

Should I Stay or Should I Go? Evaluating the Replacement/ Renovation Clash

2018 CSU FACILITIES MANAGEMENT CONFERENCE

- SUD CANING SUD CANING
- Recognize and use acceptable evaluation tools available for decision-making.
- Analyze the costs and benefits associated with renovation and relocation and be able to use that analysis to present viable options to campus decision-makers.
- Evaluate programming data and understand how to best use that data to make objective choices between renovation and new construction.
- Employ best practices relating to the development and use of surge space during renovation and relocation.

2018 CSU FACILITIES MANAGEMENT CONFERENCE OCTOBER 28-31, 2018 | MONTEREY, CALIFORNIA

Meet & Greet

E

Se H

HALL SAL

Which is the Renovation?

New building – Wichita State University

New building - College of Lake County

Renovated airplane hangar - University of Minnesota

New building - Cal State Long Beach

What is the space efficiency (ASF/GSF) increase for new construction vs renovation?

A. 0-2%

B. 2%-4%

C. 4%-8%

D. 8%-16%

What is the expected cost savings

to gut and renovate a building vs tear down and build new?

- A. 10%
- **B. 25%**
- C. 50%
- D. It depends...

Limiting carbon emissions

How much more C02 is emitted

from a building replacement than a renovation?

A. 50%

B. 100%

C. 500%

D. 800%

Which Clash album contained the song "Should I Stay or Should I Go?"

What is the most critical factor to achieve in your academic renovation / replacement project?

- A. Cost
- **B. Budget**
- **C. Schedule**
- D. Program
- **E. Sustainability**

What is currently the fastest escalating component of a construction project?

A. FF&E

B. Structural

C. Technology

E. MEP

What is most likely trouble in a renovation project?

- A. ADA Compliance
- **B. Hazardous Materials**
- C. As-builts not correct
- **D. Seismic Issues**
- E. Utility Interconnections
- F. All of the above

Match the before and after images.

Which is the Renovation?

New building – Wichita State University

New building - College of Lake County

Renovated airplane hangar - University of Minnesota

New building – Cal State Long Beach

Answer: C

What is the space efficiency (ASF/GSF) increase for new construction vs renovation?

A. 0-2%

B. 2%-4%

C. 4%-8%

D. 8%-16%

Answer: A

What is the expected cost savings

to gut and renovate a building vs tear down and build new?

- A. 10%
- **B. 25%**
- C. 50%
- D. It depends...

Answer: D

Limiting carbon emissions

How much more C02 is emitted

from a building replacement than a renovation?

A. 50%

B. 100%

C. 500%

D. 800%

Answer: D

Which Clash album contained the song "Should I Stay or Should I Go?"

Answer: B

What is the most critical factor to achieve in your academic renovation / replacement project?

A. Cost

B. Budget

C. Schedule

D. Program

E. Sustainability

Answer: D

What is currently the fastest escalating component of a construction project?

A. FF&E

B. Structural

C. Technology

E. MEP

What is most likely trouble in a renovation project?

- A. ADA Compliance
- **B. Hazardous Materials**
- C. As-builts not correct
- **D. Seismic Issues**
- E. Utility Interconnections
- F. All of the above

Match the before and after images.

context

CSU Facilities

 Mid-Century Building Boom: Majority of CSU Campuses were founded 1947-1965

Los Angeles, Sacramento, Long Beach, Fullerton, East Bay, Stanislaus, San Fernando Valley, Sonoma, San Bernardino, Dominguez Hills, and Bakersfield

 Renovation is in Your DNA: Entire campuses repurpose existing facilities Monterey Bay & Channel Islands

Cost Context

- Construction costs at their peak
- Exterior enclosure and structure are escalating fastest
- Renovation may be better return on investment

Average Component Cost

Cost Escalations 2017-2018

CPG THE CAPITAL PROJECTS GROUP

SMITHGROU

Student Success Center

Campus Character

CALIFORNIA STATE UNIVERSITY LONG BEACH

04440888484 044

1.5

ALATA FLERA

1555 115 550

Friendship Wa

1997 1 1 1 5 5 50 0

192200

200

530 54 (Cares

1000

Peterson Hall 2

Ri .

1 1 1 1 1

A New Presence

Orientation

Overcoming Challenges

- 1950s As-Builts
- Lead Abatement
- Concrete Shear Walls
- Surge Space

Accessible

CALIFORNIA STATE UNIVERSITY LONG BEACH

Success tories touch tc +gin

67

Existing Conditions

Abatement

Rigid Floor Plan

Fluid Floor Plan

Progress

Peterson Hall 2

Ri .

1 1 1 1 1

Dynamic & Active

Project

0

c Wall of Fam

a side former will not make a poth on the earth an a load monotonic will not make a pathway. In the sould be more a couple physical pathway, we wait a load be maked deep and the pathway we wait to a substrate the block of the pathway we waith to a substrate of these.

Success Stories touch to begin

PACIFIC MALE MILLION MALAZZA SASSIP

Manual Ma

PACIFIC 800-225-6539

日

USC

Case Study

Shell Space

New Gateway

usc Mark & Mary Stevens Hall

STEVENS HALL

Overcoming Challenges

- Introverted Building
- New Tech, Old Shell

Introverted to Extroverted

New Tec

Inherently Sustainable

Energy Use by Sector

Carbon Emissions

OTHER

BUILDING SYSTEMS

INTERIOR FINISHES

EXTERIOR CLADDING

FOUNDATION & STRUCTURE

Large, Heavy Buildings 60-120 lbs/sf Renovations 10-20 lbs/sf

CARBON EMISSIONS BY BUILDING TYPE AND BUILDING ELEMENT

Embodied Carbon

Renovation activities expend 50-75% less embodied energy than new construction.

c02

CO2 PAYBACK REPLACEMEN

ATELIER 10

Adaptable Building

- Floor-to-Floor Heights
- Structural Capacity
- MEP Infrastructure
- Vertical Circulation
- Systemized Building Façade
- Should Flexibility be Required?

Questions?

