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Light-matter Interactions for Mechanics of 
Nontraditional Materials

George Youssef, Ph.D., P.E.
Experimental Mechanics Laboratory, Principal Investigator

Mechanical Engineering, Professor
San Diego State University, CA, U.S.A.

CSU Exemplars in Engineering Webcast – October 4th, 2023



Advancing Mechanics 
and

Broadening Participation in Engineering

Mechanics of Nontraditional Materials 

Underrepresented minorities and women



EML focuses on lightweight and multifunctional materials 

Polymers
Response of dense and foam 
polymers to extreme loading 
scenarios in harsh operating 

conditions

Physical
Mechanical 

Thermal
Dynamic 

Composites
Advanced manufacturing and 
nondestructive evaluation of 
continuous fiber reinforced 
polymer matrix composites

Robotic 3D printing
Terahertz NDE

Data-driven detection

Multifunctional
Strategically leverage solid and 
structural mechanics to inspire 

multi-functionality  

Load Management
Heat Management
Fluid Management
Electrical Management



Polymers Science Polymers Engineering
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Polyurea (Model Material System)
• Formed by poly-addition

polycarbodiimide-modified diphenylmethane diisocyanate (isocyanate) &
poly(tetramethyleneoxide)-di-p-aminobenzoate (diamine)

Isocyanate Diamine

Soft segmentHard segment

Blourchian A., Shaik A.M., Huynh N.U., Youssef G. (2021) J Polym Res 28,  117:574–578.

Topography Phase scan

Hydrogen bond

Urea linkage

Mechanically Stronger > Amorphous region

Segmental Microstructure with 
different mechanical behavior 

Steel armor plate with
polyurea protective coating

Steel armor plate without
protective coating



Full-field Creep Results

DIC Analysis (Vic 2D, Correlated Solutions Inc): 
Subset size = 41 pixels (214 µm) - Step size = 10 pixels (52 µm) - Strain filter size = 5

Huynh, et al., J .Mech. Tim-Depend Mats (2022)
Huynh et al., Macromolecular Rapid Communications (2023)



THz-TDS Results – Time Domain

Huynh, et al., J .Mech. Tim-Depend Mats (2022)
Huynh et al., Macromolecular Rapid Communications (2023)
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CISE-MSI: Towards Efficient, Reliable, and Secure Chaotic 
Communications In Wearable Devices

Ava Hedayatipour–
Department of Electrical Engineering (EE),
California State University Long Beach

Collaborators:
Dr. Amin Rezaei, Dr. Hossein Sayadi, Dr. Mehrdad Aliasgari,
Department of Computer Engineering & Computer Science (CECS)
California State University Long Beach

Ava Hedayatipour, Assistant Professor

Campus, Department of Electrical Engineering 

Email: ava.hedayatipour@csulb.edu



Project Overview
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Convenience or Complexity?

12

Sleep Tracker
Smart Coffee Maker

Fitness Tracker Smart Phones/Watches

Smart Refrigerator

Cloud Storages

Video Conference Rooms

Autonomous Cars

Smart Home 
Appliances 

These are the bulk images taken from google, no copyrights on any of the images.

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices

Internet of Medical Things (IoMT)

Connected Inhalers

Pacemakers

Smart Shoes

Insulin Pumps

Bioheart

Heart Rate 
Monitor watch 

Cochlear
Implant

NFC Ring

Mudra BandCove

Think Reality A3

Smart Band

JBud Frame

Ingestible Sensors

R. S. Bisht, S. Jain, and N. Tewari, “Study of wearable IoT devices in 2021: Analysis amp; future prospects,” in 2021 2nd International Conference on 
Intelligent Engineering and Management (ICIEM)13



Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices

https://www.marketsandmarkets.com/Market-Reports/wearable-
electronicsmarket-983.html, Apr 2021. 

GROWTH PREDICTION IN 
IMPLANTABLE/WEARABLE DEVICES’ 

INDUSTRY

Glance to the Future


Chart1

		2021

		2026



Market size

Market Size [in Bilion]

116.2

265.4



Sheet1

				Market size		Series 2		Series 3

		2021		116.2		2.4		2

		2026		265.4		4.4		2

		Category 3		3.5		1.8		3

		Category 4		4.5		2.8		5







Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices

Encryption Algo
• Symmetric Encryption: 

*  The shared private key between sender and 
receiver. 

*   Fast, less computing, but not considered 
reliable communication.
Example:  
Advanced Encryption Standard  (AES)

• Asymmetric Encryption: 

Algorithm Purpose

Advanced encryption 
standard (AES) 

Confidentiality

Rivest Shamir Adelman 
(RSA)/ Elliptic Curve 
Cryptography (ECC) 

Digital 
signatures key 

transport

Diffie-Hellman (DH) Key agreement

SHA-1/SHA-256 Integrality

*  The sender provides the public information and the receiver decrypts 
that with the private information

*  Higher computational requirements and factorization complexity

*  Example: Rivest Shamir Adelman (RSA) and the Diffie-Hellman (DH)



Project Overview

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices

Encryption

Cipher Text

Decryption

Message Message

Public Key Secret Key

Asymmetric cryptography 



Project Overview
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CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Project Overview
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CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Results
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• Demonstration of encryption 
architecture on Xilinx’s 
Digilent Artix7Nexys7 FPGA 
board.

• The JTAG port has been 
used to deliver the 
computation to the board 
and bring back the results. 

Xilinx FPGA Board- NEXYS A719

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Results
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CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Results
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CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Lessons Learned
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CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices

• If you are the main PI be ready to PUSH.

• Things rarely move forward without follow-ups.

• Have alternative planning in line.

• The program director is a friend, not a foe.



Next Steps/Long-Term Plans

23

• To expand the scope of the design and get experimental data for real-world bio-medical 
signals, i.e, ECG.

• To achieve the initial goal with which this research began, implement the efficient and 
low-power chaotic encryption circuit on-chip

• To make the design robust and eliminate the flaws, carry out the testing/validation 
against attacks.

This material is based upon work supported by the National Science Foundation under Grant No. 2131156. 
The work presented is the work of my brilliant students.

Acknowledgment

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Summary
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CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Ava Hedayatipour   
Department of Electrical Engineering (EE),
California State University Long Beach

Website: https://avahedayatipour.com/
Phone #: 562.985.8034
Email: ava.hedayatipour@csulb.edu

Contact Information:

Questions?

CISE-MSI: Towards Efficient, Reliable, and Secure 
Chaotic Communications In Wearable Devices



Global Optimization of Chance-Constrained Programming 
for Reliable Process Design

Dr. Yu Yang  California State University Long Beach

Dr. Yu Yang, Associate Professor

CSULB, Department of Chemical Engineering

yu.yang@csulb.edu



Motivation

• Incomplete knowledge of mathematical models used for the optimization-based design of chemical 
processes can lead to degraded quality of fuels, vaccines, manufactured foods, and other chemical 
products, giving rise to economic, safety, health, and environmental issues.

27



Project Overview

• Chance-constrained Programming (CCP)
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Random Algorithm: Scenario Approximation, 
Scenario Tree

Analytical Approach: Distribution-based
(Only applicable for Gaussian distribution)Uncertainty



Project Overview

• Data-Driven Modeling and Global Optimization
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Gaussian Mixture Model (GMM) Global Optimization

• Convex relaxation>>Second-order cone relaxation
• Branch-and-Bound
• Bound tightening
• Reformulation linearization technology
• Piecewise linear decision-rule



Project Overview

• Theoretical and Experimental Research
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Develop GMM-
based CCP

Oil Blending 
Experiment

Two-stage CCP with 
line decision rule

Two-stage CCP with 
piecewise decision 

rule

Collaboration & 
new proposal 

submission

Generate an 
edible oil 
blending dataset

Refinery 
optimization

Target: 
NSF, DOE

Refinery 
optimization

Oil blending 
modeling and 
optimization



Activities (Single Stage GMM-CCP)

• Oil Blending (Linear Programming)

31

Objective: Determine the blending receipt such 
that the profit is maximized, and quality 
specifications are met with high chance (>95%)

GMM-CCP Scenario Average 
(SA)

Profit: $378.49 $354.60

Solution 
time:

6,668 s 101 s

Conclusion: Slow but guaranteed 
optimality

Fast but needs 
significant tuning



Activities (Two-Stage GMM-CCP)

• Refinery Optimization (Mixed-integer linear programming)

32

Objective: Determine the crude oil 
procurement (State-I) and refinery operations 
(Stage-II) to maximize the profit and meet the 
quality specification with high chance.  

GMM-CCP + 
Decision-Rule

Scenario Tree

Profit: $102,467,704 $101,282,597

Solution 
time:

4709 s 7224 s

Risk: 2.4%<5% 2%<5%

Conclusion: Faster, Scalable, 
More profitable

Slower, Non-scalable



Activities

• Student Project: Optimization of Blended Vegetable Oil with Viscosity Constraint  

33



Lessons Learned

• Pre-award: Preliminary data and publication are important to the NSF grant application.
• Yang, Y. (2019). Improved Benders decomposition and feasibility validation for two-stage chance-constrained programs in process optimization. Industrial & Engineering 
Chemistry Research, 58, 4853-4865.

• Yang, Y., dela Rosa, L., Chow, T. (2020). Non-convex chance-constrained optimization for blending recipe design under uncertainties. Computers & Chemical Engineering, 
139, 106868.

• Yang, Y. and Sutanto, C. (2019). Chance-constrained optimization for nonconvex programs using scenario-based methods. ISA Transactions, 90, 157-168.

• Yang, Y., Vayanos, P., Barton, P. (2017). Chance-constrained optimization for refinery blend planning under uncertainty. Industrial & Engineering Chemistry Research, 56, 
12139-12150.

• Yang, Y. (2019). Improved Benders decomposition and feasibility validation for two-stage chance-constrained programs in process optimization. Industrial & Engineering 
Chemistry Research, 58, 4853-4865. 

• Post-award: Integrate the education with research (CHE 440/450 Chemical Engineering Laboratory)

34

https://www.sciencedirect.com/science/article/pii/S0098135420300284
https://www.sciencedirect.com/science/article/pii/S0019057819300266
https://pubs.acs.org/doi/abs/10.1021/acs.iecr.7b02434
https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b04777


Next Steps/Long-Term Plans

• Seek collaborations in the microfluidics and renewable energy  

35

** Lo Lab @ CSULB ** 
https://www.csulb.edu/college-of-engineering/dr-roger-c-lo
http://www.microfluidics-at-the-beach.net

http://www.microfluidics-at-the-beach.net/
https://www.csulb.edu/college-of-engineering/dr-roger-c-lo
http://www.microfluidics-at-the-beach.net/


Campus Logo

Name: Yu Yang

Contact Information:

Questions?

Campus/Department: California State University 
Long Beach, Department of Chemical 
Engineering
Website: https://sites.google.com/view/yuyang
Email: yu.yang@csulb.edu

https://sites.google.com/view/yuyang


Multi-robot Exploration of Spatial-temporal Varying Fields

Wencen Wu – San Jose State University 

Wencen Wu, Associate Professor

San Jose State University, Computer Engineering Department

wencen.wu@sjsu.edu

Multi-robot Exploration of Spatial-temporal Varying Fields



Environmental Disasters 
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Multi-robot Exploration of Spatial-temporal Varying Fields

Difficult and dangerous for people to search and rescue
How to explore fields and events in an unknown space?

https://www.theenergymix.com/2021/07/04/ocean-catches-
fire-after-gas-leak-from-underwater-pipeline/

https://www.theatlantic.com/photo/2022/07/photos-
wildfires-rage-across-southwestern-europe/670553/

Forest fires Gas leak Air crash

https://www.independent.co.uk/travel/news-and-
advice/flight-mh370-malaysia-airlines-plane-missing-
boeing-777-kuala-lumpur-beijing-2014-documentary-
a8552686.html



Problem Formulation

39

Multi-robot Exploration of Spatial-temporal Varying Fields

Employ a group of mobile sensors in this field 
with noisy discrete measurements

Consider a concentration field 𝑧𝑧 𝑟𝑟 .

Source seeking Boundary tracking

Employ multi-robot systems to perform 
exploration tasks for safety and efficiency
• Source seeking
• Boundary tracking
• Environment mapping
• …



Gradient-based vs. Gradient-free Source Seeking 
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Multi-robot Exploration of Spatial-temporal Varying Fields

Estimate ∇𝑧𝑧 𝑟𝑟 first, then use the 
estimated �∇𝑧𝑧 𝑟𝑟 in the motion control

No explicit gradient estimation 
needed



Exploring Spatial-Temporal Varying Fields

41

Multi-robot Exploration of Spatial-temporal Varying Fields

Challenges
• Unknown distributed parameters 
• Spatial-temporal varying state

Goal: using a mobile sensor network to achieve
• state estimation
• parameter identification 
• map reconstruction

to be estimated 



Experimental Results: On-line Parameter Identification

42

Multi-robot Exploration of Spatial-temporal Varying Fields



Simulation Study

Multi-robot Exploration of Spatial-temporal Varying Fields

• Consider the field contains 
• Obstacles
• Hazard zones

• Online parameter identification 

+ state estimation 

+ source seeking 



RL Based Path Planning and Field Reconstruction

Multi-robot Exploration of Spatial-temporal Varying Fields

Snapshot of the 
mobile robot formation 
moving in the 
simulated advection-
diffusion field

Representation of an advection-diffusion field grid map in Rviz at 3 time 
steps.



Experimental Study

Multi-robot Exploration of Spatial-temporal Varying Fields
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Experimental Study – Comparison with Different Trajectories

Multi-robot Exploration of Spatial-temporal Varying Fields



Name: Wencen Wu       
Campus/Department: Computer Engineering Department
Website : https://sites.google.com/a/sjsu.edu/wencen-
wu/
Phone #: 4089247853   
Email: wencen.wu@sjsu.edu

Contact Information:
Questions?

Multi-robot Exploration of Spatial-temporal Varying Fields

Acknowledgement: the research work is supported by NSF grants
CPS-1446561, CMMI-1663073, CMMI-1917300, and RINGs-2148353

https://sites.google.com/a/sjsu.edu/wencen-wu/
https://sites.google.com/a/sjsu.edu/wencen-wu/


CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO

Experimental Characterization and Computer 
Vision-Assisted Detection of Pitting Corrosion on 
Stainless Steel

Dr. Long Wang

Department of Civil and Environmental Engineering

California Polytechnic State University, San Luis Obispo

E-mail: lwang38@calpoly.edu

CSU Exemplars in Engineering

October 4, 2023
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Research Overview

Multifunctional Material 
Design

Infrastructure Monitoring
Human

Monitoring

Sensing skin

4 in

Boundary 
electrodes

Load stub

Hydraulic
actuator

Footing

2 ft

Spray coating of carbon nanotube films

Printing of graphene patterns
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Pitting Corrosion Background

 Pitting corrosion is a type of localized corrosion that is both autocatalytic and irregular, creating 
cavities within a material.

 Pitting damage can potentially lead to structural failure.

 Failure occurs at the largest defect on the surface, and cannot be equated wholly to mass loss of 
external topography

 Fracture mode can change to stress corrosion cracking, a non-ductile, rupture failure for members 
under tension stress

 It is challenging to identify, predict, and design against (bypasses corrosion resistance) pitting corrosion.

Common forms of corrosion pit morphologies 
(Source: AMARINE)

Schematics of pitting corrosion 
(Source: D&D Coating Ltd)
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Pitting Corrosion Background

 Various types of structures can be subjected to pitting corrosion.

 Examples include bridges, metal pipes, aircrafts, and so forth.

Pitting corrosion on Nandu River Iron Bridge truss member (left), St. Lawrence Seaway Navigation 
Lock vinyl wall system (middle), and skin plate provided by US Army Corps of Engineers (right)
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Existing Technologies for Pitting Corrosion Analysis

Existing 
Technology Pros Cons

Visual 
Examination • No technology required

• Highly time consuming
• Difficult if the area is hard to access 

(i.e., underwater)
• Subject to human error

Metal 
Penetration • Cheap technology

• Large error in identifying the deepest 
pits (i.e., largest pit may not be 
deepest pit especially for loaded 
members)

Eddy Current • Great accuracy using 
commercial technology

• Expensive
• Commercial products designed for 

specific applications such as pipes

Ultrasound • Good sensitivity for pitting 
corrosion

• Expensive
• Affected by liquid loading, coatings, 

and welds
• Reference standards and large 

amount of training and experience is 
required

Profilometry
• High accuracy
• Outputs large amount of useful 

surface morphology data

• Very expensive
• Unable to be taken into the field Standard rating chart for pitting corrosion 

(Source: ASTM G46-21)
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Accelerated Pitting Corrosion Experiment

 Materials

 AISI 304 Stainless Steel (50.8 × 63.5 × 4.7625 mm3)

 Iron (III) Chloride 

 Deionized (DI) Water

 Hot Plate / Stir Plate

 500 mL Beaker

 Procedures

1. FeCl3 solution was prepared by dissolving 16.22 g of FeCl3 powders in 
200 mL of deionized (DI) water through stirring and was heated to 50°C.  

2. Steel specimens were sanded to remove the surficial protective oxide 
layers and wash with DI water.

3. The specimens were then submerged in the solution for a desired 
timeframe (i.e., 1, 2, 3 hr).

4. Once the desired timeframe was reached, the specimens were 
thoroughly washed with DI water and air dried for at least a day. 

 Sandpaper

 Sodium Bicarbonate

 Glass Thermometer

 pH Test Strips

Beaker containing heated ferric chloride 
and a pitted steel specimen



55

Load-Coupled Corrosion Experiment

Schematics (left) and an optical image of the experimental setup for 
the load-coupled corrosion test

 Procedures

1. The 0.5M FeCl3 corrosive solution and steel specimens (50.8 × 342.9 × 4.7625 mm3) were prepared following 
the same procedures as the corrosion experiment. 

2. Each steel specimen was submerged in the corrosive solution and subjected to a four-point bending load 
simultaneously, generating 28 MPa max stress.

3. Once the desired timeframe was reached (i.e., 1, 2, 3 hr), specimens were washed thoroughly with DI water and 
air dried for at least a day. 
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Microscopic Imaging of Pits

 Both optical microscopy and scanning electron microscopy (SEM) have been used to characterize micro-
scale pit morphology

 While microscopic imaging enabled detailed observation of the pits developed at different stages, it was 
challenging to perform scalable characterization.

1 mm 500 µm

  

a b

Optical image of the cross-sectional view at 
50x magnification

SEM images of pits after a three-hour 
accelerated corrosion experiment
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Pit Morphology Characterization

 All specimens were inspected using a Micro Vu 
Vertex system equipped with an LSM4-2 laser 
distance scanner.

 The resolutions were 4 microns and 0.03 microns 
along x and y directions, respectively.

 Python codes were developed for processing and 
visualizing the data (3D coordinates for about 2 
million data points per scan).

 The code locally adjusts the surface plane by 
calculating local neutral axis and shifting nearby 
points to zero height.

 A pit is classified as having eight points in proximity 
that all fall below the surface threshold.

Micro Vu Vertex system with a laser distance 
scanner during scan of load-coupled specimen 
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Pit Morphology – 2D and 3D Contours

a b

c d

e f

Color contour plots of 25.4 × 25.4 mm2

central regions on the a) tension and b)
compression sides of a steel specimen
subjected to 3-hr of load-coupled corrosion
experiment. c) and d) Zoomed-in views of
individual pits highlighted in a) and b),
respectively. e) and f) Visualization of 3D
morphologies of pits shown in c) and d),
respectively.
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Computer Vision Technique

 To detect pit damage in a more efficient and scalable manner, a convolutional neural network (CNN)-
based computer vision technique was implemented to inspect optical images of steel specimens.

A generic CNN architecture



60

Training CNN

 An image library was established by partitioning 443×340-pixel images into smaller 31×31-pixel sub-images 
for training and testing the CNN. The training library included two classes:
 “Pit” – consists of 740 images
 “No Pit” – consists of 353 images

 70% of the images in each class were used for training and 30% are used for validation.

 Training augmentations that limit the CNN from memorizing the training data include:

 Randomly reflecting the images horizontally and vertically

 Randomly translating the image up to 30 pixels horizontally and vertically

 The CNN was trained with a learning rate of 0.0003 over six epochs. 

 To prevent overfitting that would occur at large epochs due to the limited library size
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CNN Performance – Accuracy

 The final classification accuracy was 84.45%.

 Further training (i.e., more epochs) would lead to overfitting.

Accuracy plot during training with blue line showing the smoothed training accuracy and black line showing validation accuracy at the end 
of each iteration for MATLAB-based CNN (left) and examples of validation outputs of the trained MATLAB-based CNN algorithm (right)



CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO

Acknowledgements/Questions

Collaborators:

Prof. Michael Todd, UC San Diego

Prof. Wenbin Mao, USF

Dr. Lei Li, PNNL

Prof. Britta Berg-Johansen, Cal Poly

Students:

Luke Yium, Aerospace

Logan Schmid, Biomechanical

Keala Sunada, Biomechanical

Duncan Fure, Civil

Marina Wong, Materials

Riley Muehler, Civil (Graduated)

Josh Venz, Materials (Graduated)

Funding agencies:

U.S. Army Corps of Engineers (USACE)

U.S. National Science Foundation (NSF)

Contact:

Dr. Long Wang 
E-mail: lwang38@calpoly.edu



Speaker Contacts

George Youssef, San Diego State
gyoussef@sdsu.edu

Ava Hedayatipour, Cal State Long Beach
ava.hedayatipour@csulb.edu

Yu Yang, Cal State Long Beach
yu.yang@csulb.edu

Wencen Wu, San Jose State
wencen.wu@sjsu.edu

Long Wang, Cal Poly San Luis Obispo
lwang38@calpoly.edu

Frank A. Gomez CSU Office of the Chancellor fgomez@calstate.edu

CSU Exemplars in Engineering



Next Steps/Closing Remarks

Dr. Frank A. Gomez
Executive Director, STEM-NET

Office of the Chancellor

https://www2.calstate.edu/impact-of-the-csu/research/stem-net

Frank A. Gomez CSU Office of the Chancellor fgomez@calstate.edu

CSU Exemplars in Engineering

https://www2.calstate.edu/impact-of-the-csu/research/stem-net


Webcast Feedback Survey

Please take a few moments to tell us about your webcast 
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STEM-NET Virtual Research Café 10.0
Date: Wednesday, October 18, 2023
Time: 11am-12pm

Register Here

Register Here

STEM-NET Community Events

STEM-NET November Webcast
Topic: NSF CAREER Awardees
Date:  Wednesday, November 1, 2023 
Time: 10am-12pm



Join our CSU STEM-NET Community listserv
csustemnet@lists.calstate.edu

STEM-NET 
LISTSERV Begin a Conversation with Colleagues and Join our 

Private CSU STEM-NET Facebook Group              
https://www.facebook.com/groups/2629611737269292

STEM-NET Community Groups

mailto:csustemnet@lists.calstate.edu
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Frank A. Gomez CSU Office of the Chancellor fgomez@calstate.edu
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