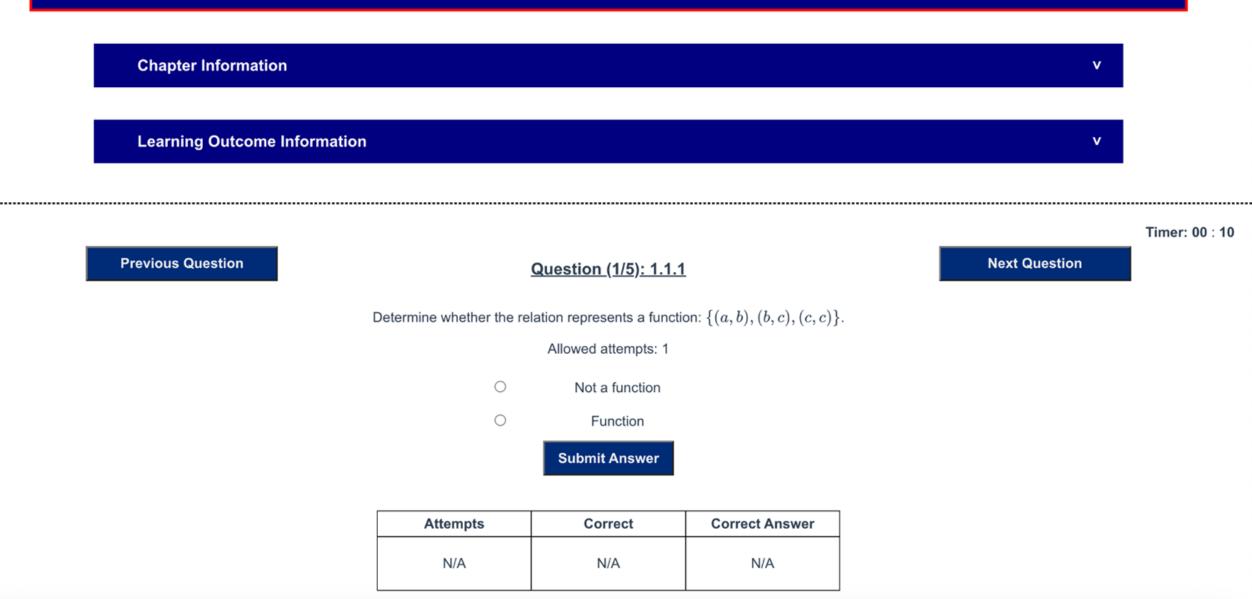

Browse Available Practice Questions

Browse Available Assessments

Instructor View

Hello Test Student!

SCOOL - Student-Centered Open Online Learning



Browse Practice Questions

Please select a Chapter, a Section, and a Learning Outcome.

Chapter		Section		Learning Outcome	
Select a Chapter	~	Select a Section	~	Select a Learning Outcome	~
		Go			

1.1.1. Determining Whether a Relation Represents a Function

1.1.1. Determining Whether a Relation Represents a Function

Chapter Information

Chapter 1 Introduction

Toward the end of the twentieth century, the values of stocks of internet and technology companies rose dramatically. As a result, the Standard and Poors stock market average rose as well. Figure 1 tracks the value of that initial investment of just under \$100 over the 40 years. It shows that an investment that was worth less than \$500 until about 1995 skyrocketed up to about \$1,100 by the beginning of 2000. That five-year period became known as the dot-com bubble because so many internet startups were formed. As bubbles tend to do, though, the dot-com bubble eventually burst. Many companies grew too fast and then suddenly went out of business. The result caused the sharp decline represented on the graph beginning at the end of 2000. Notice, as we consider this example, that there is a definite relationship between the year and stock market average. For any year we choose, we can determine the corresponding value of the stock market average. In this chapter, we will explore these kinds of relationships and their properties.

Introduction Review

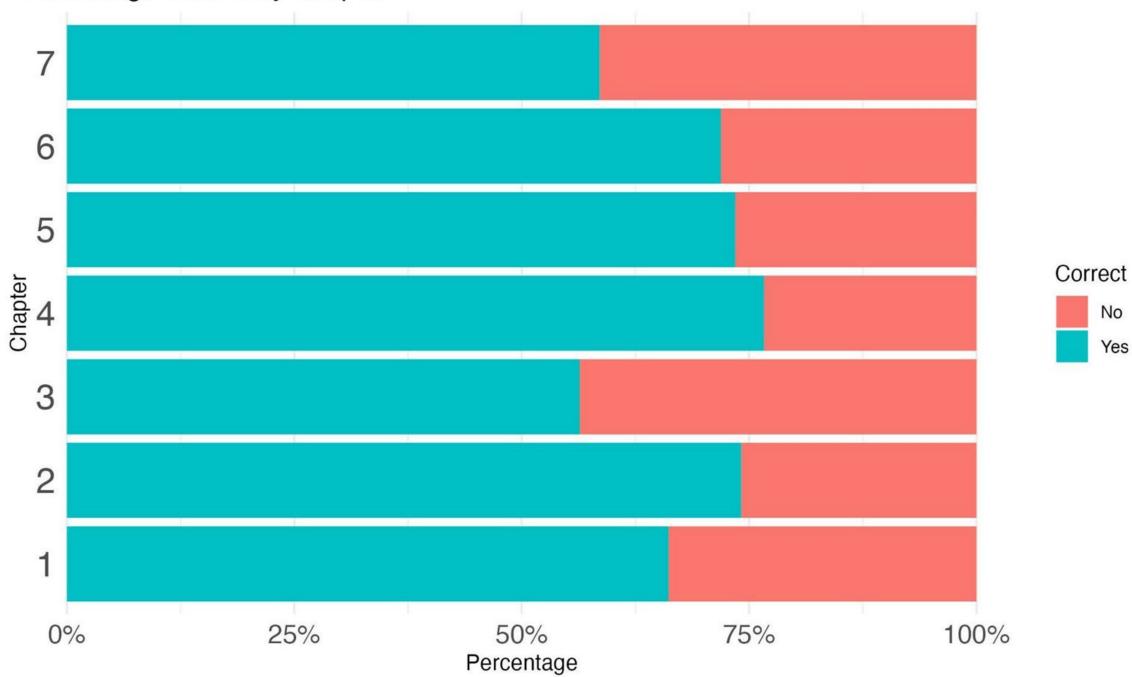
Learning Outcome Information

Learning Outcome Tag: 1.1.1 Number of questions for this learning outcome: 5

By mastering this learning outcome, we suggest you to visit:

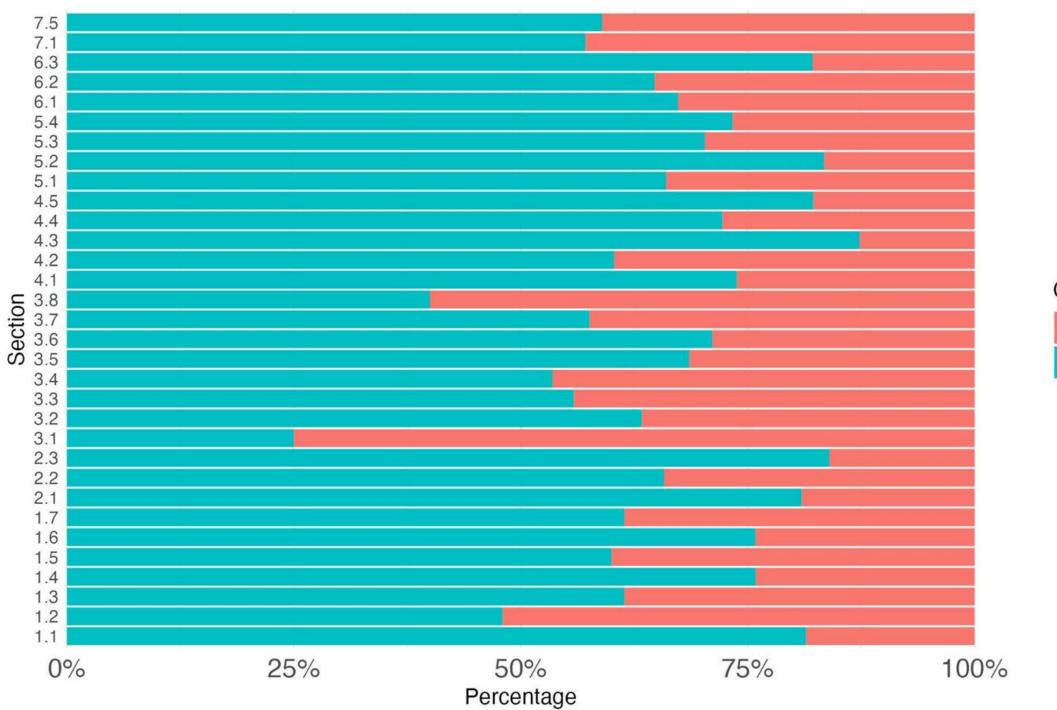
1.1.2- Learning Outcome: Finding Input and Output Values of a Function of Section: Functions and Function of Chapter: Functions

1.1.3- Learning Outcome: Determining Whether a Function is One-to-One of Section: Functions and Function of Chapter: Functions


1.1.5- Learning Outcome: Using the Horizontal Line Test of Section: Functions and Function of Chapter: Functions

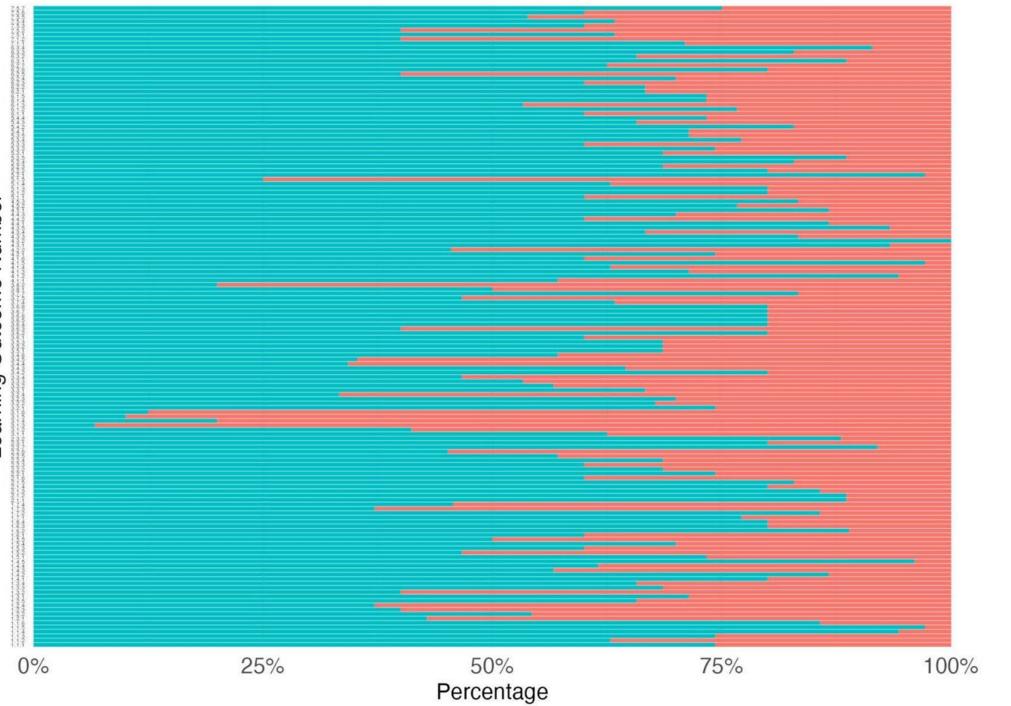
1.1.6- Learning Outcome: Identifying Basic Toolkit Functions of Section: Functions and Function of Chapter: Functions

Learning Outcome Openstax document Video Document

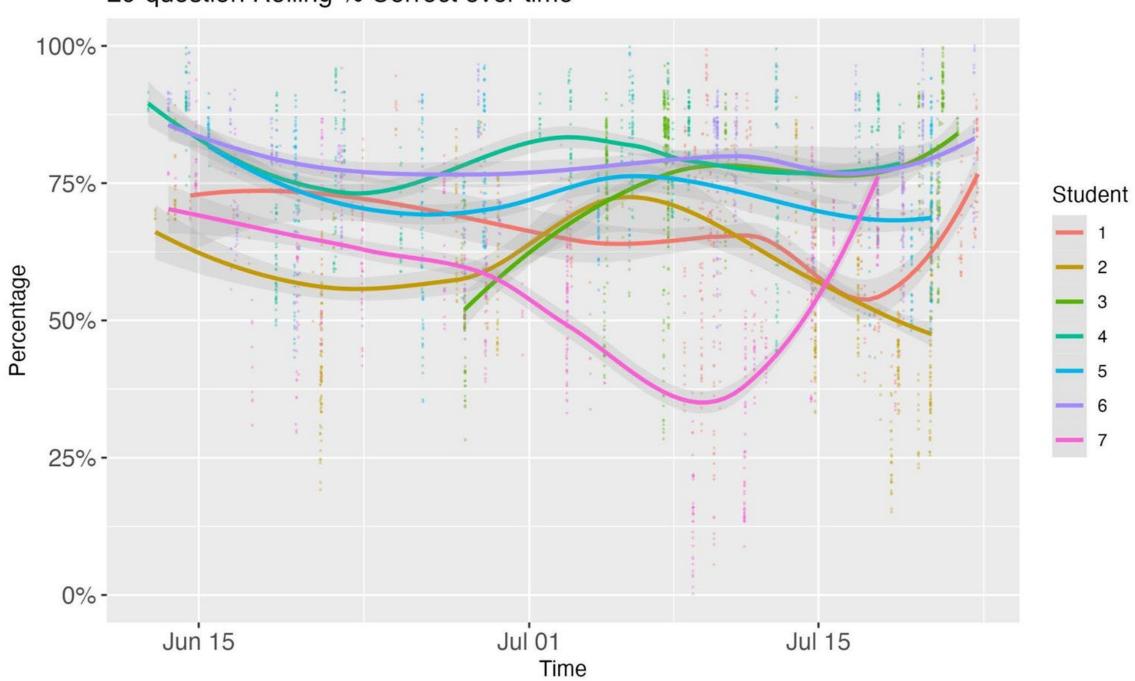


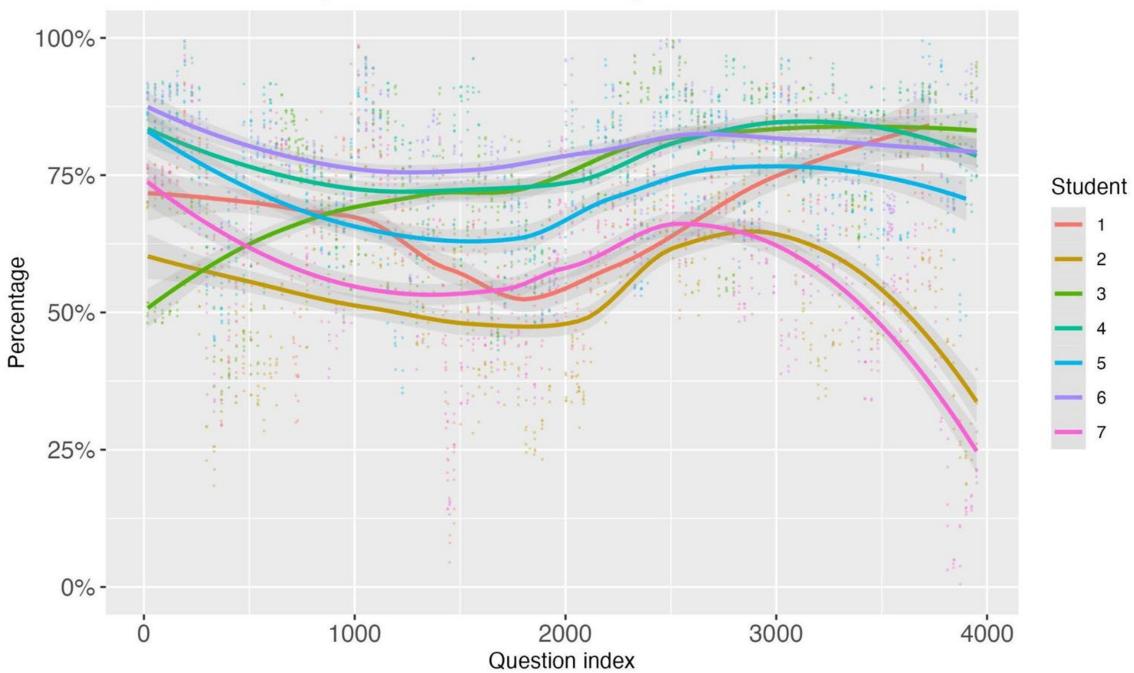
Percentage Correct by Chapter

No


Yes

Correct No Yes


Learning Outcome Number


Correct

No

Yes

20-question Rolling % Correct over time

20-question Rolling % Correct across learning outcomes

Lessons Learned

- No simple set of ingredients that makes a "Culturally Responsive" classroom.
 - Ambiguity of what CRT "looks like"
 - Instructors were unsure if they were actually doing CRT wanted a list of boxes to check off.
 - CRT is more like an "environment"
- Very difficult and time-consuming to create new software.
 - Obtaining buy-in from instructors very challenging.

Early instructor feedback

"Even if something seems really obvious from our perspective, a student could easily be lost"

"When there's a lot of clicking to get to things, it's very annoying."

"By making it optional, . . . they just chose not to do those things."

Next Steps

Ē

- Source code in github, available as an **OER**.
- Data analyses: compare pre-post surveys and student performance data.
- **Continued implementation** of SCOOL beyond grant period.

Recent instructor feedback

- "I've had compliments from the students saying that this is how a math class should be."
- "I was very heavy in lecturing earlier. Now, then, I was *lecturing very less*."
- "It's been a fun process to develop activities that have the students work together in groups and not just on like canned examples from a textbook... using an actual building in Fresno, or something rather than just like a canned textbook problem. So it's that sort of thing to just make all of the applications *meaningful for students from the valley*."

Thank you for your attention!

Fresno State contact info:

- Department of Mathematics
 - Rajee Amarasinghe, <u>ramarasi@csufresno.edu</u>
 - Earvin Balderama, <u>earvin@csufresno.edu</u>
 - Bianca Lopez, <u>byendluri@mail.fresnostate.edu</u>
- Department of Computer Science
 - Hubert Cecotti, <u>hcecotti@mail.fresnostate.edu</u>

Website:

• On-Ramp to STEM project website: https://bit.ly/onramptostem

Questions ???

On-ramp to STEM OR2STEM

The key to success in STEM is empowering all students to take ownership of their learning.

project website: bit.ly/onramptostem

Discovery. Diversity. Distinction.

Fresno City College

Giving the Ownership of Active Learning to Students in Computer Science (GOALD in CS)

Youwen Ouyang, Computer Science Marisol Clark-Ibáñez, Sociology California State University San Marcos

Project Overview

GOALS in CS

Partnership between CSU and CC

Focus on introductory sequence

GOALS in CS by the numbers

- 37 sections
- 35 instructors
- 1548 students

Interactive online course content via Open Learning Initiative (OLI) and Canvas

Flipped classroom format

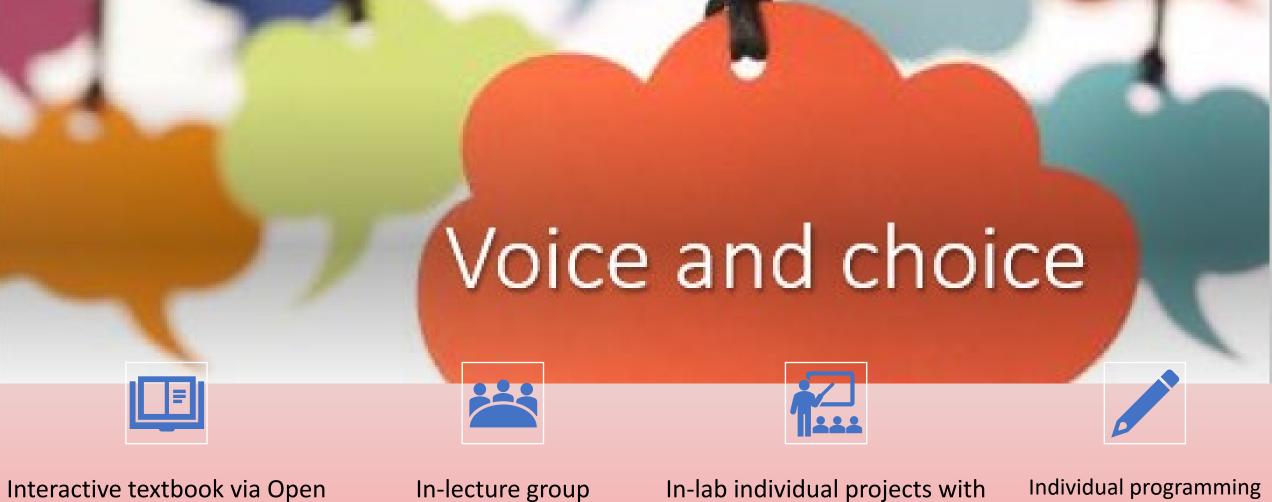
Continued implementation after grant has ended.

Culturally relevant: Accept and affirm the culture and identities of students of color. ACCEPTING

CSUSM

GOALS in CS

<u>Cultural</u> Validation Theory


Culturally responsive: Use familiar cultural information and processes to scaffold learning. Emphasis on community and relationships (pedagogy). CONNECTING

Culturally sustaining: Schools are places where the cultural ways of being in communities of color are sustained and not erased or seen as deficit. TRANSFORMING **Students Feel Validated When They Believe:**

"I matter."

"Someone cares about me."

"I am a capable person."

Learning Initiative (OLI)

In-lecture group projects In-lab individual projects with breakout room support Individual programming homework

CSUSM GOALS in CS

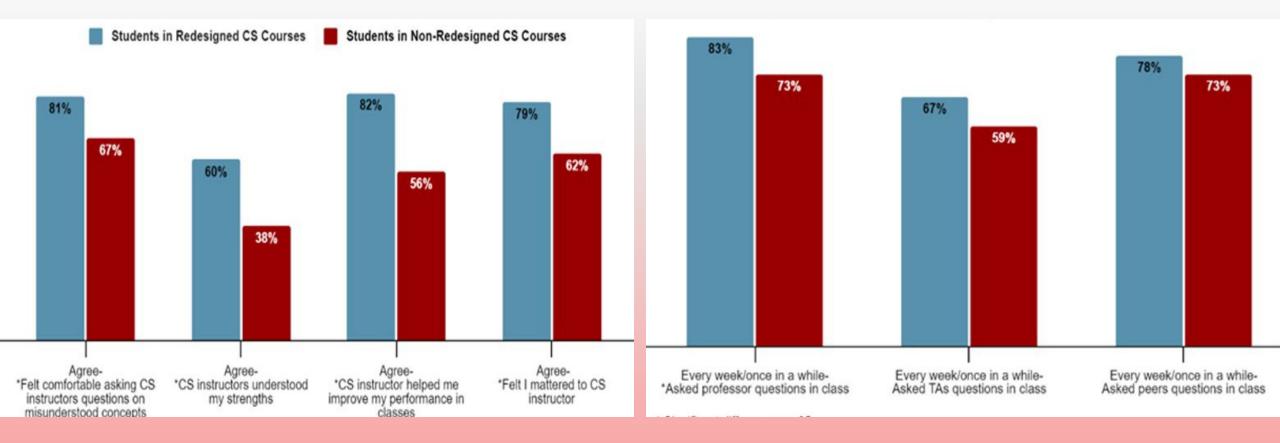
Methodology

Surveys

- Data collection sites: Introductory CS redesigned & non-redesigned courses at 2 HSIs
- **Collection period:** end-of-semester surveys from Fall 2019 Fall 2022
- **Survey measures:** career interests, student efficacy, active participation, student validation, and cultural relevance in computer science.
- N= 396 college students

Data analysis

- IBM SPSS program (version 26)
- Pearson's chi-square- categorical survey responses & identify significant patterns between GOALS & Non-GOALS students in CS.

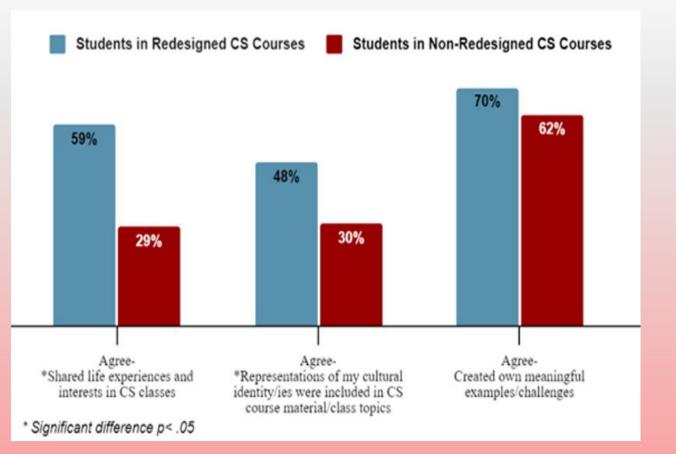

Results

CSUSM

GOALS in CS

Student Validation

Active Participation


CSUSM GOALS in CS

Results

Cultural Relevance

"I feel that I was able to share my culture/interests through projects when we were allowed to include this things in projects."

"This course certainly provided exceptional cultural sensitive subject matter while simultaneously providing comprehensive course content."

CSUSM GOALS in CS

Lessons Learned

- One size does not fit all
- Active, adaptive learning demands more responsive feedback
- Learning analytics provoke reflection and refinement
- Essential elements also must include:
 - Intentional conversations
 - Center student voices
 - Interdisciplinary collaborations

- Self-reflection can lead to culturally responsive teachers (*CS faculty*)
- Continued professional development needed (e.g., difficult to change)
- Classroom development: try things out, research & improve
- Share strengths: building like-minded faculty and/or department (e.g., hiring priorities)

Summary

The highly iterative and collaborative redesign featured:

- **Skill Mapping:** students & CS faculty contributed to the development
- Flipped Classroom: interactive, online material
- Classroom Community: active learning with students as near-peer mentors in class
- Culturally Sustaining: content and pedagogies
- Continuous Data Collection: focus on student voice on progress, successes, and challenges
- **Training:** Support and coaching provided for CS faculty

Thank you!

- Email:
- <u>Ouyang@csusm.edu</u>
- mibanez@csusm.edu

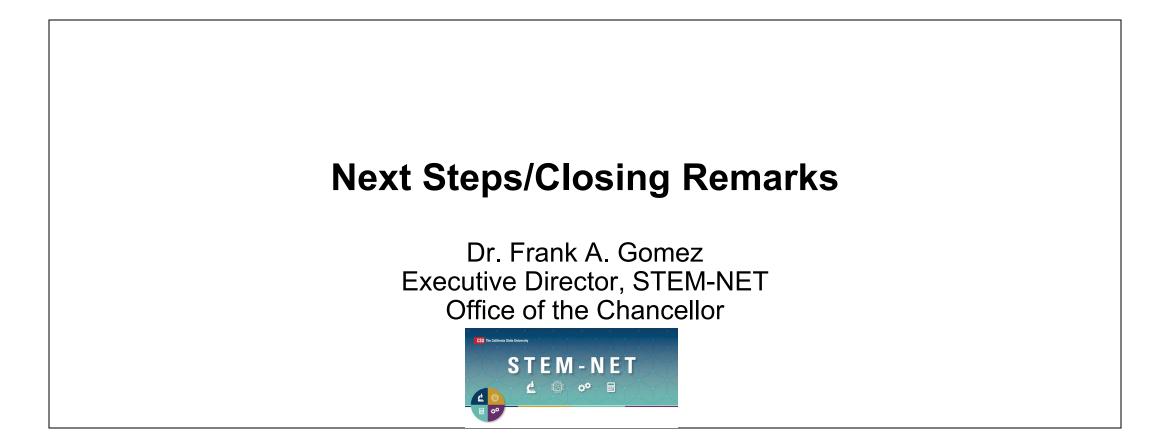
Speakers Contacts

Lark Park, California Education Learning Lab lark.park@calearninglab.org

Ji Son, Cal State LA json2@calstatela.edu

Delmar Larsen, UC Davis dlarsen@ucdavis.edu

Sonal Singhal, CSU Dominguez Hills ssinghal@csudh.edu


Earvin Balderama & Bianca Lopez Yendluri, Fresno State earvin@csufresno.edu, byendluri@mail.fresnostate.edu

Youwen Ouyang & Marisol Clark-Ibáñez, CSU San Marcos ouyang@csusm.edu, mibanez@csusm.edu

A Sampling of CSU California Education Learning Lab (CELL) Awardees

https://www2.calstate.edu/impact-of-the-csu/research/stem-net

CSU Office of the Chancellor

fgomez@calstate.edu

A Sampling of CSU California Education Learning Lab (CELL) Awardees

Webcast Feedback Survey

Please take a few moments to tell us about your webcast experience.

Use the QR Scan Code to download it

STEM-NET Community Events

STEM-NET February Webcast

Topic: Department of Education Awardees Date: Feb. 7, 2024 Time: 10:00 AM- 12:00 PM

Register Here

A Sampling of CSU California Education Learning Lab (CELL) Awardees

CSU Office of the Chancellor