Investigating polycyclic aromatic hydrocarbon transport in natural systems

Cathy A. Trejo***, Bronwyn L. Teece**, Arezoo Khodayari*, Laura M. Barge**, and Jessica M. Weber**

*Department of Civil Engineering, California State University, Los Angeles
** NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
Polycyclic aromatic hydrocarbons (PAHs)

- Organic compounds
- Ubiquitous pollutant
- Low solubility in water
Environmental Research Relevance – Engineering
Environmental Research Relevance – Engineering
Environmental Research Relevance – Engineering

Polycyclic aromatic hydrocarbons

- Image of smoke-emitting volcanic eruption
- Image of water flowing from pipes
- Chemical structures of polycyclic aromatic hydrocarbons
- Images of Earth and Mars

6
Research Relevance – Astrobiology

Curiosity Mars Rover

Mission
Understanding the past and present habitability of the martian environment

What?

Where?

Biosignature

“an object, substance, and/or pattern whose origin specifically requires a biological agent.”

Research Relevance – Astrobiology

What compounds are we seeing?
Where do they come from?

Image credits: Eigenbrode et al., 2018

Polycyclic aromatic hydrocarbons

Origin of organic matter harder to discern
Research Objective:

Investigate geochemical conditions that affect polycyclic aromatic hydrocarbon mobility in hydrothermal systems using a continuous flow reactor.
Continuous Flow Chemistry

- Simulate hydrothermal fluids flowing through mineral bed
- Automated and consistent fluid flow throughout the experiment
Packed Bed

Mars Global Simulant Coarse (MGS-1 Coarse)

• Basaltic regolith on Mars
• Similar mineral composition to Earth’s basalt
Ultra Pure MilliQ water
• pH = 6.5 – 7.5
• Standard pressure/temperature

Hydrothermal Fluid (HTF)
• Synthetic, non-heated
 • 4 mM NaCl
 • 0.3 mM CaSO$_4$
 • 100 mM NaSiSO$_4$
• pH = 11.8
• Standard pressure/temperature
Organics – PAHs

- Structural isomers (MW: 178.23 g/mol)
- Common in hydrothermal systems
- Highly studied in PAH removal techniques
Organic Mixtures – 10 mM in system

Packed Bed
- Phenanthrene
- Anthracene
- Phenanthroline

Fluid Solution
- Phenanthroline
Experiment Schematic

- **0 minutes**
- **15 minutes**
- **30 minutes**
- **60 minutes**
- **90 minutes**

Phases
- Packed Bed with approx. 7.5 g of MGS-1 coarse

Materials
- Phenanthroline
- Anthracene
- Phenanthrene
- Mars Global Simulant

Equipment
- Auto syringe pump
 - Flow rate: 0.2 mL/min
Fluid Analysis – Phenanthrene

MilliQ-Water

A) Water + Mars Global Simulant + Phenanthrene, t=0 mins

B) Water + Mars Global Simulant + Phenanthrene, t=15 mins

Hydrothermal Fluid

A) Hydrothermal fluid + Mars Global Simulant + Phenanthrene, t=0 mins

B) Hydrothermal fluid + Mars Global Simulant + Phenanthrene, t=15 mins

aromatics
aliphatics
Fluid Analysis – Phenanthrene

MilliQ-Water

A) H₂O + MGS-1 Coarse + PHE, time = 0 mins
B) H₂O + MGS-1 Coarse + PHE, time = 15 mins
C) H₂O + MGS-1 Coarse + PHE, time = 30 mins
D) H₂O + MGS-1 Coarse + PHE, time = 60 mins
E) H₂O + MGS-1 Coarse + PHE, time = 90 mins

Hydrothermal Fluid

A) HTF + MGS-1 Coarse + PHE, time = 0 mins
B) HTF + MGS-1 Coarse + PHE, time = 15 mins
C) HTF + MGS-1 Coarse + PHE, time = 30 mins
D) HTF + MGS-1 Coarse + PHE, time = 60 mins
E) HTF + MGS-1 Coarse + PHE, time = 90 mins
Fluid Analysis – Anthracene

• No aromatic peaks at any timepoint
Conclusions – Environmental Engineering

• At baseline conditions, we’re seeing some phenanthrene decomposition with the continuous flow set up.

• We still have phenanthrene and anthracene left with the organics.

We know phenanthrene decomposition products is likely to be present in contaminated water streams.
Implications – Astrobiology

• Phenanthrene decomposition products could potentially overlap with biomarkers.
 • Need other biosignatures to help confirm biomarkers

We know a set of geochemical conditions that PAH mobility can affect Martian organic analyses.
Acknowledgments

Dr. Jessica M. Weber
Dr. Bronwyn L. Teece
Dr. Arezoo Khodayari
Dr. Laura M. Barge
Dr. Katherine Dzurilla