Inquiry-Based Learning (IBL)

Moderated by:
Dr. Frank A. Gomez
Executive Director, STEM-NET
Office of the Chancellor

https://www2.calstate.edu/impact-of-the-csu/research/stem-net
Inquiry-Based Learning (IBL)

Speakers

Topaz Wiscons and Stan Yoshinobu, Sacramento State and Cal Poly San Luis Obispo
Examples of IBL in Math

Erik Helgren, Cal State East Bay
The Solar Suitcase Class – A Sustainability and Social Justice Motivated Inquiry Based Learning Class

Marina Shapiro, CSU Bakersfield
California Challenges in STEM Energy Education

Brian Self and Jim Widmann, Cal Poly San Luis Obispo
Inquiry-Based Learning: Hands-On Activities in Mechanics

Michele Korb and Julia Olkin, Cal State East Bay
Inquiry-Based Learning: Engaging STEM Faculty in the Teacher Preparation Pathway

Edward Price, CSU San Marcos
A Guided Inquiry, Physical Science Curriculum for Future Elementary Teachers
Examples of IBL in Math

Topaz Wiscons, Sacramento State
Stan Yoshinobu, Cal Poly, San Luis Obispo

Topaz Wiscons, Assistant Professor, Sacramento State, Department of Mathematics, topaz.wiscons@csus.edu
Stan Yoshinobu, Professor, Cal Poly SLO, Department of Mathematics, styoshin@calpoly.edu
Examples of IBL in Math

The Four Pillars of IBL

- Student Engagement in Meaningful Math
- Student Collaboration for Sense Making
- Instructor Inquiry into Student Thinking
- Equitable Instructional Practice & Math Identity-Building

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Examples of IBL in Math

Sense-Making “Continental Divide”

Non-IBL
Instructor does the bulk of the processing and primarily presents the material

IBL Zone
Students engaged in doing math. Students do much of the sense-making regularly.

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Groups at the Board – Seated Groups

Examples of IBL in Math

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Examples of IBL in Math

Sample Handouts

**Notes on Exponents**

**Property of Exponents**

- For any whole number and any real number , the expression equals .
- We call the base and is the exponent.
- We use that to be expanded form and is in simplified form.

1. For the definition of the exponent to first expand and then simplify the following expressions:
   - \( a^3 \cdot a^4 \)
   - \( a^2 \cdot b^5 \cdot c^3 \)

2. Notice a shortcut in the above exercise and use it to simplify \( a^7 \cdot a^2 \).

**Property: The Product Property of Exponents**

- For any real number and any real exponent, \( a^{m} \cdot a^{n} = a^{m+n} \).

3. Use the definition of the exponent and the product property to expand then simplify the following expression:
   - \( (a^2)^3 \)

4. Notice a shortcut in the above exercise and use it to simplify \( (a^3)^2 \).

**Examples of IBL in Math**

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Examples of IBL in Math

Students Presenting Solutions with Class Discussion

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Mentor in the Middle

Examples of IBL in Math

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Collaboration During Office Hours

Examples of IBL in Math

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Examples of IBL in Math

IBL Key Features Type A

1. Students given carefully crafted problems to work for homework
2. Students present findings in class, by volunteering to present solutions.
3. Students in the audience discusses and review the presented solution, making amendments as needed.
4. Sometimes students work in groups or individually on the problems in
5. Mini-lectures/activities by instructor as need to launch a topic, check for understanding, move the class forward when student.
Examples of IBL in Math

IBL Key Features Type B

1. Class typically uses a standard textbook
2. Instructor starts with a short mini-lecture
3. Students work on specific tasks and ensures each group member understands
4. Instructor visits groups.
5. Class discussions used to make public main ideas and strategies
6. Think-pair-share (1-2-All) is used frequently

Topaz Wiscons, topaz.wiscons@csus.edu, Stan Yoshinobu, styoshin@calpoly.edu
Online Strategies

- **TW:**
  - Zoom + Chat Response Protocol + Breakout Rooms
  - Handouts
  - Short List of Prompts
  - Post ‘Lecture’ Screen Share from iPad.
- **SY:**
  - Carefully crafted handouts
  - Zoom + iPad + Apple pencil
  - Recording
  - SBG
- Easy start: Keynote and voiceover (for asynchronous)
The Solar Suitcase Class – A Sustainability and Social Justice Motivated Inquiry Based Learning Class

Erik Helgren – Cal State East Bay

Collaborators:
Prof. Karina Garbesi – CSUEB Environmental Studies
Dr. Hal Aronson – Director of Tech and Education We Care Solar

Erik Helgren, Professor
CSUEB, Department of Physics
Erik.helgren@csueastbay.edu
Project Overview

• Origins: CSUEB HOST Labs, Hayward-Promise Neighborhood Program & re-design of Intro Phys. Labs to be inquiry based

• CSUEB cross-listed class ENVT/PHYS 307 “Social Impact Through Sustainable Solar Design”

• The class was designed to integrate sustainability, social justice and STEM learning with a Social Purpose

• Social Impact Solar (SIS) Program A Broad Collaboration: WeCare Solar

Erik Helgren  
CSUEB/Physics  
everk.helgren@csueastbay.edu
Activities

• Curriculum Centers on Building the Solar Suitcase - A small, rugged, off-grid solar electric system to power and light schools, orphanages, and refugee centers. Also *Disaster Relief*

• Deep learning through: Doing, Teaching and Sharing = **Head, Heart and Hands**

• Learn by Teaching Middle and High School Students

• Learning by Sharing Solar with the World’s Neediest children

• Volunteer with local non-profits: **Grid Alternatives**

---

Solar Suitcase Course
Social Impact Solar Program

---

Erik Helgren
CSUEB/Physics
erik.helgren@csueastbay.edu
Results – at CSUEB

• We have developed a popular upper division B6 class that also satisfies the “sustainability” GE overlay graduation requirement.

• The class uses daily hands-on lab based activities interwoven with lessons about environmental and social justice issues related to Energy poverty.

• A higher number of students from traditionally underserved student populations are experiencing hands-on STEM/Physics learning.

• Students remain engaged beyond the classroom even after the course, e.g., Grid Alternatives

Erik Helgren    CSUEB/Physics    erik.helgren@csueastbay.edu
Results – Broader Impact

• Social Impact Solar Program: we have partnered with 6 other CSU campuses and local community colleges to establish Solar Suitcase classes at
  ○ CSU Monterey Bay, Humboldt State, SF State, SLO, CSU Stanislaus and Sacramento State
  ○ Contra Costa Community College

• Summer 2018 workshop at Hoopa tribal center

• In conjunction with We Share Solar a total of over 14,500 students have received hands-on Solar Suitcase education during the six-year period 2013 – 2019.
  ○ 150+ (CSUEB), 400+ Hayward Unified School District
  ○ 550+ Solar Suitcases deployed to energy poor regions

Erik Helgren  
CSUEB/Physics  
erik.helgren@csueastbay.edu
Next Steps/Long-Term Plans

• Continue offering ENVT/PHYS 307 as a co-taught Inquiry-Based Learning course focused on Social Justice and STEM Learning.

• Work to Expand the Solar Suitcase curriculum model to more universities and school districts locally and nationally.
  • Fund raising – NSF ITEST, Foundations and Corporations
  • CSU STEM-NET


Erik Helgren 
CSUEB/Physics 
erik.helgren@csueastbay.edu
**Summary**

- The Solar Suitcase class is an Inquiry-Based Learning curriculum using hands-on lab learning with the purpose of solar education and capacity building. Teaching Goals: Integrate Sustainability and Social Justice

- The Solar Suitcase (developed by WeShare Solar) and our curriculum
  - Middle or High School students as well as University-level students
  - Addresses both solar STEM concepts and energy poverty issues

- Expansion of the program through the Social Impact Solar Program to 6 other CSU campuses as local CC

- Addressing global energy poverty and opportunities for Emergency Preparedness

**STEM with a Social Purpose**

*Erik Helgren*  
CSUEB/Physics  
erik.helgren@csueastbay.edu
California Challenges in STEM Energy Education

Marina Shapiro (PI) – CSUB
Danielle Solano (faculty co-PI)
Jesse Bergkamp (faculty co-PI)

Collaborators: Stephen Waller (Bakersfield College PI), Abbas Ghassemi (UC Merced PI), Chris Butler (UC Merced co-PI, Project Lead)
Project Overview

California Education Learning Lab (CELL) Project

- Three year grant funded by the Learning Lab (California Governors Office)

- Three Hispanic-Serving Institutions located in the Central Valley (San Joaquin Valley):
  - California State University, Bakersfield (CSUB)
  - University of California, Merced (UC Merced)
  - Bakersfield College

- Approximately 60% of the students are PELL grant eligible
- Approximately 70% are first-generation university students

From: https://www.visitcalifornia.com/region/discover-central-valley

Marina Shapiro  
CSU Bakersfield/Department of Chemistry and Biochemistry  
mshapiro1@csub.edu
Project Goals

- Reduce large educational equity gaps in STEM fields that are experienced by Hispanic and other underrepresented minority (URM) students who live in California’s Central Valley

- Population in the San Joaquin Valley: slightly over 4 million and over 50% Hispanic

- Major factors for attrition:
  - perceptions about careers in the STEM fields
  - poor experiences with the academic culture and teaching pedagogy
  - declining confidence due to demanding curriculum
Project Goals

- Students do not have early exposure to real-world applications of their major to give positive insight into potential careers and do not always connect with upper-classmen to see successful peer role models, which research has shown to increase persistence (Zappe et al., 2012; Garcia-Otero & Sheybani, 2012)

Ultimate Project Goal is to impact:

1. student attitudes to learning STEM content
2. student success rates in specific lessons and final passing rates
3. equity gaps in student attitudes and success rates

Activities

• Help URM students better see the connection between their studies and real-world problems

  How?

• Will introduce concepts behind relevant technical problems applied to energy, water, and agriculture (problems relevant to the Central Valley) in General Chemistry (CSUB and BC) and Human Centered Research and Design (UC Merced) via novel approaches

  and

• By increasing student engagement through:
  • active learning, applied learning through a career or workforce approach, and/or contextualized learning methodologies
How Many Solar Panels
To Fuel An Electric Car

CSUB and BC

Flipped Classroom-Enhanced-Process Oriented Guided Inquiry Learning (FC-E- POGIL)

• The CELL project will introduce Energy related concepts and applications to practical technical problems into gateway Chemistry courses via a novel combination of two pedagogies:
  
  • Flipped classroom
  • Process Oriented Guided Inquiry Learning (POGIL)
POGIL

- a constructivist learning process where students work in self-managed teams (Moog & Spencer, 2008)
  - Manager/facilitator
  - Speaker/presenter
  - Reflector/strategy analyst
  - Recorder

- the process and the structure of the teams guarantees active learning and critical thinking from all team members

- As courses progress through POGIL, team members’ roles rotate to allow all students an opportunity to lead, record, and report

From: https://pogil.org/about-pogil/what-is-pogil
Flipped Classroom

• The flipped classroom equalizes opportunity for students, especially students of lower socio-economic status and first generation students as research has shown that underserved student populations demonstrate greater outcomes from participation in HIP (Finley & McNair, 2013).

• Advantaged students have support systems in place to help complete homework and projects with paid tutors and advice from previous generations.

• With the relocation of the homework and projects to inside the classroom, disadvantaged students are brought even in benefit from the added interaction with the professor in class.

From: https://www.washington.edu/teaching/topics/engaging-students-in-learning/flipping-the-classroom/
Activities

UC Merced

Human Centered Research and Design

- Design Focus
- Flipped Classroom
  - E-Learning Design Modules
    - Stakeholder Requirements
    - Evaluation Criteria
    - Specific Development
- Small Group Projects
  - Solar Energy
  - Self Selection
- Workshops
  - Solar Calculations
  - Customer Interactions

Challenge:
Trained STEM workforce from the Central Valley focused on energy

Marina Shapiro
CSU Bakersfield/Department of Chemistry and Biochemistry
mshapiro1@csub.edu
Lessons Learned

- Early start with planning and budget (especially since working with three campuses)

- Allow extra time to develop novel inquiry methodologies, such as POGIL activities for Chemistry at the College level as current POGIL activities that currently exist may not align with course needs for this grant (college level Foundations of General Chemistry and Foundations of Organic Chemistry)

- This grant has a main focus that centers around technological innovation
  - Early start with planning with TLC (Faculty Teaching and Learning Center, Instructional Technologist), and software development company to develop Chemistry/Engineering Augmented Reality (AR) app
Next Steps/Long-Term Plans

- Hire software development company to develop AR app that focuses on the real-world applications (as part of the inquiry learning hands-on activities in class)

- Augmented reality (AR) has gained attention in the educational field for its potential to enhance learning and teaching.

- Antonioli et al. (2014) found that AR can be useful in both bridging gaps and incorporating a more physical approach to learning.

- Bower et al. (2014) found that AR allows students to rescale virtual objects, such as molecules, to better understand the properties and relationships of objects that would either be too small or too large to examine without the use of AR. Furthermore, students are provided a clear representation of spatial concepts and have the opportunity to contextualize the connection between virtual objects and the real-world environment.
Next Steps/Long-Term Plans

• The AR app would allow students to experience a real life setting or go on a virtual field trip that they would be limited to having access to, such as navigating through the inside of a solar cell or internal combustion engine.

• After navigating through the AR app, students will work on their assigned critical thinking POGIL activities, which will align with the content presented during the assigned homework video (flipped classroom) from prior to coming to class, as well as the AR activity.

• The AR activity can continuously be used to help with inquiry while students work to answer the POGIL questions. In addition to the POGIL activities, online homework (Sapling) diagnostic “quizzes” will be used as assessment of students’ presented energy content knowledge, the AR Chemistry app will be able to collect data on the back end.

• This will provide additional assessment data that the other presented methods are limited in terms of their capabilities of providing.
Summary

- CSUB and BC
  - Flipped Classroom enhanced POGIL
  - Focus on gateway Chemistry courses

- UC Merced
  - Develop Human Centered Research and Design course
  - Flipped Classroom
  - Focus on Engineering courses

- Develop Chemistry/Engineering AR app for all three campuses
Inquiry-Based Learning: Hands-On Activities in Mechanics

Brian Self and Jim Widmann – Cal Poly, San Luis Obispo

Collaborators: Lots of students!

Brian Self and Jim Widmann, Professors
Cal Poly, San Luis Obispo, Department of Mechanical Engineering
bself@calpoly.edu, jwidmann@calpoly.edu
If you gently pull on the string..
(a) In which direction does the spool move?
(b) In which direction does the friction force act?
Project Overview

- Use a learning cycle: predict, observe, explain
- Emphasize conceptual understanding
- Use peer instruction and collaborative work
- Let the physical or digital world be the authority
- Evaluate student understanding
- Begin with the specific and move to the general
Activities

• Use “challenges” or physical scenarios to motivate students
• Provide worksheets to guide students along the correct path
Activities

• Still do calculations – and relate to “real world”

Discuss friction force on drive and non-drive wheels

Calculate the friction force on the drive wheel
Activities

• Mass, force, and acceleration

IBL: Hands-on Activities in Mechanics

Brian Self, Jim Widmann
Cal Poly, San Luis Obispo/Mechanical Engineering
bself@calpoly.edu, jwidmann@calpoly.edu
Activities

IBL: Hands-on Activities in Mechanics

Black Metal Pipe
Big metal Solid Cylinder
Grey Metal Pipe
Big PVC pipe
Small metal Solid cylinder
Wood Solid cylinder
Small PVC pipe

Brian Self, Jim Widmann
Cal Poly, San Luis Obispo/Mechanical Engineering
bself@calpoly.edu, jwidmann@calpoly.edu
Results – Helped me learn

This activity helped me learn about dynamics

- Pulley
- Pendulum
- Spool
- Rolling

- Strongly disagree
- Disagree
- Neither agree nor disagree
- Agree
- Strongly agree
Results – Interesting and Motivating

IBL: Hands-on Activities in Mechanics

This activity was interesting and motivating

<table>
<thead>
<tr>
<th></th>
<th>Pulley</th>
<th>Pendulum</th>
<th>Spool</th>
<th>Rolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Strongly disagree
- Disagree
- Neither agree nor disagree
- Agree
- Strongly agree

Brian Self, Jim Widmann
Cal Poly, San Luis Obispo/Mechanical Engineering
bself@calpoly.edu, jwidmann@calpoly.edu
Results – Dynamics Concept Inventory

IBL: Hands-on Activities in Mechanics

Brian Self, Jim Widmann
Cal Poly, San Luis Obispo/Mechanical Engineering
bself@calpoly.edu, jwidmann@calpoly.edu
IBL: Hands-on Activities in Mechanics

Results – Final Exam Scores

<table>
<thead>
<tr>
<th>Prob #1</th>
<th>Prob #2</th>
<th>Prob #3</th>
<th>Prob #4</th>
<th>Prob #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Multi-Step</td>
<td>Trad, RB Kinematics</td>
<td>Trad, RB Kinetics</td>
<td>Concept</td>
<td>RB Multi-Step</td>
</tr>
<tr>
<td>Active</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
</tr>
</tbody>
</table>
Lessons Learned

• Pilot test everything
• Make it a welcoming environment where it is okay to predict incorrectly
• Need more than one scenario so can test new concepts and transfer
• Consider using variation theory when develop your predict-observe-explain cycles
Next Steps/Long-Term Plans

• Develop 3D printed models for dissemination
• Create simulations and/or videos
• Concept Warehouse
  • Thousands of concept questions
  • Expanding into mechanics
• Active Learning Modules (Learning Lab Grant)
Summary

• Increase motivation by providing a physical scenario or challenge
• Focus on conceptual understanding
• Use multiple cycles:
  • Predict – observe – explain
• Let students know it is okay to be “wrong” during these activities

IBL: Hands-on Activities in Mechanics

Brian Self, Jim Widmann  Cal Poly, San Luis Obispo/Mechanical Engineering  bself@calpoly.edu, jwidmann@calpoly.edu
Inquiry-Based Learning: Engaging STEM Faculty in the Teacher Preparation Pathway

Michele Korb and Julia Olkin – CSU East Bay

Michele Korb, Associate Professor, Science Teacher Education, michele.korb@csueastbay.edu
Julia Olkin, Professor, Mathematics, julia.Olkin@csueastbay.edu
Background - NSF Grants

→ Faculty Learning Program (Julia)
  ♦ Program developed by UC Berkeley and Lawrence Hall of Science plus advisory panel
  ♦ CSUEB now working with 4th cohort; every STEM discipline in College of Science involved

→ Aligning the Science Teacher Education Pathway (A-STEP)(Michele)
  ♦ Networked Improvement Community (NIC)- Science educators across CSU system
  ♦ Goals include improving science teacher preparation at various levels and promote enactment of the NGSS

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
STEM Faculty Learning Program

- **Year-long program.** Brings together STEM faculty to learn, support each other in integrating active learning strategies in their courses.
- **Build relationships** and understanding of one another’s teaching and learning contexts.
- **Redesign STEM classes** to apply what you learn and integrate new approaches to teaching.

*Michele Korb, Julia Olkin  
CSUEB/Depts. of Teacher Education, Math  
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu*
2-Day workshop to kick off year

Readings, trying out activities in class, working on activities in modules, learning about student conversations, motivations, learning styles, experts versus novices, stereotype threat, and more.

Seven Modules

Videotaping: protocol for watching each other.

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
Instructor: Backwards Design

Start here

Then, determine indicators to let you know you’re making the right progress?

Finally, select the tools & materials for the journey.

Engaging STEM Faculty in the Teaching Preparation Pathway

Faculty Learning Program: Backwards Design Template

Stage 1 – Identify Desired Results (Goals and Enduring Understandings)

Goals
What relevant goals will this design address (e.g., course objectives, learning outcomes)?

Enduring Understandings:
- What are the big ideas students should understand?
- What are the essential understandings that are based on the big ideas, and give context meaning & connect the facts & skills?
- What misconceptions are prevalent?

Stage 2 – Assessment Evidence

Assessment Tasks:
- Through what tools, which offer multiple opportunities to explain, interpret and apply their thinking, will students demonstrate their understanding (e.g., quizzes, discussions, tests, observations, hands-on, journal)?
- By what criteria will understanding be judged?
- How will students reflect upon and self-assess their understanding?

Stage 3 – Learning Plan & Activities

Learning Activities:
- What learning experiences and instructions will enable students to achieve the desired results?

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math

michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
Engaging STEM Faculty in the Teaching Preparation Pathway

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
Engaging STEM Faculty in the Teaching Preparation Pathway

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu

ABCD Cards for Concept Questions
Jigsaw & Think/Pair/Share

Individual or group whiteboard activities

Dominoes
Flipped Days

Student - More Examples
Engaging STEM Faculty in the Teaching Preparation Pathway

Alliance for Science Educators (ASE)
Networked Improvement Community (NIC)
Next Steps/Long-Term Plans

- **Continued discourse** among communities of practice.
- **Co-created grant opportunities** across the campus and community.
- **Continued outreach** in school districts and among colleagues.

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
Networked Improvement Community

• Collaboration across the NIC promotes discourse related to how we prepare educators for enacting NGSS
• Co-created research questions and methods
• Co-creation of publications and presentations
• Involves communication of best practices (like FLP) and collaboration with science/math faculty

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
As a result of our collaborations across colleges (Science and Education), we have fostered conversations regarding the importance of inquiry-based learning in classes for math and science majors as well as those for teacher preparation.

“The Institute for STEM Education serves as a hotbed of coordinated action.”

Michele Korb, Julia Olkin
CSUEB/Depts. of Teacher Education, Math
michele.korb@csueastbay.edu, julia.olkin@csueastbay.edu
Faculty learning is essential for reshaping the landscape of math/ science learning.

Communication across disciplines and colleges provides for deeper understanding of shifts in teaching and learning paradigms that impact new generations of learners and teachers.
A Guided Inquiry, Physical Science Curriculum for Future Elementary Teachers

Edward Price – CSU San Marcos

nextgenpet.activatelearning.com

Edward Price, Professor
CSU San Marcos, Department of Physics
eprice@csusm.edu
The Importance of Physical Science for Future Elementary Teachers

“Schools often lack teachers who know how to teach science and mathematics effectively, and who know and love their subject well enough to inspire their students.”

- Prepare and Inspire

“science courses for teacher candidates… should mirror the opportunities they will need to provide for their students”.

- Taking Science to School
A Guided Inquiry, Physical Science Curriculum for Future Elementary Teachers

NGSS Physical Science Core Ideas

NGSS Science & Engineering Practices

NGSS Crosscutting Concepts
The main learning goal of Next Gen PET is to engage students in the practices of science and engineering and use of crosscutting concepts so they will come to see that the core disciplinary ideas of science and engineering design emerge from engagement in those practices.
Instructor: Now remember we're gonna keep pushing this. I just wanna make sure you understand the scenario ... you're never gonna release it until it gets to the end of the track.

Rosa: Oh, aren't we?
Next Gen PET Design Principles

A. Learning builds on **prior knowledge**.

B. Learning is a complex process requiring **scaffolding**.

C. Learning is facilitated through interactions with **tools**.

D. Learning is facilitated through interactions with **others**.

E. Learning is facilitated through the establishment of certain specific behavioral practices and expectations.


Ed Price  
CSU San Marcos /Department of Physics  
eprice@csusm.edu
Rich in student conversations, presentations, and artifacts of student learning

Instructors have many opportunities to listen to students’ ideas and reflect on student learning
The Next Gen PET Curricula

Modules

- Developing Models of Magnetism and Static Electricity
- Interactions and Energy (PS3)
- Interactions and Forces (PS2)
- Waves, Sound and Light (PS4)
- Matter and Interactions (PS1)
- Teaching and Learning Physical Science

NGSS Practices

NGSS 4 Core Physical Science Ideas

Connections between learning, teaching and NGSS, embedded in content modules
Next Gen PET curricula

- Studio & lecture versions, plus lab activities
- Engineering Practices are integrated throughout all modules
- Optional Teaching and Learning activities support future teachers

Instructor support

- Extensive online student & instructor resources

Next Gen PET

Ed Price
CSU San Marcos / Department of Physics
eprice@csusm.edu
Faculty Online Learning Community

- Meet every 2 weeks on zoom
- Share ideas, resources, learn, and grow professionally
Significant increases (pre-post) in performance on multiple choice conceptual assessment

- In both lecture and studio formats
- Across all content modules

Significant increases (pre-post) in performance on constructed response content assessment (written explanations)
A Guided Inquiry, Physical Science Curriculum for Future Elementary Teachers

Next Gen PET developers
Fred Goldberg, San Diego State University
Steve Robinson, Tennessee Technological University
Ed Price, CSU San Marcos
Danielle Harlow, UC Santa Barbara
Julie Andrew, University of Colorado at Boulder
Michael McKeen, San Diego State University

NGP FOLC project Team
Edward Price, CSU San Marcos
Fred Goldberg, San Diego State University
Steve Robinson, Tennessee Tech
Chandra Turpen, U. Maryland, College Park
Paula Engelhardt, Tennessee Tech
Melissa Dancy, U. Colorado, Boulder
Adriana Corrales, San Diego State University
Meghan Clemons, Tennessee Tech
Allie Lau, U. Colorado, Boulder

NGP FOLC is supported by NSF DUE-1626496

grants 0717791 and 1044172

Ed Price
CSU San Marcos /Department of Physics
eprice@csusm.edu
Questions & Answers
Speaker Contacts
Topaz Wiscons and Stan Yoshinobu, Sacramento State and Cal Poly San Luis Obispo
styoshin@calpoly.edu, topaz.wiscons@csus.edu

Erik Helgren, Cal State East Bay
erik.helgren@csueastbay.edu

Marina Shapiro, CSU Bakersfield
mshapiro1@csub.edu

Brian Self and Jim Widmann, Cal Poly San Luis Obispo
bself@calpoly.edu, jwidmann@calpoly.edu

Michele Korb and Julia Olkin, Cal State East Bay
michele.korb@csueastbay.edu, Julia.olkin@csueastbay.edu

Edward Price, CSU San Marcos
eprice@csusm.edu

Inquiry-Based Learning (IBL)
Next Steps/Closing Remarks

Dr. Frank A. Gomez
Executive Director, STEM-NET
Office of the Chancellor

https://www2.calstate.edu/impact-of-the-csu/research/stem-net