

Transportation Research in the CSU

Transportation Research in the CSU

Moderated by: Dr. Frank A. Gomez Executive Director, STEM-NET Office of the Chancellor

https://www2.calstate.edu/impact-of-the-csu/research/stem-net

Frank A. Gomez

CSU Office of the Chancellor

fgomez@calstate.edu

Speakers

Karen Philbrick, Mineta Transportation Institute Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

> **Aly Tawfik,, Fresno State** The Transportation [R]Evolution: Opportunities and Needs for Collaboration

> > Mehran Mazari, Cal State LA Sustainable and Resilient Transportation Infrastructure

Daniel Whisler,, Cal State Long Beach Composites for Improved CA Road Surfaces

Serena Alexander, San Jose State

Local Climate Action Planning as a Tool to Harness the Greenhouse Gas Emissions Mitigation and Equity Potential of Autonomous Vehicles and On-Demand Mobility

> Hovannes Kulhandjian, Fresno State Intelligent Transportation Systems using Visible Light Communications and Machine Learning

Shadi Saadeh, Cal State Long Beach Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

Karen E. Philbrick, PhD - Mineta Transportation Institute, SJSU

Karen E. Philbrick, PhD Executive Director

San Jose State University, Mineta Transportation Institute

Karen.Philbrick@sjsu.edu

Project Overview

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

• The <u>Mineta Transportation Institute</u> (MTI) at San Josè State University is a federally funded, *competitively selected,* university transportation center in the heart of Silicon Valley.

MTI leads the California State University Transportation Consortium (CSUTC) which unifies the surface transportation research and workforce development efforts of the 23-campus California State University system. MTI focuses the efforts of our outstanding institutions and faculty that represent and support the geographical, cultural, racial, and socioeconomic diversity that makes California and our nation strong. *Funded by the California State University Office of the Chancellor via* **Senate Bill 1**, *the Road Repair and Accountability Act of 2017.*

- Named partners: CSU Chico, Fresno, and Long Beach
- Annual competitive CSU-wide RFP

Activities

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

- CSUTC conducts surface transportation research, education, workforce development, and technology transfer activities.
- Research: MTI/SJSU directs a competitive CSU-wide RFP process to identify specific research projects aligned with SB 1 priorities. Annually, approximately \$800,000 is distributed through this competitive process. To date, 13 of the 23 campuses have been engaged in the CSUTC research portfolio.
- Education: It is critical that we develop a new cohort of transportation professionals who are ready to lead a more diverse, inclusive, and equitable transportation industry. Our campuses provide a robust and multidisciplinary program of undergraduate and graduate degrees.

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

Activities Continued

- Workforce Development: CSUTC leads the delivery of a suite of programs for elementary, middle, and high-school students to stimulate interest in careers in transportation. With an emphasis on engaging historically underrepresented youth, CSUTC works with Title 1 schools—with high percentages of children from low-income families—to deliver these innovative programs.
- **Technology Transfer**: Research without implementation is not useful. As such, CSUTC has a robust dissemination method that includes professional presentations, peer-reviewed articles, congressional briefings, webinars, and other outreach efforts.

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

Results

- CSUTC has funded 99 research projects that have engaged:
 - Approximately 200 CSU faculty, researchers and staff (67 PIs and 131 other CSU faculty/research staff)
 - More than 250 students
 - 13 of 23 campuses
 - Since conception, CSUTC researchers (including students) have presented CSUTC-funded research at 81 conferences or briefing events.
 - In addition to CSUTC's broad research portfolio, we negotiated a CSU-UC partnership with the City & County Pavement Improvement Center (CCPIC), which has trained more than 670 pavement professionals.

Lessons Learned

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

A primary goal of CSUTC is to ensure that research is meaningful and provides tangible benefits to Californians. To that end, collecting high-priority research needs statements from key stakeholders ensures that our research is responding to a critical need and that the results will be used by those responsible for managing change.

<u>Lesson</u>: Each proposal requires a letter of support from an external stakeholder confirming the value of the research.

 A clear understanding of the research need is imperative for scoping the project correctly. <u>Lesson</u>: CSUTC now holds FAQ sessions with the external stakeholder submitting the need and faculty interested in responding. This improves efficiency and leads to stronger proposals.

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

Next Steps/Long-Term Plans

- California faces significant challenges to improve mobility of people and goods and ensure the State's transportation system is safe, efficient, accessible and convenient for all. To tackle the pressing, high-priority research needs of our stakeholders CSUTC plans to increase CSU representation. To date, 57% of CSU campuses have received competitively awarded research grants: Bakersfield, Chico, Dominguez Hills, East Bay, Fresno, Long Beach, Los Angeles, Pomona, San Diego, San Jose, San Luis Obispo, Sonoma, and Stanislaus.
- For faculty, engaging in research allows them to contribute to the discovery of new knowledge or transform existing understanding. They can bring this practical knowledge into their teaching, increase the CSU system's institutional reputation, secure additional external funding, and provide opportunities for students.
- CSUTC plans to continue leveraging the initial investment for expanded opportunities.

Karen E. Philbrick San Jose State University, Mineta Transportation Institute Karen.Philbrick@sjsu.edu

Summary

Improving Mobility for People and Goods: An Introduction to the California State University Transportation Consortium

It is not an overstatement to say that transportation of people and goods is the linchpin of our economy. Where human beings are concerned, the difference between having and lacking mobility is no less than the difference between having and lacking opportunity. To that end, CSUTC uses a multidisciplinary approach that addresses the complex nature of today's mobility challenges to advance the body of usable transportation knowledge.

We invite each and every CSU faculty member to reach out to the MTI team for more details about becoming involved!

Karen E. Philbrick San Jose State University, Mineta Transportation Institute Karen.Philbrick@sjsu.edu

The Transportation [R]Evolution: Opportunities and Needs for Collaboration

The Transportation [R]Evolution: Opportunities and Needs for Collaboration

Aly Tawfik– Fresno State

Aly Tawfik, Associate Professor

Fresno State, Department of Civil and Geomatics Engineering

tawfik@csufresno.edu

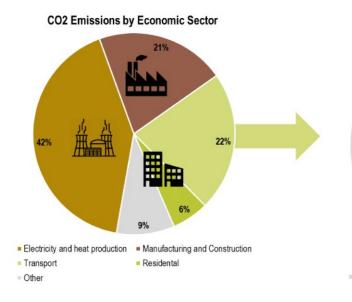
Sustainable and Resilient Transportation Infrastructure

Mehran Mazari – Cal State LA

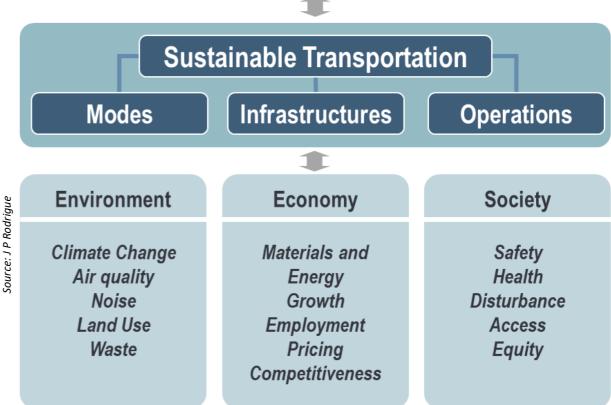
Mehran Mazari, Assistant Professor

Cal State LA, Department of Civil Engineering

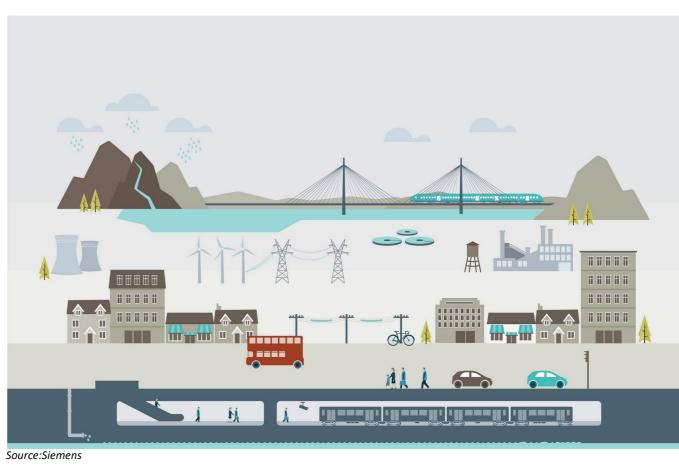
mmazari2@calstatela.edu



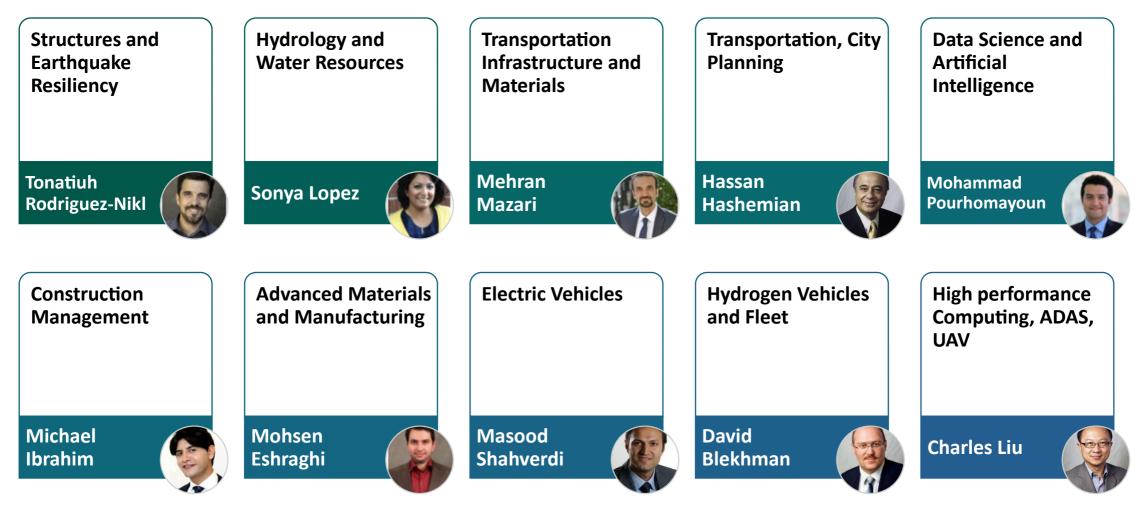
Cal State LA / Civil Engineering mm



Sustainable Transportation



Resilient Infrastructure

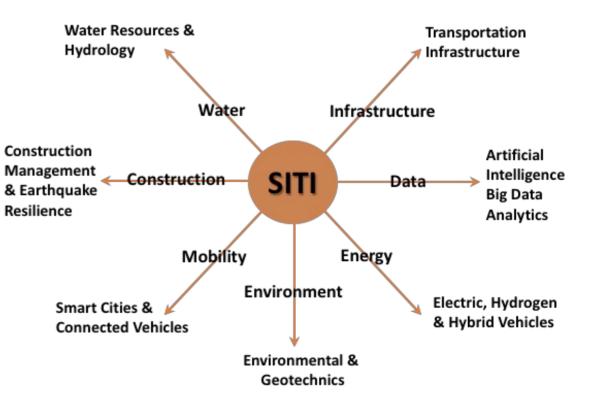

Components of resilient infrastructure:

- Flexibility
- Responsiveness
- Redundancy
- Coordination
- Robustness

Multidisciplinary Transportation Research at Cal State LA

Mehran Mazari

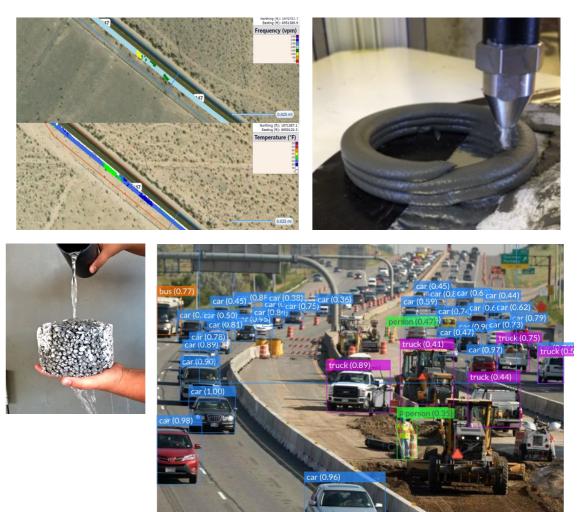
Cal State LA / Civil Engineering


Sikand Center for Sustainable and Intelligent Infrastructure (SITI Center)

- The mission of the Sikand SITI-Center is to support the advancement of multidisciplinary research, education, and professional development focusing on Urban Sustainability and its components.
- Annual <u>Urban Sustainability Symposium</u> at Cal State LA
- For more information: <u>www.calstatela.edu/sikand</u>

Sustainable and Resilient Transportation Infrastructure

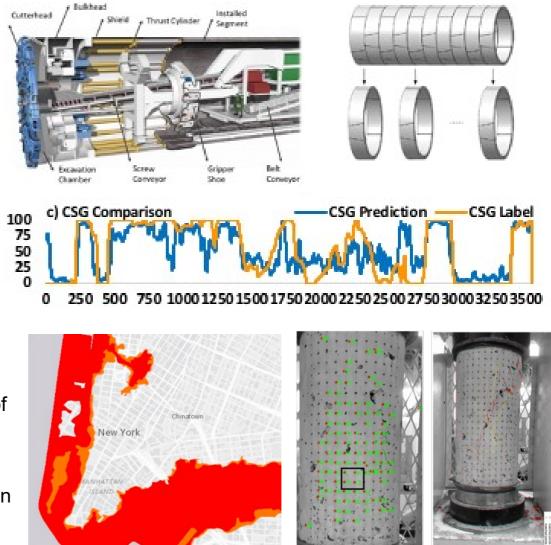
Urban Sustainability



Sustainable Infrastructure Materials Lab (SIM-Lab)

- Additive manufacturing (3D printing) of concrete materials
 - Mechanical Engineering
 - Civil Engineering
- Pavement and Concrete Materials
- Applied AI and Computer Vision
- Highway Construction
 - Intelligent construction
 - Application of AI/ML in highway construction

Sustainable and Resilient Transportation Infrastructure



University Transportation Center for Underground Transportation Infrastructure (UTC-UTI)

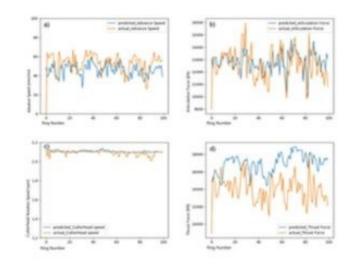
- Tier1 UTC with Colorado School of Mines and Lehigh University
- Projects:
 - Use of sustainable and recycled materials in selfconsolidating concrete (SCC) for underground infrastructure (with Tonatiuh Rodriguez-Nikl)
 - Artificial intelligence and machine learning for prediction of tunnel boring machine (TBM) data (with Mohammad Pourhomayoun)
 - Resilience and sustainability of underground transportation infrastructure (with Tonatiuh Rodriguez-Nikl)

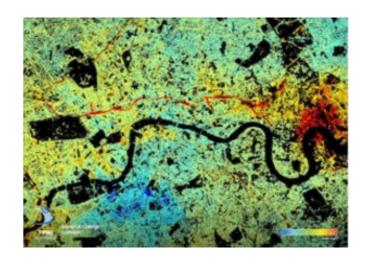
Sustainable and Resilient Transportation Infrastructure

Centers and Labs

Connected and Automated Vehicles Lab (CAV-Lab)

- Multidisciplinary
 - Information systems (Arun Aryal)
 - Computer science (Pourhomayoun)
 - Technology (Blekhman)
 - Civil engineering (Mazari)
 - Electrical engineering (Liu)
- Focus areas
 - Autonomous shuttles
 - Roadway electrification for EVs

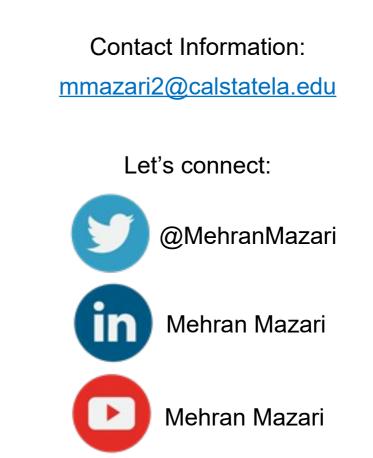



NSF-REU Site for Underground

Infrastructure (2020-2023)

- Summer research experience for undergraduates (REU)
- Supporting 12 undergraduate students from across the US
- Multidisciplinary research areas
 - Geosciences and Remote Sensing (Jingjing Li)
 - Civil Engineering (Mazari, Rodriguez-Nikl)
 - Computer Science (Pourhomayoun)

Sustainable and Resilient Transportation Infrastructure



Collaboration Opportunities

- Multi-Campus Transportation Infrastructure Research Collaborations
 - NSF, USDOT, DOE, etc.
- Multidisciplinary research collaboration opportunities:
 - Nondestructive Testing/Evaluation (NDT/NDE) and Geophysical solutions
 - Infrastructure Resilience and Sustainability
 - Data Visualization and Big Data Analytics
 - Innovative and Sustainable Infrastructure Materials
- Collaborative workshops, training and certificate programs

Composites for Improved CA Road Surfaces

Composites For Improved CA Road Surfaces

Daniel Whisler – Long Beach

Collaborators (if any): Rafael Gomez Consarnau Ryan Coy

Daniel Whisler, Assistant Professor

Long Beach, Department of Mechanical & Aerospace Engineering

daniel.whisler@csulb.edu

Project Overview

- Examine waste composites from aerospace, wind, other industry for use within CA for road surfaces
 - Random orientation, relatively low strength for reuse in aerospace
 - Cost per ton to dispose on part with cost per ton of procuring new asphalt
 - Modulus and strength in tension much higher than asphalt, would improve lifespan
- Provide experimental and numerical validation of performance compared to traditional asphalt in small-scale material development tests

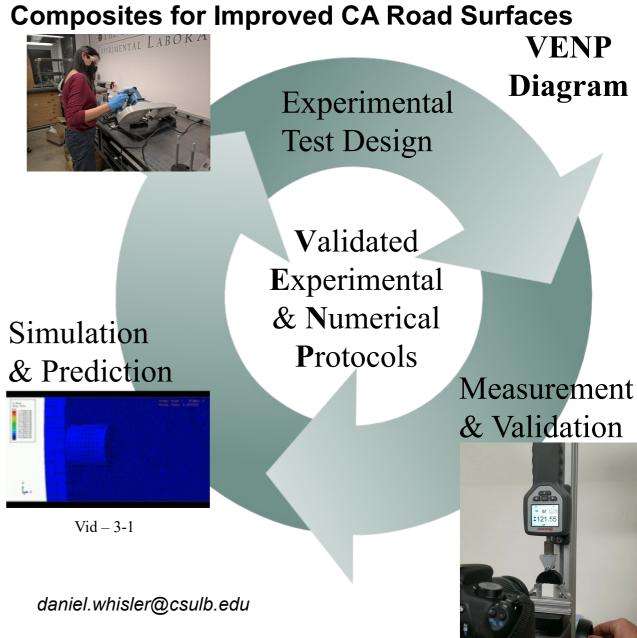
Daniel Whisler

Long Beach/MAE

Composites for improved CA road surfaces

daniel.whisler@csulb.edu

https://www.owi-lab.be/news/discarding-composite-structures-requires-holistic-approach https://www.innovationintextiles.com/composites/uk-to-lead-development-of-next-generation-sustainable-composites/ https://baxcompany.com/insights/beyond-bax-wind-energy-addressing-the-challenges-of-tomorrow-today/ https://alpineadvancedmaterials.com/solutions/aerospace/

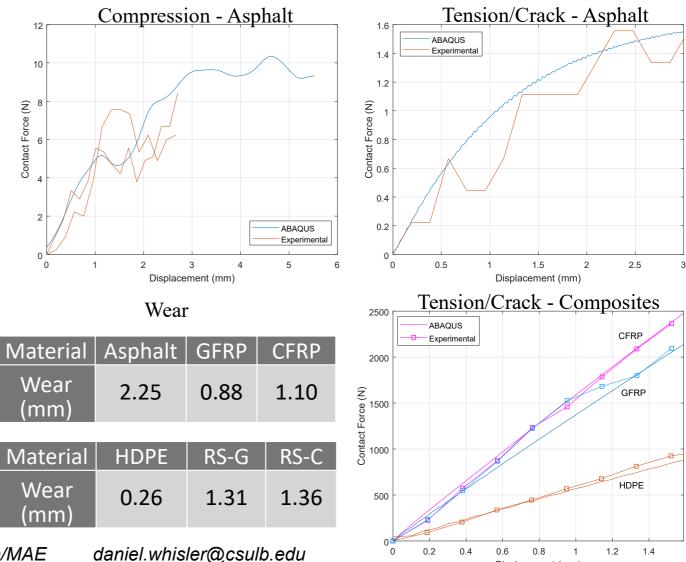

EXFERONTAL LABORATORY

Activities

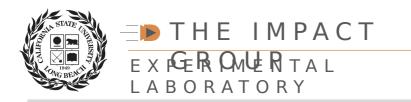
- Experimental test design 7 different materials following ASTM standards for examining the micro-macro behavior for finite element validation studies
 - Design tests with expected validation targets
- Measurement and validation Development of new instrument for characterizing wear on materials in accelerated environment
 - If no test method exists to validate expected result, build it!
- Numerical simulation and prediction with advanced crushable models based on published data but fine-tuned with the experimental data

Daniel Whisler

Long Beach/MAE

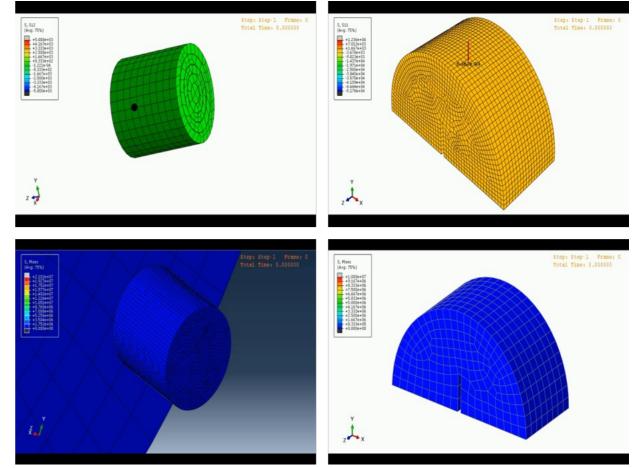


- ASTM standards where available matched the experimental results
- Non-standard tests permitted additional information to be validated with numerical simulations
 - Used semi-empirical data to correct the theoretical values, e.g., modulus of composite in compression had 2.4% air voids
- Show for loads under consideration, both recycled, pristine composites are highly durable surfaces


Daniel Whisler

Long Beach/MAE

Composites for Improved CA Road Surfaces


Displacement (mm)

Composites for Improved CA Road Surfaces

Lessons Learned

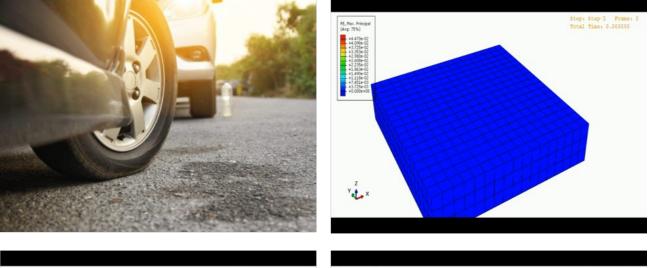
- Asphalt can be modeled in simulation via multiple hyperelastic materials, e.g. one for tension and one for compression, to provide good validation results with experimental tests
 - We can perform simulations with high correlation faster than mechanical testing and with limited number of validation tests (less than 3-4)
- Little difference in recycled versus pristine composites for the stresses required in roadways
 - Composites may be virtually maintenance free for life
- Additional testing at next level (2' x 2') is required

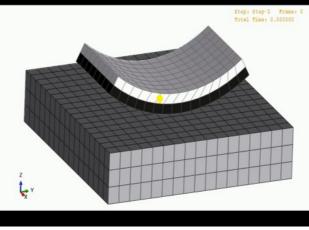
Vid – 5-1

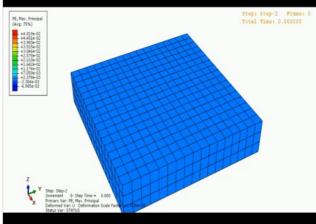
daniel.whisler@csulb.edu

Daniel Whisler

sler Long Beach/MAE


Composites for Improved CA Road Surfaces


Next Steps/Long-Term Plans


EXPEROMUENTAL

IMPACT

- Build, test, validate larger models with vehicle loads
 - Install test bed on-campus lot undergoing routine maintenance to study long term effects
- Examine and propose changes to ASTM/AASHTO for using calibrated simulated models to check material performance
 - E.g. wear test
- Work with aerospace manufacturers to implement recycling program with CA

Vid – 6-1

Daniel Whisler

Long Beach/MAE

daniel.whisler@csulb.edu

Summary

- Possible to use crushable material model for asphalt to predict performance in accelerated simulated validation tests
- Experimental and validated numerical testing shows benefits of high tensile strength random fiber composites to survive various load conditions
- Additional testing is underway to build a realistic specimen that combines both fibers and asphalt

Composites for Improved CA Road Surfaces

Research Focus

Dynamic, high strain rate impact testing and methodologies for examining novel composite, sandwich, porous, hyper/viscoelastic materials via experimental and numerical techniques

NEVADA

DM us!

Las Vegas

Sacramento

San Jose

CALIFORNIA

Los Angeles

San Francisco

Follow us

daniel.whisler@csulb.edu

Long Beach/MAE

Local Climate Action Planning as a Tool to Harness the Greenhouse Gas Emissions Mitigation and Equity Potential of Autonomous Vehicles and On-demand Mobility

Serena E. Alexander– San José State University

Collaborators (if any): Asha Weinstein Agrawal & Benjamin Y. Clark

Serena E. Alexander, Assistant Professor

San José State University, Department of Urban & Regional Planning

serena.alexander@sjsu.edu

SJSU SAN JOSÉ STATE UNIVERSITY

Local Climate Action Planning as a Tool to Harness the Greenhouse Gas Emissions Mitigation and Equity Potential of Autonomous Vehicles and On-demand Mobility

Project Overview

- *Goal:* Identify opportunities for how cities can use climate action plans (CAPs) to ensure that on-demand mobility and autonomous vehicles (AVs) help reduce, rather than increase, greenhouse gas (GHG) emissions, vehicle miles traveled (VMT), and/or inequitable impacts from the transportation system.
- Research Question: How can local governments in California use CAPs to harness the GHG emissions reduction and mobility equity potential of on-demand mobility and AVs?

San José State University/Urban & Regional Planning

SJSU SAN JOSÉ STATE UNIVERSITY

Local Climate Action Planning as a Tool to Harness the Greenhouse Gas Emissions Mitigation and Equity Potential of Autonomous Vehicles and On-demand Mobility

Activities

- An analysis of the current literature on on-demand mobility and AVs
- A systematic content analysis of 23 CAPs and general plans developed by municipalities in California
- A cross-comparison of findings from the literature and content analysis of plans to identify opportunities for GHG emissions reduction and mobility equity through adoption of on-demand mobility and AVs

San José State University/Urban & Regional Planning

Serena E. Alexander serena.alexander@sjsu.edu

Results

			On-demand Mobility & Autonomous Vehicle Categories														On-demand Mobility & Autonomous Vehicle Policies											
	Plan Date	Shared Autonomous Vehicles	Shared Mobility or Shared-use Mobility	Mobility as a Service	Connected Vehicles	Vobility on Demand	ransportation Network Companies	Ride-hailing	Car-sharing	Ride -sharing	Carpooling	Vanpooling	Micro transit	TOTAL		City	Plan Date	Shared Autonomous Vehicles	Shared Mobility or Shared-use Mobility	Mobility as a Service	Connected Vehicles	Mobility on Demand	Transportation Network Companies	ruce-naiming Car-sharing	Ride -sharing	Carpooling	Vanpooling	
nerican Canyon	2012	0,	0)	~	0	~			0	ш.	0		~	0		American Canyon	2012											
cata	2006													0		Arcata	2006											
erkeley	2009							\checkmark	\checkmark	\checkmark				3		Berkeley	2009		\checkmark				v	/ /		\checkmark	\checkmark	
neryville	2016					\checkmark			\checkmark		\checkmark			3		Emeryville	2016							\checkmark		\checkmark		
emont	2012		\checkmark								\checkmark			2	Climate	Fremont	2012		\checkmark						\checkmark	\checkmark		
yward	2009					\checkmark			\checkmark	\checkmark				3	Action Plans General Plans	Hayward	2009					\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
s Angeles	2007; 2019	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark				5		Los Angeles	2007; 2019											
enlo Park	2009; 2015		\checkmark								\checkmark	\checkmark		3		Menlo Park	2009; 2015	~	\checkmark		\checkmark					\checkmark		
ара	2012									\checkmark	\checkmark	\checkmark		3		Napa	2012									\checkmark		
ovato	2009								\checkmark	\checkmark				2		Novato	2009											
akland	2012; 2018							\checkmark	\checkmark	\checkmark	\checkmark			4		Oakland	2012; 2018											
alo Alto	2016		\checkmark	\checkmark						\checkmark	\checkmark	\checkmark		5		Palo Alto	2016	\checkmark	\checkmark			\checkmark	V	/	\checkmark			
ohnert Park	2007													0		Rohnert Park	2007											
aint Helena	2009													0		Saint Helena	2009											
an Diego	2015													0		San Diego	2015								,	,	,	
an Francisco	2004		\checkmark					\checkmark						2		San Francisco	2004		,					,	~	~	\checkmark	
an José	2018	1	\checkmark				\checkmark	\checkmark	\checkmark					5		San José	2018		\checkmark					\checkmark	\checkmark	~	,	
an Rafael	2009; 2019	1	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		7		San Rafael	2009; 2019		,						,	\checkmark	\checkmark	
nta Cruz	2012													0		Santa Cruz	2012		\checkmark						\checkmark			
anta Monica	2013; 2019	1									\checkmark	\checkmark	\checkmark	5		Santa Monica	2013; 2019							√				
anta Rosa	2012					\checkmark				\checkmark	\checkmark	\checkmark		4		Santa Rosa	2012							\checkmark		\checkmark	\checkmark	
/indsor	2012													0		Windsor	2012	\checkmark										
ountville	2016					\checkmark				\checkmark		\checkmark		3		Yountville TOTAL	2016	3	6	0		2	0 2	26	6	10	5	

San José State University/Urban & Regional Planning

serena.alexander@sjsu.edu

Serena E. Alexander

Results

- Municipal CAPs and general plans in California have adopted several strategies relevant to AVs and on-demand mobility.
- Cities should consider synergies between autonomous vehicles (AVs) and on-demand mobility during policy and planning discussions about either one.
- Maximizing the environmental and social benefits of AVs and on-demand mobility requires proactive and progressive planning; yet, most cities are lagging behind in this area.
- Several untapped opportunities exist to harness the GHG emissions reduction and social benefits potential of AVs and on-demand mobility.

Lessons Learned

- Using CAPs as a tool to ensure equitable mobility in a driverless future;
- Providing comprehensive GHG emissions reduction roadmaps for AVs and on-demand mobility to reinforce general plan mobility goals;
- Encouraging travelers to make a long-run shift to shared use of AVs and on-demand mobility
- Using a combination of transportation and land-use policies to prevent increasing sprawl due to deployment of AVs;
- Stressing the importance of energy efficiency and renewable energy in a driverless future;
- Identifying opportunities to link AVs and on-demand mobility to transit;
- Incorporating planning tools that respond to the uncertainty related to deployment of AVs and extensive use of on-demand mobility.

Serena E. Alexander San José State University/Urban & Regional Planning serena.alexander@sjsu.edu

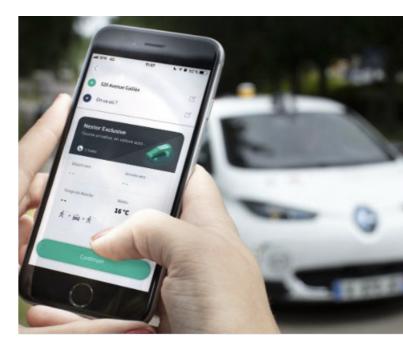
Serena E. Alexander

Local Climate Action Planning as a Tool to Harness the **Greenhouse Gas Emissions Mitigation and Equity Potential** of Autonomous Vehicles and On-demand Mobility

Next Steps/Long-Term Plans

Future studies can focus on:

- Rapidly evolving technologies and business practices related to AVs and on-demand mobility, and their implications for climate action planning;
- Broader dimensions of equity related to AVs and on-demand mobility;
- The long-term impact of the COVID-19 pandemic on shared on-demand mobility, and its consequences for transportation emissions;
- The impact of new or updated CAPs on social equity, and a community's contribution to climate change.


Local Climate Action Planning as a Tool to Harness the Greenhouse Gas Emissions Mitigation and Equity Potential of Autonomous Vehicles and On-demand Mobility

Summary

Serena E. Alexander

serena.alexander@sjsu.edu

- According to CARB, California is not on track to meet the GHG emissions reduction targets expected under SB 375.
- New and innovative approaches are needed to reduce GHG emissions from transportation.
- AV and on-demand mobility technologies present an opportunity to significantly reduce GHG emissions from transportation and contribute to equitable mobility.
- Proactive and progressive strategies are required to harness the GHG emissions mitigation and equity potential of AVs and on-demand mobility.

California State University

Transportation Consortium

CSUTC

Intelligent Transportation Systems using Visible Light Communications and Machine Learning

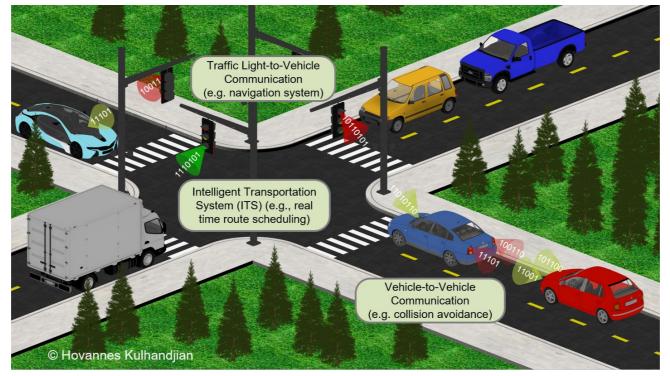
Intelligent Transportation Systems using Visible Light Communications and Machine Learning

Hovannes Kulhandjian– California State University, Fresno

Hovannes Kulhandjian, Assistant Professor

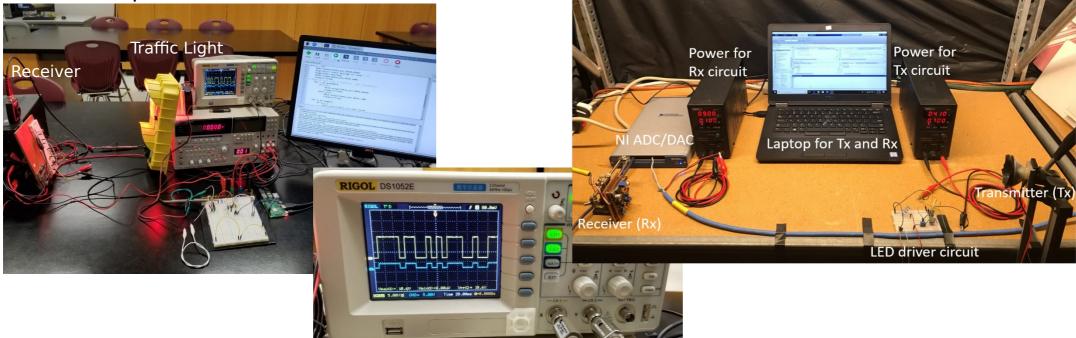
California State University, Fresno

Department of Electrical and Computer Engineering


hkulhandjian@csufresno.edu

Project 1 Overview

• Smart Transportation System through Visible Light Communications (VLC)

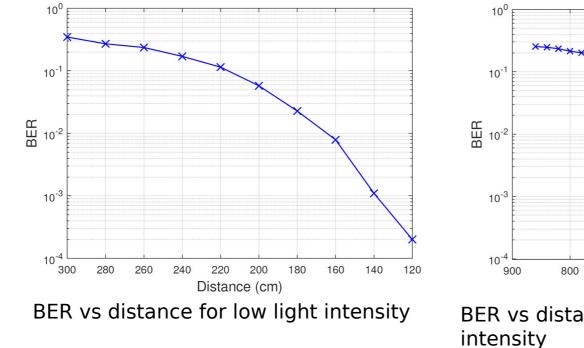


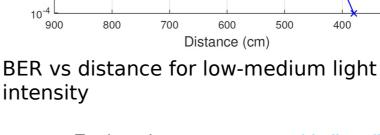
Activities Project 1

Testbed Experimentations

Fresno State, Electrical and Computer Engineering

Project 1 Video Demo

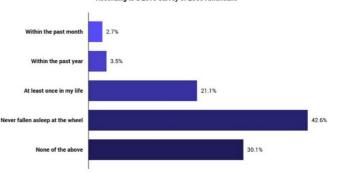



Visible Light Communication Framework for Intelligent Transportation System,

Project 1 Results

- Low light intensity yields a BER of 2 x 10⁻⁴ for 120cm (i.e., 2 errors out of 10,000 bits transmitted)
- Low-medium light intensity yields a BER of 9.76 x 10⁻⁵ for 380cm

300



Project 2 Overview

- Drowsy driving is one of the underlying causes of traffic accidents.
- An estimated 1 in 25 adult drivers have falling asleep while driving.
- In 2019, the NHTSA estimated 100,000 accidents occurred to due drowsy driving 71,000 resulted in an injury 1,550 were fatal.

Project 2 Activities

• Field Experimentations

Project 2 Video Demo

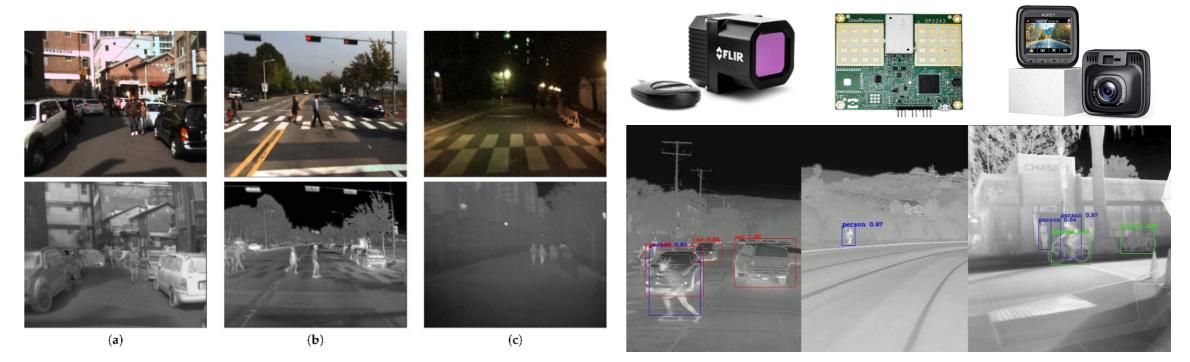
Project 2 Results

- Model trained on dataset of over 3,000 images
- Validation accuracy of 95.1% achieved

Results	
Validation accuracy:	95.10%
Training finished:	Reached final iteration
Training Time	
Start time:	18-Aug-2020 12:21:55
Elapsed time:	19 min 0 sec
Training Cycle	
Epoch:	10 of 10
Iteration:	390 of 390
Iterations per epoch:	39
Maximum iterations:	390
Validation	
Frequency:	20 iterations
Other Information	
Accuracy	
Trainin	g (smoothed)
Trainin	g
Validat	ion
Loss	
Trainin	g (smoothed)
Trainin	g
Validat	

Fresno State, Electrical and Computer Engineering

hkulhandjian@csufresno.edu


Lessons Learned

- Project1:
- Visible light communication has a great potential for making the traffic lights smart by allowing them to communicate with vehicles.
- Visible light communication can also be used for Vehicle-to-Vehicle communications.
- Experiments showed the correlation between transmitter-receiver distance and BER for two distinct light intensities; a BER of 9.76 × 10–5 was achieved for 50 kb/s transmission over 380 cm range.
- This are promising results, which could be extended for actual traffic light communications as well as Vehicle-to-Vehicle communications using VLC.
- Project2:
- Using a visible camera along with a Micro-Doppler sensor combined with Machine Learning could be used to detect a drowsy driver and prevent an accident by alerting the driver.

Next Steps/Long-Term Plans

• Al-based Pedestrian Detection and Avoidance at Night using IR Camera, Radar and Video Camera

Fresno State, Electrical and Computer Engineering

Summary

- We have developed Smart Transportation System through Visible Light Communications (VLC) that can by used by traffic light to send pertinent information to cars and for vehicle-to-vehicle communications.
- We have also developed and implemented a Drowsy Driver Detection and Collision Avoidance with Multi-Sensor Data Fusion combined with Machine Learning, which provides over 95% validation accuracy.
- We are currently developing AI-based Pedestrian Detection and Avoidance at Night scheme using IR Camera, Radar and Video Camera combined with Data Fusion to further improve the state-of-the-art automatic braking system for the automotive industry.

Special Thanks

Fresno State, Electrical and Computer Engineering

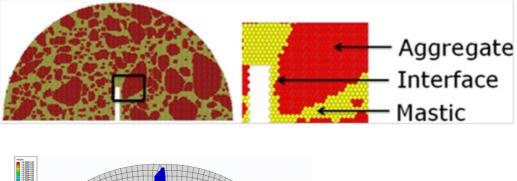
Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

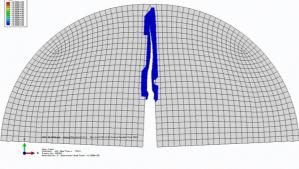
Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Shadi Saadeh– California State University, Long Beach

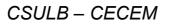
Shadi Saadeh, Professor

CSULB, Department of Civil Engineering and Construction Engineering Management


Shadi.Saadeh@csulb.edu



Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development


Fundamental

• Discrete Element and Finite Element Modeling of Highway Materials

Shadi Saadeh

Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Practical

• Fully permeable pavements as a sustainable approach for mitigation of stormwater runoff

- Performance Testing of Hot Mix Asphalt Containing Biochar
- Moisture Sensitivity of Warm and Hot Mix Asphalt: Comparison of Loaded Wheel Tracking and Modified Lottman Tests

CALIFORNIA STATE UNIVERSITY LONG BEACH

Transportation Materials Research at CSULB, **Fundamental, Practical and Workforce Development**

Joint Training & Certification Program

• Innovative Caltrans Joint Training & Certification Program for materials technicians sets the standard for quality, consistency

Dr. Shadi Saadeh with CSULB kicks off the unveiling of the JTCP curriculum at a 2017 meeting of stakeholders held at California State University, Sacramento.

Associate Professor, **Department of Civil** California State University, Long **Beach and JTCP** program manager, provides an update on the program at the 2018 CalAPA Spring Conference in Ontario while Caltrans Program Manager Jeremy Peterson-Self

Shadi Saadeh

CSULB – CECEM

Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Joint Training & Certification Program

 In 2019, Caltrans former Director Laurie Berman said the program is performing as expected. "Over the past year, this program has broken down barriers for more than 800 engineers and technicians in the materials testing industry, some in obtaining proficiency and others in the collaboration between state and private industry," Berman told California Asphalt magazine.

Shadi Saadeh

Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Joint Training & Certification Program

- Brian Annis, secretary of the California State Transportation Agency, who replaced Brian Kelly last year, offered similar praise. "Now that SB 1 projects are being implemented in full force across California, it's more imperative than ever that we create innovative solutions to deliver on the promises of this critical infrastructure investment," Annis told California Asphalt magazine.
- "Training programs like this one provide efficiency, access and opportunities, while ensuring the highest standards are met for quality materials on thousands of new construction projects statewide."

Shadi Saadeh CSULB – CECEM Shadi. Saadeh@csulb.edu

Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Joint Training & Certification Program

• For legislators who voted for SB1, seeing innovation and accountability in action via the JTCP is gratifying. "As a member of the Assembly Transportation Committee and Chair of the Education Committee, I understand the intersection between fixing our roads and educating the employees that perform the work," said **Assemblyman Patrick O'Donnell, D-Long Beach**. "A big part of SB 1 is accountability, and this innovative training and certification program will ensure that the workers who test construction materials are highly qualified, and taxpayers are getting what they pay for."

Shadi Saadeh

CSULB – CECEM Shadi. Saadeh@csulb.edu

Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Joint Training & Certification Program

 Tracy Zubek, Quality Control Manager for CalAPA® member DeSilva Gates Materials and a member of CalAPA®'s Technical Advisory Committee, said he was pleased with the department's announcement. "Having a joint training program for Caltrans and industry is another great leap forward in the pursuit of partnering and will have a direct correlation to improved quality of materials used to build California's transportation infrastructure," said Zubek, who is also co-chair of the Caltrans-industry

Left: Instructor Dave Aver makes a point; Middle: Student assistants preparing samples for one of the many hands-on tests that are part of the JTCP. Right: Instructor Greg Reader (left) shares a laugh with class participants as CalAPA®'s Brandon Milar (right) looks on.

Shadi Saadeh

CSULB –CECEM

Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Lessons Learned

- Fundamental research
 - Publication
 - Citation
 - Ranking
- Practical Research
 - Innovation
 - Forensic Investigation
 - Industry relationships
- Workforce Development
 - Community Partnership
 - Political and Institutional Support

Shadi Saadeh CSULB – CECEM

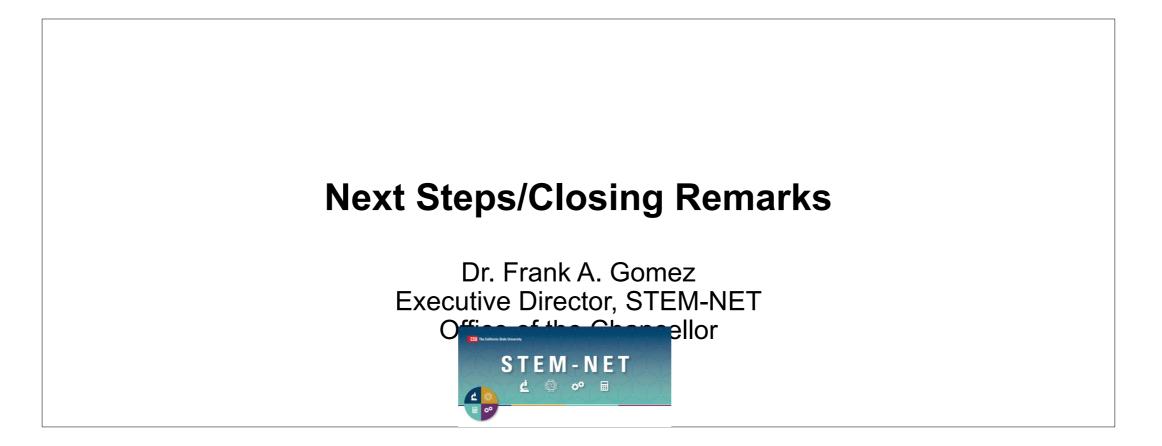
Transportation Materials Research at CSULB, Fundamental, Practical and Workforce Development

Next Steps

- University Transportation Centers
- NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM (NCHRP)

Transportation Research in the CSU

Speaker Contacts	
Karen Philbrick, Mineta Transportation Institute karen.philbrick@sjsu.edu	
Aly Tawfik, Fresno State tawfik@csufresno.edu	
Mehran Mazari, Cal State LA mmazari2@calstatela.edu	
Daniel Whisler, Cal State Long Beach Daniel.Whisler@csulb.edu	
Serena Alexander, San Jose State serena.alexander@sjsu.edu	
Hovannes Kulhandjian, Fresno State hkulhandjian@mail.fresnostate.edu	
Shadi Saadeh, Cal State Long Beach Shadi.Saadeh@csulb.edu	


Frank A. Gomez

CSU Office of the Chancellor

fgomez@calstate.edu

Transportation Research in the CSU

https://www2.calstate.edu/impact-of-the-csu/research/stem-net

Frank A. Gomez

CSU Office of the Chancellor

fgomez@calstate.edu

STEM-NET COMMUNITY & FEEDBACK

Webcast Feedback Survey

Please take a few moments to tell us about your webcast experience https://forms.gle/xJJrY4C9yu4yfJr09

Join our CSU STEM-NET Community listserv

csustemnet@lists.calstate.edu

Begin a Conversation with Colleagues and Join our Private CSU STEM-NET Facebook Group

https://www.facebook.com/groups/2629611737269292

Save the Dates

STEM-NET Virtual Research Café 10.0

April 23, 2021 Registration Link: https://tinyurl.com/s7kzudd8

STEM-NET May Webcast

 CSU Department of Defense (DoD) Awardees: May 13th, 2PM- 4PM Registration Link: https://forms.gle/TZTdRfoyUEz5Q7Gm9