Microbial Populations Shift During Mesophilic and Thermophilic Anaerobic Digestion—Phase 1: Biological Hydrogen Gas Production from Lab-Scale Batch Anaerobic Digester using Various Substrates

Leanne Deocampo¹, Pitiporn Asvapathanagul¹, Nicholas Banuelos², Maggie Ly¹
¹Civil Engineering and Construction Engineering Management Department; ²Environmental Science & Policy Department
California State University, Long Beach
Email: Leanne.Deocampo@student.csulb.edu

CSU Transportation Consortium

Low-cost & carbon rich fuels emit large amounts of greenhouse gases.
Hydrogen gas is known as one of the most clean and sustainable type of energy that yields 3 times higher than fossil fuels (Momirlan et al., 2005).
Currently, most energy utilization from anaerobic digestion is methane oxidation, which increases global warming potential because its combustion significantly emits CO₂ (greenhouse gas) (The Geography of Transportation Systems, 2017).
H₂ has the highest energy content compared to other gases in biogas. Also, the hydrogen ignition generates water, not CO₂, as the end-product (Balat M., 2008).

RESULTS AND DISCUSSION

- Multi-variable analysis via RDA shows COD, VFA and ammonium ions concentrations combined directly influenced high H₂ content in RDA1 component.

BACKGROUND AND SIGNIFICANCE

- Biological H₂ production generated during anaerobic digestion is a fraction accounted within the 1%.
The microbial substrate competitions during anaerobic digestion inhibits high biohydrogen gas content formation.

METHODOLOGY

- Batch experiments continued using C. butyricum, C. beijerinckii, C. hydrogeniformans and Lactobacillus spp.
- Molecular biology to determine population in samples using next generation sequencing.
- Repeat experiment to determine if the process of methanogenesis can be interrupted.

ON-GOING AND FUTURE WORK

- COD, VFA, alkalinity and NH₄⁺-N were observed over 18 days (data shown only no spike reactors)

ACKNOWLEDGEMENT

We would like to thank Chiquita Water Treatment Plant at Santa Margarita Water District. This study was supported by 2020 Presidents’ Commission Scholars Program, 2021-2022 Undergraduate Research Opportunity Program at CSU, Long Beach. The California State University Transportation Consortium through the State of California’s Senate Bill 1, the Road Repair and Accountability Act of 2017.