Characterization of stormwater debris model parameters in southern California's dense urbanized watersheds

Kian Bagheri, Joint Doctoral Student^{1,2} Hasan Davani, Assistant Professor¹

UC San Diego

College of Engineering

Data Input for	<u>Source</u>
<u>PCSWMM</u>	
Digital Elevation	USGS Earth Explorer
Models	
Hourly Rainfall	NOAA Climate Data Online
Data	
Hydrologic soil	Soil Survey Geographic Database
groups	
Evaporation Data	The California Irrigation Management
	Information System (CIMIS)
Land Use Data	San Diego Association of Governments
	(SANDAG) /County of Los Angeles Public
	Works Website

- **Total Area:** 834 sq. miles (533,760 acres)
- **Populatio**n: ~9 million people
- Percentage of
 Impervious Surfaces:
 ~31 %
- Land Use:
 - 37% Residential
 - 8% Commercial
 - 11% Industrial
 - 44% Open Space
- Mean Annual Rainfall:
 ~21 inches

Legend

Junctions

Outfalls

Conduits

10 mi

Subcatchments

- Total Area: 130 sq. miles (83,200 acres)
- Population: ~1.5 million people
- Percentage of
 Impervious Surfaces:
 ~65 %
- Land Use:
 - 64% Residential
 - 8% Commercial
 - 4% Industrial
 - 17% Open Space
- Mean Annual Rainfall:
 ~16.4 inches

Legend

- Junctions
- Outfalls
- Conduits
- Subcatchments

4 mi

Buildup and Washoff Governing Equations

- Various functions available in SWMM to simulate pollutant buildup and washoff
- Power buildup can follow a linear or nonlinear trend increasing with dry days
- With exponential washoff the washoff load is dependent on buildup mass available
- Buildup and washoff parameters developed using observed washoff load data

Power Buildup: $b = Min(B_{max}, K_B t^{N_B})$

where,

b = buildup, (kg/ha)

t = buildup time interval, (days)

 B_{max} = maximum buildup possible (kg/ha)

 K_B = buildup rate constant, $(\frac{kg}{ha-days})$

 N_B = buildup time exponent, dimensionless

Exponential Washoff: $w = K_w q^{N_w} B$

where,

w = rate of washoff (mg/hr)

 K_w = washoff coefficient (mm⁻¹)

 N_w = washoff exponent (unitless)

q = runoff rate per unit area (mm/hr)

B = pollutant buildup (kg)

TRASH FROM BALLONA CREEK YEAR 2002-2003

- Highest rainfall did not produce highest washoff load
- High rainfall accompanied with longest accumulation period produced greatest washoff load
- There is an upward trend of washoff load with respect to increasing dry days.
- With this watershed and land use there is poor correlation between socioeconomic data and washed off litter

- First year rainfall **11.32 inches**, with a total load of **3714 lbs**.
- Second year rainfall **5.94** inches with a total load of **1622 lbs**.

- Figure shows two years of rainfall-washoff (load) for the BCW with observed data
- Different storm events are plotted nonsequential on the top axis.
- The storm events are plotted with total rainfall depth against dry days leading up to storm
- Storm events with similar buildup days but different washoff loads were used as the basis for developing washoff parameters
- The storm that occurred after 50 dry days (2002-2003) produced higher washoff loads than the storm after 60 dry days (2003-2004)
- This suggests that the increased rainfall was able to mobilize more of the available litter load

- The horizontal axes shows rainfall-runoff for two subcatchments in the LARW
- S4 is further downstream than S1
- Simulated washoff is plotted with observed washoff for each storm in 2002-2003
- Washoff parameters were modified to test the sensitivity of washoff load with respect to washoff parameters.

Results

Watershed	Simulation	Total	Total	Total Runoff	Total
	Year	loading	Loading	Volume from	Rainfall
		from	per unit	PCSWMM	for
		PCSWMM	area	(m³)	Simulation
		(kg)	(kg/ha)		Year (mm)
BCW	2002-	155,145	4.61	28,588,000	417.1
	2003				
BCW	2003-	103,205	3.07	18,334,400	223.5
	2004				
LARW	2002-	2,486,808	11.51	237,182,300	404.5
	2003				
LARW	2003-	1,584,020	7.33	124,718,100	226.8
	2004				
LSDRW	2002-	275,958	6.58	27,907,600	301.5
	2003				
LSDRW	2003-	141,086	3.36	11,488,400	138.4
	2004				

Future Work

- Validate LSDRW simulated results with field sampling
- Validate BCW with Ballona Creek Trash Interceptor

Thank you! Kian Bagheri kbagheri@sdsu.edu

Acknowledgments

NOAA Grant

<u>Hilary McMillan</u> Overall Program Lead, SDSU Geography

<u>Trent Biggs</u> Debris Sources Co-Lead, SDSU Geography

Hassan Davani Stormwater Modeling Lead, SDSU Civil Construction Environmental Engineering