
FOCUS for Mainframe
Creating Reports
Version 7.6

DN1001056.0310

Cactus, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay Software,
Parlay, PC/FOCUS, RStat, TableTalk, Web390, and WebFOCUS are registered trademarks, and Magnify is a trademark
of Information Builders, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher’s intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the
product described.

Copyright © 2010, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual,
or parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

FOCUS

Contents

Preface..23
Documentation Conventions..26

Related Publications..27

Customer Support...27

Information You Should Have...27

User Feedback..28

Information Builders Consulting and Training...29

1. Creating Tabular Reports...31
Requirements for Creating a Report..32

Creating a Report Request...33

Beginning a Report Request...33

Requesting Help When Issuing a Report Request...35

Completing a Report Request...35

Selecting a Report Output Destination...36

Developing Your Report Request..36

Including Display Fields in a Report Request...39

Referring to Fields in a Report Request...40

Referring to an Individual Field..40

Referring to Fields Using Qualified Field Names...41

Referring to All of the Fields in a Segment...43

Displaying a List of Field Names...43

Listing Field Names, Aliases, and Format Information...44

2. Displaying Report Data..45
Using Display Commands in a Request...46

Displaying Individual Values...47

Displaying All Fields...49

Displaying All Fields in a Segment...49

Displaying the Structure and Retrieval Order of a Multi-Path Data Source.....................51

Creating Reports 3

Adding Values...53

Counting Values..55

Counting Segment Instances..56

Expanding Byte Precision for COUNT and LIST...57

Maximum Number of Display Fields Supported in a Request...59

Manipulating Display Fields With Prefix Operators ...60

Prefix Operator Basics...61

Averaging Values of a Field...63

Averaging the Sum of Squared Fields..63

Calculating Maximum and Minimum Field Values...64

Calculating Column and Row Percents...64

Producing a Direct Percent of a Count...66

Aggregating and Listing Unique Values..67

Retrieving First and Last Records..69

Summing and Counting Values...71

Ranking Sort Field Values With RNK..73

Changing the Format of a Report Column..76

Determining the Width of a Report Column..78

3. Viewing and Printing Report Output..81
Displaying Reports in Hot Screen...82

Using PRINTPLUS..83

Accessing Help Information..84

Scrolling a Report..85

Scrolling Forward...85

Scrolling Backward..86

Scrolling Horizontally..86

Scrolling From Fixed Columns (Fencing)...87

Scrolling Report Headings..87

Saving Selected Data...88

Locating Character Strings...88

Repeating Commands..88

Redisplaying Reports...89

Previewing Your Report..90

4 Information Builders

Contents

Displaying BY Fields With Panels..90

Scrolling by Columns of BY Fields...92

The SET COLUMNS Command..93

Displaying Reports in the Panel Facility...93

Printing Reports..94

The OFFLINE Command..94

Printing Reports in Hot Screen..95

Displaying Reports in the Terminal Operator Environment...95

4. Sorting Tabular Reports...97
Sorting Tabular Reports Overview...98

Sorting Rows..99

Displaying All Vertical (BY) Sort Field Values..101

Using Multiple Vertical (BY) Sort Fields..102

Displaying a Row for Data Excluded by a Sort Phrase...103

Sorting Columns...106

Controlling Underlines for ACROSS Objects..108

Using Multiple Horizontal (ACROSS) Sort Fields..110

Collapsing PRINT With ACROSS..111

Manipulating Display Field Values in a Sort Group..113

Creating a Matrix Report..115

Specifying the Sort Order...116

Specifying Your Own Sort Order..119

Ranking Sort Field Values..122

Grouping Numeric Data Into Ranges...124

Grouping Numeric Data Into Tiles..127

Restricting Sort Field Values by Highest/Lowest Rank..133

Sorting and Aggregating Report Columns...135

Restricting the Number of Columns in a Report..137

Hiding Sort Values...138

Sorting With Multiple Display Commands..139

Controlling Formatting of Reports With Multiple Display Commands...........................141

Improving Efficiency With External Sorts..146

Providing an Estimate of Input Records or Report Size for Sorting..............................148

Creating Reports 5

Contents

Mainframe External Sort Utilities and Message Options..149

Aggregation by External Sort (Mainframe Environments Only)....................................153

Changing Retrieval Order With Aggregation ...155

Creating a HOLD File With an External Sort ...155

5. Selecting Records for Your Report..157
Selecting Records Overview...158

Choosing a Filtering Method...158

Selections Based on Individual Values..159

Controlling Record Selection in Multi-path Data Sources...162

Selection Based on Aggregate Values...167

Using Compound Expressions for Record Selection..169

Using Operators in Record Selection Tests..171

Types of Record Selection Tests...174

Range Tests With FROM and TO...175

Range Tests With GE and LE or GT and LT...176

Missing Data Tests..178

Character String Screening With CONTAINS and OMITS..179

Screening on Masked Fields With LIKE and IS..180

Using an Escape Character for LIKE..184

Qualifying Parent Segments Using INCLUDES and EXCLUDES...................................187

Selections Based on Group Key Values...188

Setting Limits on the Number of Records Read..189

Selecting Records Using IF Phrases..190

Reading Selection Values From a File...191

Assigning Screening Conditions to a File...195

Preserving Filters Across Joins..201

VSAM Record Selection Efficiencies..204

Reporting From Files With Alternate Indexes..204

6. Creating Temporary Fields...205
What Is a Temporary Field?..206

Defining a Virtual Field...209

Defining Multiple Virtual Fields..215

Displaying Virtual Fields...216

6 Information Builders

Contents

Clearing a Virtual Field...216

Establishing a Segment Location for a Virtual Field..217

Defining Virtual Fields Using a Multi-Path Data Source..218

Increasing the Speed of Calculations in Virtual Fields...219

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN.................................219

Applying Dynamically Formatted Virtual Fields to Report Columns..............................220

Creating a Calculated Value...224

Using Positional Column Referencing With Calculated Values....................................227

Using ACROSS With Calculated Values..228

Sorting Calculated Values..229

Screening on Calculated Values..229

Assigning Column Reference Numbers..229

Using Column Notation in a Report Request..230

Calculating Trends and Predicting Values With FORECAST..239

FORECAST Processing..241

Using a Simple Moving Average..245

Using Single Exponential Smoothing...248

Using Double Exponential Smoothing..251

Using Triple Exponential Smoothing..252

Using a Linear Regression Equation..254

FORECAST Reporting Techniques..257

Calculating Trends and Predicting Values With Multivariate REGRESS...............................260

Using Text Fields in DEFINE and COMPUTE..263

Creating Temporary Fields Independent of a Master File...264

7. Including Totals and Subtotals..269
Calculating Row and Column Totals..270

Producing Row Totals for Horizontal (ACROSS) Sort Field Values...............................276

Including Section Totals and a Grand Total..278

Including Subtotals..279

Recalculating Values for Subtotal Rows..283

Manipulating Summary Values With Prefix Operators..287

Controlling Summary Line Processing..295

Using Prefix Operators With Calculated Values...302

Creating Reports 7

Contents

Using Multiple SUB-TOTAL or SUMMARIZE Commands With Prefix Operators..............304

Combinations of Summary Commands..306

Producing Summary Columns for Horizontal Sort Fields..313

Performing Calculations at Sort Field Breaks...315

Suppressing Grand Totals..319

Conditionally Displaying Summary Lines and Text..320

8. Using Expressions..323
Using Expressions in Commands and Phrases..324

Types of Expressions...325

Expressions and Field Formats...326

Creating a Numeric Expression...327

Order of Evaluation..330

Creating a Date Expression..331

Formats for Date Values..332

Performing Calculations on Dates...334

Cross-Century Dates With DEFINE and COMPUTE...335

Returned Field Format Selection...335

Using a Date Constant in an Expression..335

Extracting a Date Component...336

Combining Fields With Different Formats in an Expression..336

Creating a Date-Time Expression..337

Specifying a Date-Time Value..337

Manipulating Date-Time Values...342

Creating a Character Expression...344

Embedding a Quotation Mark in a Quote-Delimited Literal String...............................344

Concatenating Character Strings...345

Creating a Variable Length Character Expression...347

Using Concatenation With AnV Fields..347

Using the EDIT Function With AnV Fields..348

Using CONTAINS and OMITS With AnV Fields...348

Using LIKE With AnV Fields...348

Using the EQ, NE, LT, GT, LE, and GE Operators With AnV Fields...............................349

Using the DECODE Function With AnV Fields..350

8 Information Builders

Contents

Using the Assignment Operator With AnV Fields...350

Creating a Logical Expression...351

Creating a Conditional Expression..353

9. Customizing Tabular Reports...357
Producing Headings and Footings...358

Limits for Headings and Footings..359

Report and Page Headings...359

Report and Page Footings..363

Subheads and Subfoots...365

Using Data in Headings and Footings..372

Positioning Text...374

Extending Heading and Footing Code to Multiple Lines...376

Producing a Free-Form Report...380

Creating Paging and Numbering..380

Specifying a Page Break: PAGE-BREAK..381

Inserting Page Numbers: TABPAGENO...382

Controlling Report Page Numbering...383

Suppressing Page Numbers: SET PAGE...387

Preventing an Undesirable Split: NOSPLIT..387

Suppressing Fields: SUP-PRINT or NOPRINT..391

Reducing a Report's Width: FOLD-LINE and OVER..394

Compressing the Columns of Reports: FOLD-LINE..395

Decreasing the Width of a Report: OVER...396

Positioning Columns: IN...398

Separating Sections of a Report: SKIP-LINE and UNDER-LINE...401

Adding Blank Lines: SKIP-LINE..401

Underlining Values: UNDER-LINE...403

Controlling Column Spacing: SET SPACES...405

Creating New Column Titles: AS...406

Customizing Column Names: SET QUALTITLES..408

Column Title Justification...409

Customizing Reports With SET Parameters..410

Conditionally Formatting Reports With the WHEN Clause..411

Creating Reports 9

Contents

Controlling the Display of Empty Reports...419

10. Saving and Reusing Your Report Output...421
Saving Your Report Output...422

Naming and Storing Report Output Files..422

Creating a HOLD File...423

Holding Report Output in FOCUS Format...429

Controlling Attributes in HOLD Master Files...434

Controlling Field Names in a HOLD Master File..435

Controlling Fields in a HOLD Master File..439

Controlling the TITLE and ACCEPT Attributes in the HOLD Master File........................441

Keyed Retrieval From HOLD Files..443

Using DBMS Temporary Tables as HOLD Files...445

Column Names in the HOLD File...448

Primary Keys and Indexes in the HOLD File..449

Creating SAVE and SAVB Files..449

Creating a PCHOLD File...453

Choosing Output File Formats..455

Using Text Fields in Output Files...472

Creating a Delimited Sequential File...473

Saving Report Output in INTERNAL Format..478

Creating a Structured HOLD File...481

11. Styling Reports..491
Introduction to Styled Reports..492

Choosing a Type of Style Sheet..495

Choosing an Output Format..496

Styling Reports With StyleSheets..499

What Is a StyleSheet?..500

What Is a Style?..501

Comparison of Reports With and Without StyleSheets..501

Creating a StyleSheet..503

StyleSheet Syntax..506

Improving FOCUS StyleSheet Readability...507

Adding a Comment to a FOCUS StyleSheet..507

10 Information Builders

Contents

Checking StyleSheet Syntax...508

Creating a Styled Report..508

Styling the Page Layout...509

Selecting Page Size, Orientation, and Color...510

Setting Page Margins...515

Displaying Current Settings: The ? SET STYLE Query..517

Specifying Font Format in a Report...518

Specifying Fonts for Reports...523

Identifying Report Components...525

Identifying an Entire Report, Column, or Row...527

Identifying Data...537

Identifying Totals and Subtotals..542

Identifying a Heading, Footing, Title, or FML Free Text...548

Identifying a Column or Row Title..549

Identifying a Heading or Footing..554

Identifying a Page Number, Underline, or Skipped Line...565

Reusing FOCUS StyleSheet Declarations With Macros..578

Defining a FOCUS StyleSheet Macro...579

Applying a FOCUS StyleSheet Macro...579

FOCUS StyleSheet Attribute Inheritance..581

Conditionally Formatting in a StyleSheet...585

Applying Sequential Conditional Formatting..586

Using Conditional Grid Formatting in a Field...603

12. Cascading Style Sheets...605
What Are Cascading Style Sheets?...606

Benefits of Cascading Style Sheets..606

The Notion of Browser Dependence..607

Types of Cascading Style Sheets..607

Cascading Style Sheets and Precedence Rules...608

Cascading Style Sheet Formatting Statements: Rules and Classes...................................609

Selecting a CSS Rule...609

Naming CSS Classes...610

Inheritance and CSS..610

Creating Reports 11

Contents

Generating an Internal Cascading Style Sheet...612

Selecting a Unit of Measurement..613

Working With External Cascading Style Sheets..614

Applying CSS Styles...614

Using an External CSS - A Graphical Overview..616

Combining CSS Styling With Other Formatting Methods..620

Combining an External CSS With a FOCUS StyleSheet..620

Combining an External CSS With TABLE Language Formatting...................................622

Linking to an External Cascading Style Sheet..622

FAQ About Using External Cascading Style Sheets...625

Troubleshooting Cascading Style Sheets...626

13. Working With Styled Output Formats..629
Working With HTML Reports...630

Preserving Leading and Internal Blanks in Report Output..630

Creating HTML Reports With Absolute Positioning..632

Working With Excel 2000 and Excel 97 Reports...635

Creating Styled Excel 2000 Files...636

National Language Support With EXL2K...638

Displaying Formatted Dates and Numeric Values...639

Controlling Column Width and Wrapping..644

Locking Columns in Excel Report Output..647

Using the Excel 2000 Formula Option ..651

Using the Excel 2000 PIVOT Option ..657

Designating CACHEFIELDS in PivotTables..661

Designating PAGEFIELDS in PivotTables..663

Excel Named Ranges...665

Identifying Null Values in Excel 2000..667

Excel Table of Contents...670

Excel Compound Reports...672

Transferring Excel 2000 Formatted Files Using FTP..684

Creating Styled Excel 97 Files...685

Working With PostScript and PDF Reports...687

Creating Compound PDF or PostScript Reports..689

12 Information Builders

Contents

Adding PostScript Type 1 Fonts for PS and PDF Formats...692

Creating PDF Files for Use With UNIX Systems...699

Displaying An and AnV Fields With Line Breaks..701

14. Advanced StyleSheet Features...705
Positioning a Report Component..706

Arranging Pages and Columns on a Page..717

Determining Column Width...719

Wrapping and Justifying Report Components...722

Controlling Wrapping of Report Data..723

Controlling Wrapping With Alternative Methods..728

Justifying Report Columns..732

Justifying a Heading or Footing...734

Justifying a Column Title..737

Justifying a Label for a Subtotal or Grand Total..740

Aligning Heading and Footing Elements...742

Aligning a Heading or Footing Element in an HTML Report...744

Aligning a Heading or Footing Element Across Columns in an HTML Report................747

Aligning Content in a Multi-Line Heading or Footing...755

Aligning Decimals in a Multi-Line Heading or Footing..760

Combining Column and Line Formatting in Headings and Footings.............................762

Adding Grids and Borders..767

Adding an Image to a Report..773

Linking in a Report..785

Linking to a URL..786

Linking to a JavaScript Function..788

Linking With Conditions..789

Linking From a Graphic Image...791

Specifying a Base URL...793

Specifying a Target Frame..794

Linking Report Pages...796

Working With Mailing Labels and Multi-Pane Pages..801

15. Handling Records With Missing Field Values...807
Irrelevant Report Data...808

Creating Reports 13

Contents

Missing Field Values..809

MISSING Attribute in the Master File...810

MISSING Attribute in a DEFINE or COMPUTE Command..812

Testing for a Segment With a Missing Field Value..815

Preserving Missing Data Values in an Output File...818

Propagating Missing Values to Reformatted Fields in a Request................................820

Handling a Missing Segment Instance..822

Including Missing Instances in Reports With the ALL. Prefix......................................825

Including Missing Instances in Reports With the SET ALL Parameter..........................826

Testing for Missing Instances in FOCUS Data Sources..827

Setting the NODATA Character String..828

16. Joining Data Sources...831
Types of Joins...832

Unique and Non-Unique Joined Structures...835

Recursive Joined Structures...839

How the JOIN Command Works..843

Creating an Equijoin..845

Joining From a Virtual Field to a Real Field Using an Equijoin.....................................855

Data Formats of Shared Fields...859

Joining Fields With Different Numeric Data Types...860

Using a Conditional Join..861

Preserving Virtual Fields During Join Parsing..865

Preserving Virtual Fields Using KEEPDEFINES...865

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN.................................868

Screening Segments With Conditional JOIN Expressions...870

Parsing WHERE Criteria in a Join...870

Displaying Joined Structures..871

Clearing Joined Structures...874

Clearing a Conditional Join...874

17. Merging Data Sources...877
Merging Data ...878

MATCH Processing..881

MATCH Processing With Common High-Order Sort Fields..884

14 Information Builders

Contents

Fine-Tuning MATCH Processing...888

Universal Concatenation..890

Field Name and Format Matching..893

Merging Concatenated Data Sources..895

Using Sort Fields in MATCH Requests...897

Cartesian Product...900

18. Improving Report Processing...903
Rotating a Data Structure for Enhanced Retrieval...904

Optimizing Retrieval Speed for FOCUS Data Sources..907

Automatic Indexed Retrieval...907

Data Retrieval Using TABLEF..910

Preserving the Internal Matrix of Your Last Report..911

Compiling Expressions...912

Compiling Expressions Using the DEFINES Parameter..912

Compiling Expressions Using the COMPUTE Parameter...914

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables).........................916

Overview...917

Sub-Pool Boundaries and Pooling Restrictions...919

Estimating Memory Requirements...922

Memory Requirements...924

Sharing Selection Criteria and Filters Across Requests in a Pool...............................928

Criteria When Pooling Non-Relational Database Requests...928

Criteria When Pooling Relational Database Requests...928

Criteria When Pooling Batch Requests...930

Selecting a Sort Utility..931

Observing the Results of Pooling (TRACEON)..932

Installing the Pooled Tables Option...935

19. Creating Financial Reports With Financial Modeling Language (FML).......937
Reporting With FML...938

Creating Rows From Data..941

Creating Rows From Multiple Records...944

Using the BY Phrase in FML Requests...950

Combining BY and FOR Phrases in an FML Request...951

Creating Reports 15

Contents

Supplying Data Directly in a Request..952

Performing Inter-Row Calculations...953

Referring to Rows in Calculations...955

Referring to Columns in Calculations..958

Referring to Column Numbers in Calculations..959

Referring to Contiguous Columns in Calculations...960

Referring to Column Addresses in Calculations..961

Referring to Relative Column Addresses in Calculations...962

Applying Relative Column Addressing in a RECAP Expression....................................962

Controlling the Creation of Column Reference Numbers..962

Referring to Column Values in Calculations..964

Referring to Cells in Calculations..965

Using Functions in RECAP Calculations...966

Inserting Rows of Free Text..968

Adding a Column to an FML Report...971

Creating a Recursive Model...973

Reporting Dynamically From a Hierarchy..975

Requirements for FML Hierarchies..976

Displaying an FML Hierarchy...978

Consolidating an FML Hierarchy..981

Loading a Hierarchy Manually...988

Customizing a Row Title...990

Formatting an FML Report..992

Indenting Row Titles in an FML Hierarchy...997

Suppressing the Display of Rows..1001

Suppressing Rows With No Data...1002

Saving and Retrieving Intermediate Report Results..1002

Posting Data...1003

Creating HOLD Files From FML Reports...1006

20. Creating a Free-Form Report..1009
Creating a Free-Form Report...1010

Designing a Free-Form Report...1014

Incorporating Text in a Free-Form Report..1014

16 Information Builders

Contents

Incorporating Data Fields in a Free-Form Report...1015

Incorporating Graphic Characters in a Free-Form Report..1015

Laying Out a Free-Form Report..1016

Sorting and Selecting Records in a Free-Form Report..1016

21. Creating Graphs: GRAPH..1017
Introduction..1018

GRAPH vs. TABLE Requests...1018

Running Graph Requests Offline...1025

Controlling the Format..1026

Graphic Devices Supported..1029

Command Syntax..1031

GRAPH vs. TABLE Syntax..1031

Specifying Graph Forms and Contents...1033

Graph Forms...1040

Connected Point Plots..1041

Histograms...1045

Bar Charts..1048

Pie Charts...1053

Scatter Diagrams...1056

Adjusting Graph Elements..1058

The Horizontal Axis: System Defaults..1060

The Vertical Axis: System Defaults..1063

Highlighting Facilities...1065

Special Topics..1066

Plotting Dates...1067

Handling Missing Data...1069

Using Fixed-Axis Scales..1071

Saving Formatted GRAPH Output...1072

Creating Formatted Input for CA-TELLAGRAF...1074

Using the FOCUS ICU Interface...1074

Special Graphics Devices...1075

Medium-Resolution Devices..1075

High-Resolution Devices...1076

Creating Reports 17

Contents

Command and SET Parameter Summary...1078

GRAPH Command..1079

SET Parameters..1081

22. Using SQL to Create Reports...1089
Supported and Unsupported SQL Statements..1090

Using SQL Translator Commands...1093

The SQL SELECT Statement...1095

SQL Joins...1096

SQL CREATE TABLE and INSERT INTO Commands..1099

SQL CREATE VIEW and DROP VIEW Commands..1100

SQL PREPARE, EXECUTE, and COMMIT Commands..1101

Cartesian Product Style Answer Sets...1102

Continental Decimal Notation (CDN)..1102

Specifying Field Names in SQL Requests...1103

SQL UNION, INTERSECT, and EXCEPT Operators..1103

Numeric Constants, Literals, Expressions, and Functions.......................................1104

SQL Translator Support for Date, Time, and Timestamp Fields..1104

Extracting Date-Time Components Using the SQL Translator...................................1106

Index Optimized Retrieval...1109

Optimized Joins...1109

TABLEF Optimization..1110

SQL INSERT, UPDATE, and DELETE Commands...1111

A. Master Files and Diagrams..1113
Creating Sample Data Sources...1114

EMPLOYEE Data Source..1116

EMPLOYEE Master File...1118

EMPLOYEE Structure Diagram..1119

JOBFILE Data Source...1120

JOBFILE Master File...1120

JOBFILE Structure Diagram...1121

EDUCFILE Data Source..1121

EDUCFILE Master File..1122

EDUCFILE Structure Diagram..1122

18 Information Builders

Contents

SALES Data Source...1123

SALES Master File...1123

SALES Structure Diagram...1124

PROD Data Source..1125

PROD Master File..1125

PROD Structure Diagram..1125

CAR Data Source..1126

CAR Master File...1127

CAR Structure Diagram..1128

LEDGER Data Source...1129

LEDGER Master File...1129

LEDGER Structure Diagram...1129

FINANCE Data Source..1130

FINANCE Master File..1130

FINANCE Structure Diagram..1130

REGION Data Source...1131

REGION Master File...1131

REGION Structure Diagram...1131

COURSES Data Source..1132

COURSES Master File..1132

COURSES Structure Diagram..1132

EMPDATA Data Source..1133

EMPDATA Master File...1133

EMPDATA Structure Diagram..1133

EXPERSON Data Source..1134

EXPERSON Master File...1134

EXPERSON Structure Diagram..1135

TRAINING Data Source..1135

TRAINING Master File...1135

TRAINING Structure Diagram..1136

COURSE Data Source..1136

COURSE Master File..1136

COURSE Structure Diagram..1137

JOBHIST Data Source..1137

Creating Reports 19

Contents

JOBHIST Master File..1137

JOBHIST Structure Diagram..1138

JOBLIST Data Source...1138

JOBLIST Master File...1138

JOBLIST Structure Diagram...1139

LOCATOR Data Source...1139

LOCATOR Master File...1139

LOCATOR Structure Diagram...1140

PERSINFO Data Source..1140

PERSINFO Master File..1140

PERSINFO Structure Diagram..1141

SALHIST Data Source..1141

SALHIST Master File..1141

SALHIST Structure Diagram..1141

PAYHIST File...1142

PAYHIST Master File..1142

PAYHIST Structure Diagram..1142

COMASTER File...1143

COMASTER Master File..1144

COMASTER Structure Diagram..1145

VIDEOTRK, MOVIES, and ITEMS Data Sources...1146

VIDEOTRK Master File..1146

VIDEOTRK Structure Diagram..1147

MOVIES Master File...1148

MOVIES Structure Diagram...1148

ITEMS Master File...1149

ITEMS Structure Diagram...1149

VIDEOTR2 Data Source..1150

VIDEOTR2 Master File..1150

VIDEOTR2 Structure Diagram..1151

Gotham Grinds Data Sources...1152

GGDEMOG Master File...1153

GGDEMOG Structure Diagram...1153

GGORDER Master File..1154

20 Information Builders

Contents

GGORDER Structure Diagram..1154

GGPRODS Master File..1155

GGPRODS Structure Diagram..1155

GGSALES Master File...1156

GGSALES Structure Diagram..1156

GGSTORES Master File..1157

GGSTORES Structure Diagram..1157

Century Corp Data Sources..1158

CENTCOMP Master File..1160

CENTCOMP Structure Diagram..1160

CENTFIN Master File..1161

CENTFIN Structure Diagram..1161

CENTHR Master File...1162

CENTHR Structure Diagram..1164

CENTINV Master File..1165

CENTINV Structure Diagram..1165

CENTORD Master File..1166

CENTORD Structure Diagram..1167

CENTQA Master File...1168

CENTQA Structure Diagram...1169

CENTGL Master File...1169

CENTGL Structure Diagram...1170

CENTSYSF Master File...1170

CENTSYSF Structure Diagram...1170

CENTSTMT Master File...1171

CENTSTMT Structure Diagram..1172

B. Error Messages..1173
Accessing Error Files...1174

Displaying Messages...1174

C. Table Syntax Summary..1177
TABLE Syntax Summary...1178

TABLEF Syntax Summary...1180

MATCH Syntax Summary..1181

Creating Reports 21

Contents

FOR Syntax Summary..1182

D. Writing User-Coded Programs to Create HOLD Files.................................1183
Arguments Used in Calls to Programs That Create HOLD Files..1184

Reader Comments...1231

22 Information Builders

Contents

FOCUS

Preface

This documentation describes how to use FOCUS Version 7.6 in the z/VM and z/OS
environments. It is intended for all FOCUS users. This manual is part of the FOCUS
documentation set.

References to z/OS apply to all supported versions of the OS/390, z/OS, and MVS operating
environments. References to z/VM apply to all supported versions of the VM/ESA and z/VM
operating environments.

The documentation set consists of the following components:

The Creating Reports manual describes FOCUS Reporting environments and features.

The Describing Data manual explains how to create the metadata for the data sources
that your FOCUS procedures will access.

The Developing Applications manual describes FOCUS Application Development tools
and environments.

The Maintaining Databases manual describes FOCUS data management facilities and
environments.

The Using Functions manual describes internal functions and user-written subroutines.

The Overview and Operating Environments manual contains an introduction to FOCUS
and FOCUS tools and describes how to use FOCUS in the z/VM and z/OS environments.

How This Manual Is Organized

This manual includes the following chapters:

ContentsChapter/Appendix

Provides an introduction to the TABLE command, a
powerful tool for analyzing data.

Creating Tabular Reports1

Describes ways to retrieve field values from a data
source and display them.

Displaying Report Data2

Creating Reports 23

ContentsChapter/Appendix

Describes the HotScreen facility for viewing report
output.

Viewing and Printing Report
Output

3

Describes how to display report information grouped
in a particular order by sorting.

Sorting Tabular Reports4

Describes how to use and specify selection criteria
to display only the field values that meet your needs.

Selecting Records for Your
Report

5

Describes how to use the DEFINE and COMPUTE
commands to create temporary fields.

Creating Temporary Fields6

Describes how to use subtotals and grand totals to
summarize numeric information and aid in interpreting
detailed information in a report.

Including Totals and
Subtotals

7

Describes how to combine operators, field names,
and constants in an expression to derive new values.

Using Expressions8

Describes how to override the default report formats
to meet your individual presentation needs.

Customizing Tabular
Reports

9

Describes how to save report data to files for reuse
in different respects.

Saving and Reusing Your
Report Output

10

Describes how to visually style your reports with
StyleSheets, used to control report output to be
printed on a PostScript printer.

Styling Reports11

Describes how Cascading Style Sheets (CSS) provide
a standardized method for styling HTML documents.
To use an existing Cascading Style Sheet, you can
link it to your report and, optionally, apply additional
CSS classes to specific report components.

Cascading Style Sheets12

Describes features of and techniques for working with
reports in HTML, PDF, PostScript, Excel 2000, or
Excel 97 format.

Working With Styled Output
Formats

13

Describes advanced StyleSheet features such as
positioning and aligning elements.

Advanced StyleSheet
Features

14

24 Information Builders

ContentsChapter/Appendix

Describes how missing data affects report results
and how to treat and represent it.

Handling Records With
Missing Field Values

15

Describes how to join two or more related data
sources to create a larger integrated data structure
from which you can report.

Joining Data Sources16

Describes how to merge and concatenate two or more
data sources into a new permanent data source.

Merging Data Sources17

Describes methods of increasing data retrieval and
reporting efficiency.

Improving Report Processing18

Describes the Financial Modeling Language (FML)
used to create and present financially oriented data,
using inter-row calculations.

Creating Financial Reports
With Financial Modeling
Language (FML)

19

Describes how to present data in an unrestricted
(non-tabular) format.

Creating a Free-Form Report20

Describes the FOCUS GRAPH facility, which you can
use to display data in graph format instead of tabular
format.

Creating Graphs: GRAPH21

Describes how to use SQL to retrieve and analyze
FOCUS and DBMS data.

Using SQL to Create
Reports

22

Contains Master Files and diagrams of sample data
sources used in the documentation examples.

Master Files and DiagramsA

Describes how to obtain information about error
messages.

Error MessagesB

Summarizes TABLE commands and options.Table Syntax SummaryC

Describes how to write programs that get records
retrieved by FOCUS so you can write them to files in
a custom format.

Writing User-Coded
Programs to Create HOLD
Files

D

Creating Reports 25

Preface

Documentation Conventions
The following table lists and describes the conventions that apply in this manual.

DescriptionConvention

Denotes syntax that you must enter exactly as shown.THIS TYPEFACE

or

this typeface

Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

this typeface

Indicates a default setting.underscore

Represents a placeholder (or variable), a cross-reference, or an
important term. It may also indicate a button, menu item, or
dialog box option you can click or select.

this typeface

Highlights a file name or command.this typeface

Indicates keys that you must press simultaneously.Key + Key

Indicates two or three choices; type one of them, not the braces.{ }

Indicates a group of optional parameters. None are required,
but you may select one of them. Type only the parameter in the
brackets, not the brackets.

[]

Separates mutually exclusive choices in syntax. Type one of
them, not the symbol.

|

Indicates that you can enter a parameter multiple times. Type
only the parameter, not the ellipsis points (...).

...

Indicates that there are (or could be) intervening or additional
commands.

.

.

.

26 Information Builders

Documentation Conventions

Related Publications
To view a current listing of our publications and to place an order, visit our Technical
Documentation Library, http://documentation.informationbuilders.com. You can also contact
the Publications Order Department at (800) 969-4636.

Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or (212) 736-
6130. Customer Support Consultants are available Monday through Friday between 8:00
A.M. and 8:00 P.M. EST to address all your questions. Information Builders consultants can
also give you general guidance regarding product capabilities and documentation. Be prepared
to provide your six-digit site code (xxxx.xx) when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. You can connect to the tracking system and known-
problem database at the Information Builders support center. Registered users can open,
update, and view the status of cases in the tracking system and read descriptions of reported
software issues. New users can register immediately for this service. The technical support
section also provides usage techniques, diagnostic tips, and answers to frequently asked
questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions effectively, be prepared to provide the following
information when you call:

Your six-digit site code (xxxx.xx).

The stored procedure (preferably with line numbers) .

The Master File and Access File.

Run sheet (beginning at login, including call to FOCUS), containing the following
information:

? RELEASE

? FDT

? LET

? LOAD

Creating Reports 27

Preface

http://documentation.informationbuilders.com
http://techsupport.informationbuilders.com

? COMBINE

? JOIN

? DEFINE

? STAT

? SET/? SET GRAPH

? TSO DDNAME or CMS QFI

The exact nature of the problem:

Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

The error message and return code, if applicable.

Is this related to any other problem?

Has the procedure or query ever worked in its present form? Has it been changed recently?
How often does the problem occur?

What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

Is this problem reproducible? If so, how?

Have you tried to reproduce your problem in the simplest form possible? For example, if
you are having problems joining two data sources, have you tried executing a query
containing just the code to access the data source?

Do you have a trace file?

How is the problem affecting your business? Is it halting development or production? Do
you just have questions about functionality or documentation?

User Feedback
In an effort to produce effective documentation, the Documentation Services staff welcomes
your opinions regarding this manual. Please use the Reader Comments form at the end of
this manual to communicate suggestions for improving this publication or to alert us to
corrections. You can also use the Documentation Feedback form on our Web site,
http://documentation.informationbuilders.com/feedback.asp.

Thank you, in advance, for your comments.

28 Information Builders

User Feedback

http://documentation.informationbuilders.com/feedback.asp

Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety of
training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site (http://www.informationbuilders.com) or call (800) 969-INFO to
speak to an Education Representative.

Creating Reports 29

Preface

30 Information Builders

Information Builders Consulting and Training

FOCUS

Creating Tabular Reports1
Topics:

The FOCUS reporting language is a
powerful tool for analyzing and formatting
information. The language is non-
procedural-that is, you only need to think
about what information you want to
present in your report. For the most part,
you can describe the report in any order;
the sequence of commands is not
important.

Requirements for Creating a Report

Creating a Report Request

Developing Your Report Request

Including Display Fields in a Report
Request

The simplest form of report that you can
produce is a tabular report, a report
whose information is arranged vertically
in columns. This is the basic report
format, incorporating the fundamental
reporting concepts and command syntax.
Most of the other report formats build
on these concepts and syntax.

Referring to Fields in a Report Request

Creating Reports 31

Requirements for Creating a Report
To create a report, only two things are required:

Data. You need data from which to report. If the data is protected by an underlying
security system, you may need permission to report from the data source. In addition,
FOCUS must be able to locate the data source.

You can report from many different types of data sources (with variations for different
operating environments), including the following:

Relational data sources, such as DB2, Teradata, and Oracle, and Sybase.

Hierarchical data sources, such as IMS and FOCUS.

Indexed data sources, such as ISAM and VSAM.

Network data sources, such as CA-IDMS.

Sequential data sources, both fixed-format and comma-delimited format.

Multi-dimensional data sources, such as Fusion.

For a complete list, see your Describing Data manual.

A data description. You need a Master File, which describes the data source from which
you are reporting. The Master File is a map of the segments in the data source and all
of the fields in each segment. For some types of data sources, the Master File is
supplemented by an Access File. See the Describing Data manual for information on
Master Files and Access Files.

By looking at the Master File, you can determine what fields are in the data source, what
they are named, and how they are formatted. You can also determine how the segments
in the data source relate to each other. Although you can create a very simple report
without this information, knowing the structure of the data source enables you to generate
creative and sophisticated reports.

You can supplement the information in the Master File by generating a picture of the
data source structure, which shows how the data source segments relate to each other.
Use the following command:

CHECK FILE filename PICTURE RETRIEVE

In the picture, segments are shown in the order in which they are retrieved. Four fields
of each segment are displayed. For details, see Chapter 2, Displaying Report Data.

32 Information Builders

Requirements for Creating a Report

Creating a Report Request

In this section:

Beginning a Report Request

Requesting Help When Issuing a Report Request

Completing a Report Request

Selecting a Report Output Destination

You can use any text editor to create your report request. Using the text editor, you can
create ad hoc reports or create a report and save it as a stored procedure, enabling you to
edit the request at any time. Stored procedures are described in more detail in the Developing
Applications manual.

Beginning a Report Request

How to:

Begin a Report Request

A report request begins with the TABLE FILE command and ends with the END command.
The commands and phrases between the beginning and end of a request define the contents
and format of a report. These parts of the request are optional; you only need to include the
commands and phrases that produce the report functions you want. For example, if you want
your report to be sorted, you need only include a sorting phrase.

How to Begin a Report RequestSyntax:

To begin a report request, use the command

TABLE FILE filename

where:

filename

Specifies a data source for the report.

Creating Reports 33

1. Creating Tabular Reports

Issuing Report RequestsExample:

The following examples produce the same report:

1. TABLE FILE EMPLOYEE PRINT LAST_NAME BY DEPARTMENT
 END

2. TABLE FILE EMPLOYEE
 PRINT LAST_NAME
 BY DEPARTMENT
 END

3. TABLE
 FILE EMPLOYEE
 PRINT
 LAST_NAME BY DEPARTMENT
 END

The output is:

DEPARTMENT LAST_NAME
---------- ---------
MIS SMITH
 JONES
 MCCOY
 BLACKWOOD
 GREENSPAN
 CROSS
PRODUCTION STEVENS
 SMITH
 BANNING
 IRVING
 ROMANS
 MCKNIGHT

Reporting With a Default Data SourceExample:

An alternate way to specify the file name is with the SET FILE command. SET FILE establishes
a default data source for all requests, as described in the Developing Applications manual.
The following sets the EMPLOYEE data source as the default:

SET FILE = EMPLOYEE

TABLE
PRINT CURR_SAL
BY DEPARTMENT
END

This alternative is useful when you wish to enter several report requests against the same
data source. Of course, you can still issue requests against other data sources simply by
specifying the file name in the request instead of relying upon the default name.

34 Information Builders

Creating a Report Request

Requesting Help When Issuing a Report Request
If you issue report requests interactively at the command prompt rather than from a procedure,
online error correction is provided with help text. For example, if you enter

TABLE FI EMPLOYEE

at the command prompt, the following error message displays:

(FOC001) THE NAME OF THE FILE OR THE WORD 'FILE' IS MISSING

Enter your correction at the REPLY prompt. For this example, the correct reply is:

FILE

However, if the information provided by the error message is not sufficient, issue

HELP

or

?

at the REPLY prompt for a more detailed explanation of the error.

Every command you enter is scanned, and a report is generated immediately after you enter
the END or RUN command.

When the value of the MESSAGE parameter is ON (the default value), the number of records
retrieved from the data source and the number of lines displayed in the report displays at
the beginning of each report.

Completing a Report Request
To complete a report request, use the END or RUN command. These commands must be
typed on a line by themselves. To discontinue a report request without executing it, enter
the QUIT command.

If you plan to issue consecutive report requests against different data sources during one
session, use the END command.

You also have the option of using the RUN command to complete a report request. The RUN
command keeps the TABLE facility and the data source active for the duration of the TABLE
session. This is useful since you do not need to repeat the TABLE command to produce
another report using the same data source.

Creating Reports 35

1. Creating Tabular Reports

Selecting a Report Output Destination
Once you generate a report, you still need to display it. The following facilities are available
for displaying your report:

On a screen. The Hot Screen facility enables you to search for report data, save parts
of the report to a file, and customize how your report scrolls on the screen. Unless you
specify otherwise, your reports automatically display on the screen using the Hot Screen
facility.

On paper. When you print your reports on paper, you can control how reports that are
too wide to fit on a single page are arranged on the supplementary pages"repeating
essential columns on each page"so that the context of the data is clear.

Of course, you can easily direct the same report to both the screen and the printer by
switching display modes and using the RETYPE command. Or you can choose not to display
your report at all, and instead store the results as a data source using the HOLD, SAVE, or
SAVB command. For details, see Saving and Reusing Your Report Output on page 421.

Developing Your Report Request
The only requirement for reporting is identifying a data source. Beyond that, the structure
of a report request is very flexible; that is, you only need to include the report elements you
want. For example, you only need to include sorting instructions if you want your report to
be sorted, or selection criteria if you want to report on a subset of your data.

A report request begins with the TABLE FILE command and ends with the END command.
The commands and phrases between the beginning and end of a request define the contents
and format of a report. These parts of the request are optional; you only need to include the
commands and phrases that produce the report functions you want.

The following are the most frequently used options for structuring a report request.

Specifying fields and columns. Each column in your report represents a field. You can
specify which fields you want to display, which fields you want to use to sort the report,
which fields you want to use to select records, and which data source fields you want to
use in creating temporary fields. Therefore, specifying the fields you want in a report is
fundamentally tied to how you want to use those fields in your report.

Displaying data. You can display data in your report by listing all the records for a field
(detailed presentation), or by totaling the records for a field (summary presentation). You
can also perform calculations and other operations on fields, such as finding the highest
value of a field or calculating the average sum of squares of all the values of a field, and
present the results of the operation in your report.

36 Information Builders

Developing Your Report Request

Sorting a report column. Sorting a report enables you to organize a column's
information. FOCUS displays the sort field"the field that controls the sorting order"at the
left of the report if you are sorting vertically or at the top if you are sorting horizontally.
Sort fields are displayed when their values change. You can also choose not to display
sort fields.

You can sort information vertically, down a column, horizontally, across a row; you can
also combine vertical sorting and horizontal sorting to create a simple matrix.

Selecting records. When you generate a report, you may not want to include every
record. Selecting records enables you to define a subset of the data source based on
your criteria and then report on that subset. Your selection criteria can be as simple or
complex as you wish.

Showing subtotals and totals. You can display column and row totals, grand totals,
and section subtotals in your report.

Customizing the presentation. There are two aspects of a successful report: the
information you present, and how it is presented. A report that identifies related groups
of information and draws attention to important facts is more effective than one that
simply shows columns of data. For example, you can:

Give column titles more meaningful names.

Control the display of columns in your report.

Create headings and footings for different levels of the report"including each sort
group, each page, and the entire report, and dynamically control the display of headings
and footings based on conditions you set.

Add fonts, colors, grids, and images in a styled report.

Highlight a group of related information and separate it from other groups by inserting
blank lines, underlines, and page breaks.

Creating temporary fields. When you create a report, you are not limited to the fields
that already exist in the data source. You can create temporary fields, deriving their
values from real data source fields, and include them in your report. For details, see
Creating Temporary Fields on page 205.

Joining data sources. You can join two or more data sources to create a larger integrated
data structure, from which you can report in a single request. For details, see Joining
Data Sources on page 831.

Creating Reports 37

1. Creating Tabular Reports

Storing and reusing the results. You can store your report data as a data source
against which you can make additional queries. This is especially helpful for creating a
subset of your data source and for generating two-step reports. You can also format the
new data source for use by other data processing tools such as spreadsheets and word
processors. For details, see Saving and Reusing Your Report Output on page 421.

You can run the request as an ad hoc query or save it as a procedure. Saving a report request
as a procedure enables you to run or edit it at any time.

Developing a Report RequestExample:

The following report incorporates many customization features, such as renaming column
titles, creating headings and footings for sections of the report, and dynamically controlling
the display of headings and footings.

TABLE FILE EMPLOYEE
HEADING CENTER
"Departmental Salary Report </1"
PRINT CURR_JOBCODE AS 'Job Code'
BY DEPARTMENT AS 'Department'
BY LAST_NAME AS 'Last Name'
BY CURR_SAL AS 'Current,Salary'
ON CURR_SAL SUBFOOT
"<13 *** WARNING: <LAST_NAME 's salary exceeds recommended guidelines."
WHEN CURR_SAL GT 27000;
ON DEPARTMENT SUBFOOT
"<13 Total salary expense for the <DEP dept is: <ST.CURR_SAL"
ON DEPARTMENT SKIP-LINE
END

38 Information Builders

Developing Your Report Request

The output is:

 PAGE 1

 Departmental Salary Report

 Current
 Department Last Name Salary Job Code
 ---------- --------- ------- --------

 MIS BLACKWOOD $21,780.00 B04
 CROSS $27,062.00 A17
 *** WARNING: CROSS 's salary exceeds recommended guidelines.
 GREENSPAN $9,000.00 A07
 JONES $18,480.00 B03
 MCCOY $18,480.00 B02
 SMITH $13,200.00 B14
 Total salary expense for the MIS dept is: $108,002.00

 PRODUCTION BANNING $29,700.00 A17

 *** WARNING: BANNING 's salary exceeds recommended guidelines.
 IRVING $26,862.00 A15
 MCKNIGHT $16,100.00 B02
 ROMANS $21,120.00 B04
 SMITH $9,500.00 A01
 STEVENS $11,000.00 A07
 Total salary expense for the PRODUCTION dept is: $114,282.00

Including Display Fields in a Report Request
The maximum number of display fields you can include in a report request is approximately
1024 (495 for MATCH requests). However, when adding fields to a request, it is important
to be aware that the allowable number of fields includes all named fields, whether printed
or not. These include data source fields, temporary fields (virtual fields and calculated
values), certain internal fields (for example, TABPAGENO), and fields used in headings and
footings. The total does not include sort fields.

This field limit is also affected by the combined length of fields in the request: that is, the
field limit represents the maximum number of fields allowed when each field has the smallest
length possible (A4 ACTUAL). Longer field lengths reduce the total number of printable fields.

When you create a report, the fields specified in the request are stored in a 64K (3956
bytes for MATCH requests) data area. The capacity of the data area is affected by a number
of factors:

Every field is rounded up to a full word boundary (a multiple of 4).

Every field is associated with a four-byte counter field, which affects the total number of
bytes in this data area.

Field prefixes and formatting options impact the available data area.

Creating Reports 39

1. Creating Tabular Reports

If the combined length of the display fields in the data area exceeds the maximum capacity,
an error message displays. To correct the problem, adjust the number or lengths of the
fields in the request. The total length of fields in the report output is limited to 32K.

Referring to Fields in a Report Request

In this section:

Referring to an Individual Field

Referring to Fields Using Qualified Field Names

Referring to All of the Fields in a Segment

Displaying a List of Field Names

Listing Field Names, Aliases, and Format Information

When creating a report, you refer to fields in several parts of the request-for example, in
display commands (PRINT, SUM, etc.), in sort phrases (BY, ACROSS), and in selection criteria
(WHERE, WHERE TOTAL, IF).

Several methods are available for referring to a field. You can:

Refer to individual fields by using the alias specified in the Master File, referring to the
name defined in the Master File, or using the shortest unique truncation of the field name
or alias. For details, see Referring to an Individual Field on page 40.

Refer to fields using qualified field names. For details, see Referring to Fields Using
Qualified Field Names on page 41.

Refer to all fields in a segment using only one field name. For details, see Referring to
All of the Fields in a Segment on page 43.

You can also view a list of all the fields that are included in the currently active data source,
or a specified Master File. For details, see Displaying a List of Field Names on page 43 and
Listing Field Names, Aliases, and Format Information on page 44.

Referring to an Individual Field
You can refer to an individual field in any one of the following ways:

Using the field name defined in the Master File.

Using the alias (the field name's synonym) defined in the Master File.

Using the shortest unique truncation of the field name or the alias. When a truncation
is used, it must be unique; if it is not unique, an error message is displayed.

40 Information Builders

Referring to Fields in a Report Request

Referring to an Individual FieldExample:

In the following requests, DEPARTMENT is the complete field name, DPT is the alias, and
DEP is a unique truncation of DEPARTMENT. All these examples produce the same output.

1. TABLE FILE EMPLOYEE
 PRINT DEPARTMENT
 END

2. TABLE FILE EMPLOYEE
 PRINT DPT
 END

3. TABLE FILE EMPLOYEE
 PRINT DEP
 END

Note: If you use a truncation that is not unique, the following message appears:

(FOC016) THE TRUNCATED FIELDNAME IS NOT UNIQUE : D

Referring to Fields Using Qualified Field Names

How to:

Activate Qualified Field Names

Reference:

Usage Notes for Qualified Field Names

In a request, you can qualify field names with the Master File name and/or the segment
name. Field names are always displayed as column titles in reports, unless a TITLE attribute
or an AS phrase is used to provide an alternative name. For related information, see
Customizing Tabular Reports on page 357.

You may use the file name, segment name, or both as a qualifier for a specified field. This
is useful when structures contain duplicate field names. All referenced field names and
aliases may be qualified.

How to Activate Qualified Field NamesSyntax:

The SET FIELDNAME command enables you to activate qualified field names.

SET FIELDNAME = {NEW|OLD|NOTRUNC}

Creating Reports 41

1. Creating Tabular Reports

where:

NEW

Specifies that 66-character and qualified field names are supported; the maximum length
is 66 characters. NEW is the default value.

OLD

Specifies that 66-character and qualified field names are not supported; the maximum
length is 12 characters. The limit may be different for some types of non-FOCUS data
sources.

NOTRUNC

Supports the 66-character maximum; does not permit unique truncations of field names.

Using a Qualified Field Name to Refer to a FieldExample:

EMPLOYEE.EMPINFO.EMP_ID

Is the fully-qualified name of the field EMP_ID in the EMPINFO segment of the EMPLOYEE
file.

Usage Notes for Qualified Field NamesReference:

? SET displays the current value of FIELDNAME. In addition, a Dialogue Manager variable
called &FOCFIELDNAME is available. &FOCFIELDNAME may have a value of NEW, OLD, or
NOTRUNC.

When the value of FIELDNAME is changed within a session, JOIN and DEFINE commands
are affected as follows:

When you change from a value of OLD to a value of NEW, all JOIN and DEFINE commands
are cleared.

When you change from a value of OLD to NOTRUNC, all JOIN and DEFINE commands are
cleared.

When you change from a value of NEW to OLD, all JOIN and DEFINE commands are
cleared.

When you change from a value of NOTRUNC to OLD, all JOIN and DEFINE commands are
cleared.

All other changes to the FIELDNAME value have no effect on JOIN and DEFINE commands.

For additional information about using qualified field names in report requests, see the
Describing Data manual.

42 Information Builders

Referring to Fields in a Report Request

Referring to All of the Fields in a Segment
If you want to generate a report that displays all of a segment's fields, you can refer to the
complete segment without specifying every field. You only need to specify one field in the
segment-any field will do-prefixed with the SEG. operator.

Referring to All Fields in a SegmentExample:

The segment PRODS01in the GGPRODS Master File contains the PRODUCT_ID,
PRODUCT_DESCRIPTION, VENDOR_CODE, VENDOR_NAME, PACKAGE_TYPE, SIZE, and
UNIT_PRICE fields.

SEGMENT=PRODS01
FIELDNAME = PRODUCT_ID
FIELDNAME = PRODUCT_DESCRIPTION
FIELDNAME = VENDOR_CODE
FIELDNAME = VENDOR_NAME
FIELDNAME = PACKAGE_TYPE
FIELDNAME = SIZE
FIELDNAME = UNIT_PRICE

To write a report that includes data from every field in the segment, you can issue either of
the following requests:

1. TABLE FILE GGPRODS
 PRINT PRODUCT_ID AND PRODUCT_DESCRIPTION AND VENDOR_CODE AND
 VENDOR_NAME AND PACKAGE_TYPE AND SIZE AND UNIT_PRICE
 END

2. TABLE FILE GGPRODS
 PRINT SEG.PRODUCT_ID
 END

Displaying a List of Field Names
If you want to see a list of all the fields that are included in the currently active data source,
you can issue the ?F field name query.

This is useful if you need to refer to a list of field names, or check the spelling of a field
name, without exiting from the request process. It also shows you the entire 66-character
field name. More information on all of the query (?) commands appears in the Developing
Applications manual.

Creating Reports 43

1. Creating Tabular Reports

Listing Field Names, Aliases, and Format Information
The ?FF query displays field name, alias, and format information for a specified Master File,
grouped by segment. Like the ?F query, you may issue ?FF:

From the command line.

When entering a TABLE or GRAPH request online.

If your software supports MODIFY or FSCAN, you can also issue ?FF from these facilities.

Note:

If duplicate field names match a specified string, the display includes the field name
qualified by the segment name with both ?F and ?FF.

Field names longer than 31 characters are truncated in the display, and a caret (>) is
appended in the 32nd position to indicate that the field name is longer than the display.

When issuing a request in the Terminal Operator Environment, the ?F query activates the
Fields window. However, ?FF makes the Output window active.

44 Information Builders

Referring to Fields in a Report Request

FOCUS

Displaying Report Data2
Topics:

Reporting, at the simplest level, retrieves
field values from a data source and
displays those values. There are three
ways to do this:

Using Display Commands in a Request

Displaying Individual Values
List each field value (PRINT and LIST
commands). Adding Values

Counting ValuesAdd all the values and display the
sum (SUM command). Expanding Byte Precision for COUNT

and LISTCount all the values and display the
quantity (COUNT command). Maximum Number of Display Fields

Supported in a Request

Manipulating Display Fields With Prefix
Operators

Changing the Format of a Report
Column

Creating Reports 45

Using Display Commands in a Request

How to:

Use Display Commands in a Request

The four display commands (PRINT, LIST, SUM, and COUNT) are also known as verbs. These
commands are flexible; you can report from several fields using a single command, and
include several different display commands in a single report request.

How to Use Display Commands in a RequestSyntax:

display [THE] [SEG.]fieldname1 [AND] [THE] fieldname2 ...

or

display *

where:

display

Is the PRINT, LIST, SUM, or COUNT command. WRITE and ADD are synonyms of SUM
and can be substituted for it.

SEG.

Displays all fields in a segment (a group of related fields in a Master File). The field
name you specify can be any field in the segment.

fieldname

Is the name of the field to be displayed in the report.

The maximum number of display fields your report can contain is determined by a
combination of factors. For details, see Maximum Number of Display Fields Supported
in a Request on page 59.

The fields appear in the report in the same order in which they are specified in the report
request. For example, the report column for fieldname1 appears first, followed by the
report column for fieldname2.

The field to be displayed is also known as the display field.

AND

Is optional and is used to enhance readability. It can be used between any two field
names, and does not affect the report.

THE

Is optional and is used to enhance readability. It can be used before any field name,
and does not affect the report.

46 Information Builders

Using Display Commands in a Request

*

Applies the display command to every field in the left path of the data source.

Note: The SEG. and * options do not display virtual fields. To print virtual fields, explicitly
reference them in the PRINT statement (PRINT * virtual field name). This is true even if the
virtual field name is a re-defines of a real field.

Displaying Individual Values

In this section:

Displaying All Fields

Displaying All Fields in a Segment

Displaying the Structure and Retrieval Order of a Multi-Path Data Source

The display commands LIST and PRINT list the individual values of the fields you specify in
your report request. LIST numbers the items in the report. PRINT does not number the items.

You can easily display all of the fields in the data source by specifying an asterisk (*) wildcard
instead of a specific field name, as described in Displaying All Fields on page 49.

For all PRINT and LIST requests, the number of records retrieved and the number of lines
displayed are the same. In addition, there is no order to the report rows. The PRINT and
LIST commands display all the values of the selected fields found in the data source in the
order in which they are accessed. The order in which data is displayed may be affected by
the AUTOPATH setting. For more information, see Optimizing Retrieval Speed for FOCUS Data
Sources on page 907, and the documentation on SET parameters in the Developing Applications
manual.

In general, when using PRINT or LIST, the order of the values displayed in the report depends
on whether or not the field is a key field, as described in the Describing Data manual.

Alternatively, you can sort the values using the BY or ACROSS sort phrases. When LIST is
used in a request that includes a sort phrase, the list counter is reset to 1 every time the
value in the outermost sort field changes. For more information on sorting, see Sorting
Tabular Reports on page 97.

PRINT * or PRINT SEG.* prints only the real fields in the Master File. To print virtual fields,
explicitly reference them in the PRINT statement (PRINT * virtual field name). This is true
even if the virtual field name is a re-defines of a real field.

For PRINT and LIST syntax, see How to Use Display Commands in a Request on page 46.

Creating Reports 47

2. Displaying Report Data

Displaying Individual Field ValuesExample:

To display the values of individual fields, use the PRINT command. The following request
displays the values of two fields, LAST_NAME and FIRST_NAME, for all employees.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
END

The following shows the report output.

FIRST_NAME

LAST_NAME

ALFRED
MARY
DIANE
RICHARD
JOHN
JOAN
ANTHONY
JOHN
ROSEMARIE
ROGER
MARY
BARBARA

STEVENS
SMITH
JONES
SMITH
BANNING
IRVING
ROMANS
MCCOY
BLACKWOOD
MCKNIGHT
GREENSPAN
CROSS

Listing RecordsExample:

To number the records in a report, use the LIST command.

TABLE FILE EMPLOYEE
LIST LAST_NAME AND FIRST_NAME
END

The following shows the report output.

FIRST_NAME

ALFRED
MARY
DIANE
RICHARD
JOHN
JOAN
ANTHONY
JOHN
ROSEMARIE
ROGER
MARY
BARBARA

LAST_NAME

STEVENS
SMITH
JONES
SMITH
BANNING
IRVING
ROMANS
MCCOY
BLACKWOOD
MCKNIGHT
GREENSPAN
CROSS

LIST

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

48 Information Builders

Displaying Individual Values

Displaying All Fields
You can easily display all of the fields in the left path of the data source by specifying an
asterisk (*) wildcard instead of a specific field name. For additional information about Master
File structures and segment paths, including left paths and short paths, see the Describing
Data manual.

Displaying All FieldsExample:

The following request produces a report displaying all of the fields in the EDUCFILE data
source.

TABLE FILE EDUCFILE
LIST *
END

The following shows the report output.

LIST COURSE_CODE COURSE_NAME DATE_ATTEND EMP_ID
---- ----------- ----------- ----------- ------
 1 101 FILE DESCRPT & MAINT 83/01/04 212289111
 2 101 FILE DESCRPT & MAINT 82/05/25 117593129
 3 101 FILE DESCRPT & MAINT 82/05/25 071382660
 4 101 FILE DESCRPT & MAINT 81/11/15 451123478
 5 101 FILE DESCRPT & MAINT 81/11/15 112847612
 6 102 BASIC REPORT PREP NON-PROG 82/07/12 326179357
 7 103 BASIC REPORT PREP FOR PROG 83/01/05 212289111
 8 103 BASIC REPORT PREP FOR PROG 82/05/26 117593129
 9 103 BASIC REPORT PREP FOR PROG 81/11/16 112847612
 10 104 FILE DESC & MAINT NON-PROG 82/07/14 326179357
 11 106 TIMESHARING WORKSHOP 82/07/15 326179357
 12 202 WHAT'S NEW IN FOCUS 82/10/28 326179357
 13 301 DECISION SUPPORT WORKSHOP 82/09/03 326179357
 14 107 BASIC REPORT PREP DP MGRS 82/08/02 818692173
 15 302 HOST LANGUAGE INTERFACE 82/10/21 818692173
 16 108 BASIC RPT NON-DP MGRS 82/10/10 315548712
 17 108 BASIC RPT NON-DP MGRS 82/08/24 119265415
 18 201 ADVANCED TECHNIQUES 82/07/26 117593129
 19 203 FOCUS INTERNALS 82/10/28 117593129

Displaying All Fields in a Segment

How to:

Display All Fields in a Segment

You can easily display all fields in a segment by adding the prefix "SEG." to any field in the
desired segment.

Creating Reports 49

2. Displaying Report Data

How to Display All Fields in a SegmentSyntax:

seg.anyfield

where:

anyfield

Is any field that is in the desired segment.

Displaying All Fields in a SegmentExample:

The following request produces a report displaying all of the fields in the segment that
contains the QTY_IN_STOCK field.

TABLE FILE CENTINV
PRINT SEG.QTY_IN_STOCK
BY PRODNAME NOPRINT
END

The following shows the report output.

Product Product Quantity Our
Number: Name: In Stock: Price: Cost:
------- ------- --------- ------ -----
1028 AR2 35MM Camera 8 X 11499 109.00 79.00
1026 AR3 35MM Camera 10 X 12444 129.00 95.00
1006 Combo Player - 4 Hd VCR + DVD 13527 399.00 289.00
1008 DVD Upgrade Unit for Cent. VCR 199 199.00 139.00
1030 QX Portable CD Player 22000 169.00 99.00
1032 R5 Micro Digital Tape Recorder 1990 89.00 69.00
1036 ZC Digital PDA - Standard 33000 299.00 249.00
1034 ZT Digital PDA - Commercial 21000 499.00 349.00
1024 110 VHS-C Camcorder 20 X 4000 349.00 249.00
1022 120 VHS-C Camcorder 40 X 2300 399.00 259.00
1020 150 8MM Camcorder 20 X 5961 319.00 240.00
1004 2 Hd VCR LCD Menu 43068 179.00 129.00
1018 250 8MM Camcorder 40 X 60073 399.00 320.00
1016 330DX Digital Camera 1024K P 12707 279.00 199.00
1014 340SX Digital Camera 65K P 990 249.00 199.00
1012 650DL Digital Camcorder 150 X 2972 899.00 710.00
1010 750SL Digital Camcorder 300 X 10758 999.00 750.00

50 Information Builders

Displaying Individual Values

Displaying the Structure and Retrieval Order of a Multi-Path Data Source
When using display commands, it is important to understand the structure of the data source
and the relationship between segments, since these factors affect your results. You can
use the CHECK command PICTURE option to display a diagram of the data source structure
defined by the Master File.

You can also display the retrieval order of a data source using the CHECK command PICTURE
RETRIEVE option. It should be noted that retrieval is controlled by the minimum referenced
subtree. For more information, see Understanding the Efficiency of the Minimum Referenced
Subtree in the Describing a Group of Fields chapter in the Describing Data manual.

Displaying the Retrieval Order of a Multi-Path Data SourceExample:

To display the retrieval order of the EMPLOYEE data source, which is joined to the JOBFILE
and EDUCFILE data sources, issue the following command:

CHECK FILE EMPLOYEE PICTURE RETRIEVE

The following shows the command output that adds the numbers that display at the top left
of each segment, indicating the retrieval order of the segments. A unique segment such as
FUNDTRAN is treated as a logical addition to the parent segment for retrieval. FUNDTRAN
and SECSEG are unique segments, and are therefore treated as part of their parents.

Creating Reports 51

2. Displaying Report Data

The following shows the retrieval order:

52 Information Builders

Displaying Individual Values

Displaying Fields From a Multi-Path Data SourceExample:

The following request produces a report displaying all of the fields on the left path of the
EMPLOYEE data source.

TABLE FILE EMPLOYEE
PRINT *
END

The following shows a list of the output fields the previous request produces. Due to the
size of the report, only the fields for which all instances will be printed are listed here. In
the report, these fields would be displayed from left to right, starting with EMP_ID.

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
DEPARTMENT
CURR_SAL
CURR_JOBCODE
ED_HRS
BANK_NAME
BANK_CODE
BANK_ACCT
EFFECT_DATE
DAT_INC
PCT_INC
SALARY
JOBCODE
JOBCODE
JOB_DESC
SEC_CLEAR
SKILLS
SKILL_DESC

Each field in this list appears in segments on the left path of the EMPLOYEE data source.
To view the retrieval order structure of the EMPLOYEE data source, see Displaying the Retrieval
Order of a Multi-Path Data Source on page 51.

Tip: In some environments, the following warning is displayed whenever you use PRINT *
with a multi-path data source, to remind you that PRINT * only displays the left path:

(FOC757) WARNING. YOU REQUESTED PRINT * OR COUNT * FOR A MULTI-PATH FILE

Adding Values
SUM, WRITE, and ADD sum the values of a numeric field. The three commands are synonyms;
they can be used interchangeably, and every reference to SUM in this documentation also
refers to WRITE and ADD.

Creating Reports 53

2. Displaying Report Data

When you use SUM, multiple records are read from the data source, but only one summary
line is produced. If you use SUM with a non-numeric field—such as an alphanumeric, text,
or date field—SUM does not add the values; instead, it displays the last value retrieved
from the data source.

For SUM, WRITE, and ADD syntax, see How to Use Display Commands in a Request on page
46.

Adding ValuesExample:

This request adds all the values of the field CURR_SAL:

TABLE FILE EMPLOYEE
SUM CURR_SAL
END

The following shows the output of the request.

NUMBER OF RECORDS IN TABLE= 12 LINES= 1

 CURR_SAL

$222,284.00

The number of lines in the report is less than the number of records from the data source.
It took a total of 12 records to get the results in the report, but only one summary line is
displayed.

Adding Non-Numeric ValuesExample:

This request attempts to add non-numeric fields. Any request for aggregation on non-numeric
data returns the last record retrieved from the data source.

TABLE FILE EMPLOYEE
SUM LAST_NAME AND FIRST_NAME
END

The following shows the output of the request.

FIRST_NAMELAST_NAME

BARBARACROSS

Note that any request for aggregation on all date format fields also returns the last record
retrieved from the data source.

Tip: If you are using the external sorting product DFSORT, you can set the SUMPREFIX
parameter to FST or LST to control the sort order. For details, see Sorting Tabular Reports
on page 97.

54 Information Builders

Adding Values

Counting Values

In this section:

Counting Segment Instances

The COUNT command counts the number of instances that exist for a specified field. The
COUNT command is particularly useful combined with the BY phrase, which is discussed in
Sorting Tabular Reports on page 97.

COUNT counts the instances of data contained in a report, not the data values.

For COUNT syntax, see How to Use Display Commands in a Request on page 46.

By default, a COUNT field is a five-digit integer. You can reformat it using the COMPUTE
command, and change its field length using the SET COUNTWIDTH parameter. For details
about the COMPUTE command, see Creating Temporary Fields on page 205. For information
about SET COUNTWIDTH, see the Developing Applications manual.

When COUNT is used in a request, the word COUNT is appended to the default column title,
unless the column title is changed with an AS phrase.

Counting ValuesExample:

To determine how many employees are in the EMPLOYEE data source, you can count the
instances of EMP_ID, the employee identification number.

TABLE FILE EMPLOYEE
COUNT EMP_ID
END

The following shows the output of the request.

EMP_ID
COUNT

 12

Counting Values With a Sort PhraseExample:

To count the instances of EMP_ID for each department, use this request:

TABLE FILE EMPLOYEE
COUNT EMP_ID
BY DEPARTMENT
END

Creating Reports 55

2. Displaying Report Data

The following shows the output of the request indicating that of the 12 EMP_IDs in the data
source, six are from the MIS department and six are from the PRODUCTION department:

 EMP_ID
DEPARTMENT COUNT
---------- ------
MIS 6
PRODUCTION 6

Counting Instances of DataExample:

The following example counts the instances of data in the LAST_NAME, DEPARTMENT, and
JOBCODE fields in the EMPLOYEE data source.

TABLE FILE EMPLOYEE
COUNT LAST_NAME AND DEPARTMENT AND JOBCODE
END

The following shows the output of the request.

LAST_NAME DEPARTMENT JOBCODE
COUNT COUNT COUNT
--------- ---------- -------
 12 12 19

The EMPLOYEE data source contains data on 12 employees, with one instance for each
LAST_NAME. While there are only two values for DEPARTMENT, there are 12 instances of
the DEPARTMENT field because each employee works for one of the two departments.
Similarly, there are 19 instances of the JOBCODE field because employees can have more
than one job code during their employment.

Counting Segment Instances
You can easily count the instances of the lowest segment in the left path of a data source
by specifying an asterisk (*) wildcard instead of a specific field name. In a single-segment
data source, this effectively counts all instances in the data source.

COUNT * accomplishes this by counting the values of the first field in the segment. Instances
with a missing value in the first field are not counted (when SET MISSING=ON).

Segment instances in short paths are not counted by COUNT *, regardless of the value of
the ALL parameter of the SET command.

For more information about missing values, short paths, and the SET ALL parameter, see
Handling Records With Missing Field Values on page 807.

56 Information Builders

Counting Values

Counting Segments From a Multi-Path Data SourceExample:

The following request counts the number of instances of the SKILLSEG segment of the
EMPLOYEE data source.

TABLE FILE EMPLOYEE
COUNT *
END

The following shows the output of the request.

COUNT *
COUNT

 19

COUNT * counts the number of instances of the SKILLSEG segment, which is the lowest
segment in the left path of the EMPLOYEE data source structure (that is, the EMPLOYEE
data source joined to the JOBFILE and EDUCFILE data sources). You can see a picture of
the path structure in Displaying the Structure and Retrieval Order of a Multi-Path Data Source
on page 51.

Tip: In some environments, the following warning is displayed if you use COUNT * with a
multi-path data source (such as EMPLOYEE in the above example):

(FOC757) WARNING. YOU REQUESTED PRINT * OR COUNT * FOR A MULTI-PATH FILE

Expanding Byte Precision for COUNT and LIST

How to:

Set the Precision for COUNT and LIST

By default, the number of characters that display for counter values retrieved using the
COUNT and LIST commands is five. You can increase the number of characters to nine.

For example, if the number of records retrieved for a field exceeds 99,999 (5 bytes), asterisks
appear in the report to indicate an overflow condition. You can increase the display to allow
as large a count as 999,999,999 (9 bytes) using SET COUNTWIDTH.

Note: You can change the overflow character by issuing the SET OVERFLOWCHAR command.

Creating Reports 57

2. Displaying Report Data

How to Set the Precision for COUNT and LISTSyntax:

SET COUNTWIDTH = {OFF|ON}

where:

OFF

Displays five characters (bytes) for COUNT and LIST counter values. Asterisks are
displayed if the number of records retrieved for a field exceeds five characters. OFF is
the default.

ON

Displays up to nine characters (bytes) for COUNT and LIST counter values. Asterisks are
displayed if the value exceeds nine characters.

Setting Precision for COUNT and LISTExample:

The following example shows the COUNT command with SET COUNTWIDTH = OFF:

TABLE FILE filename
COUNT Fldxx
BY Fldyy
END

Fldxx
COUNTFldyy
*****value

The following example shows the COUNT command with SET COUNTWIDTH = ON:

TABLE FILE filename
COUNT Fldxx
BY Fldyy
END

 Fldxx
COUNTFldyy

999999999value

Note: This feature affects the width of a report when COUNTWIDTH is set to ON. Calculating
the width of a report now requires an additional four display positions for each COUNT or
LIST column.

58 Information Builders

Expanding Byte Precision for COUNT and LIST

Maximum Number of Display Fields Supported in a Request
The maximum number of display fields you can include in a report request is approximately
1024 (495 for MATCH requests). However, when adding fields to a request, it is important
to be aware that the allowable number of fields includes all named fields, whether printed
or not, including data source fields, temporary fields (virtual fields and calculated values),
certain internal fields (for example, TABPAGENO), and fields used in headings and footings.
The total does not include sort fields.

This field limit is also affected by the combined length of fields in the request. The field limit
represents the maximum number of fields allowed when each field has the smallest length
possible (A4 ACTUAL). Longer field lengths reduce the total number of printable fields.

When you create a report, the fields specified in the request are stored in a 32K (3956
bytes for MATCH requests) data area. The capacity of the data area is affected by a number
of factors:

Every field is rounded up to a full word boundary (a multiple of 4).

Every field is associated with a four-byte counter field, which affects the total number of
bytes in this data area.

Field prefixes and formatting options affect the available data area.

If the combined length of the display fields in the data area exceeds the maximum capacity,
an error message displays. To correct the problem, adjust the number or lengths of the
fields in the request.

Creating Reports 59

2. Displaying Report Data

Manipulating Display Fields With Prefix Operators

In this section:

Prefix Operator Basics

Averaging Values of a Field

Averaging the Sum of Squared Fields

Calculating Maximum and Minimum Field Values

Calculating Column and Row Percents

Producing a Direct Percent of a Count

Aggregating and Listing Unique Values

Retrieving First and Last Records

Summing and Counting Values

Ranking Sort Field Values With RNK.

You can use prefix operators to perform calculations directly on the values of fields.

Note: Unless you change a column or ACROSS title with an AS phrase, the prefix operator
is automatically added to the title. Without an AS phrase, the column title is constructed
using the prefix operator and either the field name or the TITLE attribute in the Master File
(if there is one):

If there is no TITLE attribute, the field name is used.

If there is a TITLE attribute in the Master File, the choice between using the field name
or the TITLE attribute depends on the value of the TITLES parameter:

If SET TITLES = ON, the TITLE attribute is used.

If SET TITLES = OFF or NOPREFIX, the field name is used.

For a list of prefix operators and their functions, see Functions You Can Perform With Prefix
Operators on page 62.

60 Information Builders

Manipulating Display Fields With Prefix Operators

Prefix Operator Basics

How to:

Use Prefix Operators

Reference:

Usage Notes for Prefix Operators

Functions You Can Perform With Prefix Operators

This topic describes basic syntax and notes for using prefix operators.

How to Use Prefix OperatorsSyntax:

Each prefix operator is applied to a single field, and affects only that field.

{SUM|COUNT} prefix.fieldname AS 'coltitle'

{PRINT|COMPUTE} RNK.byfield

where:

prefix

Is any prefix operator.

fieldname

Is the name of the field to be displayed in the report.

'coltitle'

Is the column title for the report column, enclosed in single quotation marks.

byfield

Is the name of a vertical sort field to be ranked in the report.

Usage Notes for Prefix OperatorsReference:

Because PRINT and LIST display individual field values, not an aggregate value, they are
not used with prefix operators, except TOT.

To sort by the results of a prefix command, use the phrase BY TOTAL to aggregate and
sort numeric columns simultaneously. For details, see Sorting Tabular Reports on page
97.

The WITHIN phrase is very useful when using prefixes.

You can use the results of prefix operators in COMPUTE commands.

Creating Reports 61

2. Displaying Report Data

With the exception of CNT. and PCT.CNT., resulting values have the same format as the
field against which the prefix operation was performed.

Text fields can only be used with the FST., LST., and CNT. prefix operators.

Functions You Can Perform With Prefix OperatorsReference:

The following table lists prefix operators and describes the function of each.

FunctionPrefix

Computes the average sum of squares for standard deviation in statistical
analysis.

ASQ.

Computes the average value of the field.AVE.

Counts the number of occurrences of the field. The data type of the result
is always Integer.

CNT.

Counts the number of distinct values within a field.CNT.DST.

Produces a cumulative total of the specified field. This operator only applies
when used in subfootings.

CT.

Determines the total number of distinct values in a single pass of a data
source.

DST.

Generates the first physical instance of the field. Can be used with numeric
or text fields.

FST.

Generates the last physical instance of the field. Can be used with numeric
or text fields.

LST.

Generates the maximum value of the field.MAX.

Generates the minimum value of the field.MIN.

Computes a field percentage based on the total values for the field. The
PCT operator can be used with detail as well as summary fields.

PCT.

Computes a field percentage based on the number of instances found. The
format of the result is always F6.2 and cannot be reformatted.

PCT.CNT.

Ranks the instances of a BY sort field in the request. Can be used in PRINT
commands, COMPUTE commands, and IF or WHERE TOTAL tests.

RNK.

62 Information Builders

Manipulating Display Fields With Prefix Operators

FunctionPrefix

Computes a field percentage based on the total values for the field across
a row.

RPCT.

Produces a subtotal value of the specified field at a sort break in the report.
This operator only applies when used in subfootings.

ST.

Sums the field values.SUM.

Totals the field values for use in a heading (includes footings, subheads,
and subfoots).

TOT.

Averaging Values of a Field
The AVE. prefix computes the average value of a particular field. The computation is performed
at the lowest sort level of the display command. It is computed as the sum of the field values
within a sort group divided by the number of records in that sort group. If the request does
not include a sort phrase, AVE. calculates the average for the entire report.

Averaging Values of a FieldExample:

This request calculates the average number of education hours spent in each department.

TABLE FILE EMPLOYEE
SUM AVE.ED_HRS BY DEPARTMENT
END

The following shows the output of the request.

 AVE
DEPARTMENT ED_HRS
---------- ------
MIS 38.50
PRODUCTION 20.00

Averaging the Sum of Squared Fields
The ASQ. prefix computes the average sum of squares, which is a component of the standard
deviation in statistical analysis (shown as a formula in the following image).

Creating Reports 63

2. Displaying Report Data

If the field format is integer and you get a large set of numbers, the ASQ. result may be
negative as a result of field overflow.

Averaging the Sum of Squared FieldsExample:

This request calculates the sum and the sum of squared fields for the DELIVER_AMT field.

TABLE FILE SALES
SUM DELIVER_AMT AND ASQ.DELIVER_AMT
BY CITY
END

The following shows the output of the request.

 ASQ
CITY DELIVER_AMT DELIVER_AMT
---- ----------- -----------
NEW YORK 300 980
NEWARK 60 900
STAMFORD 430 3637
UNIONDALE 80 1600

Calculating Maximum and Minimum Field Values
The prefixes MAX. and MIN. produce the maximum and minimum values, respectively, within
a sort group. If the request does not include a sort phrase, MAX. and MIN. produce the
maximum and minimum values for the entire report.

Calculating Maximum and Minimum Field ValuesExample:

This report request calculates the maximum and minimum values of SALARY.

TABLE FILE EMPLOYEE
SUM MAX.SALARY AND MIN.SALARY
END

The following shows the output of the request.

 MAX MIN
 SALARY SALARY
 ------ ------
$29,700.00 $8,650.00

Calculating Column and Row Percents
For each individual value in a column, PCT. calculates what percentage that field makes up
of the column total value. You can control how values are distributed down the column by
sorting the column using the BY phrase. The new column of percentages has the same
format as the original field.

64 Information Builders

Manipulating Display Fields With Prefix Operators

You can also determine percentages for row values. For each individual value in a row that
has been sorted using the ACROSS phrase, the RPCT. operator calculates what percentage
it makes up for the total value of the row. The percentage values have the same format as
the original field.

Calculating Column PercentsExample:

To calculate each employee share of education hours, issue the following request:

TABLE FILE EMPLOYEE
SUM ED_HRS PCT.ED_HRS BY LAST_NAME
ON TABLE COLUMN-TOTAL
END

The output is:

 PCT
LAST_NAME ED_HRS ED_HRS
--------- ------ ------
BANNING .00 .00
BLACKWOOD 75.00 21.37
CROSS 45.00 12.82
GREENSPAN 25.00 7.12
IRVING 30.00 8.55
JONES 50.00 14.25
MCCOY .00 .00
MCKNIGHT 50.00 14.25
ROMANS 5.00 1.42
SMITH 46.00 13.11
STEVENS 25.00 7.12

TOTAL 351.00 100.00

Since PCT. and RPCT. take the same format as the field, the column may not always total
exactly 100 because of the nature of floating-point arithmetic.

Calculating Row PercentsExample:

The following request calculates the total units sold for each product (UNIT_SOLD column),
and the percentage that total makes up in relation to the sum of all products sold
(RPCT.UNIT_SOLD column) in each city.

TABLE FILE SALES
SUM UNIT_SOLD RPCT.UNIT_SOLD
BY PROD_CODE
ACROSS CITY
END

Creating Reports 65

2. Displaying Report Data

Because the full report is too wide to display, a representative portion of the output is shown
here:

 CITY
 NEW YORK NEWARK STAMFORD
 RPCT RPCT RPCT
PROD_CODE UNIT_SOLD UNIT_SOLD UNIT_SOLD UNIT_SOLD UNIT_SOLD UNIT_SOLD
--
B10 30 29 13 12 60 58
B12 . . 29 42 40 57
B17 20 40 . . 29 59
B20 15 37
C13 25 100
C17 12 100
C7 45 52
D12 20 42 . . 27 57
E1 30 100
E2 80 100
E3 35 33 . . 70 66

Because UNIT_SOLD has an integer format, the columns created by RPCT. also have integer
(I) formats. Therefore, individual percentages may be truncated and the total percentage
may be less than 100%. If you require precise totals, redefine the field with a format that
declares decimal places (D, F).

Producing a Direct Percent of a Count
When counting occurrences in a file, a common reporting need is determining the relative
percentages of each row’s count within the total number of instances. You can do this, for
columns only, with the following syntax:

PCT.CNT.fieldname

The format is a decimal value of six digits with two decimal places (F6.2).

Producing a Direct Percent of a CountExample:

This request illustrates the relative percentage of the values in the EMP_ID field for each
department.

TABLE FILE EMPLOYEE
SUM PCT.CNT.EMP_ID
BY DEPARTMENT
END

The output is:

PCT.CNT
 EMP_ID

DEPARTMENT

 50.00MIS
 50.00PRODUCTION

66 Information Builders

Manipulating Display Fields With Prefix Operators

Aggregating and Listing Unique Values

How to:

Use the Distinct Operator

Reference:

Distinct Operator Limitations

The distinct prefix operator (DST.) may be used to aggregate and list unique values of any
data source field. Similar in function to the SQL COUNT, SUM, and AVG(DISTINCT col) column
functions, it permits you to determine the total number of distinct values in a single pass
of the data source.

The DST. operator can be used with the SUM, PRINT or COUNT commands, and also in
conjunction with the aggregate prefix operators SUM., CNT., and AVE.

How to Use the Distinct OperatorSyntax:

command DST.fieldname

or

SUM [operator].DST.fieldname

where:

command

Is SUM, PRINT, or COUNT.

DST.

Indicates the distinct operator.

fieldname

Indicates the display-field object or field name.

operator

Indicates SUM., CNT., or AVE.

Using the Distinct OperatorExample:

The procedure requesting a count of unique ED_HRS values is either:

TABLE FILE EMPLOYEE
SUM CNT.DST.ED_HRS
END

Creating Reports 67

2. Displaying Report Data

or

TABLE FILE EMPLOYEE
COUNT DST.ED_HRS
END

The output is:

COUNT
DISTINCT
ED_HRS

 9

Notice that the count excludes the second records for values 50.00, 25.00, and .0, resulting
in nine unique ED_HRS values.

When used with PRINT, DST. acts in the same manner as a BY phrase. It can be attached
to several PRINT display fields, but not more than 31 (the current limit for BY sort fields with
PRINT).

DST. display fields must precede all non-distinct display fields named by the PRINT command.
If this rule is not observed, the following error is displayed:

(FOC1855) DISTINCT FIELDS MUST PRECEDE THE NONDISTINCT ONES

Distinct Operator LimitationsReference:

If you reformat a column created using COUNT DST. or the CNT.DST operator, you must
reformat it to an integer (I) data type. If you specify another data type, the following error
occurs:

(FOC950) INVALID REFORMAT OPTION WITH COUNT OR CNT.

The following error occurs if you use the prefix operators CNT., SUM., and AVE. with any
other display command:

(FOC1853) CNT/SUM/AVE.DST CAN ONLY BE USED WITH AGGREGATION VERBS

The following error occurs if you use DST. in a MATCH or TABLEF command:

(FOC1854) THE DST OPERATOR IS ONLY SUPPORTED IN TABLE REQUESTS

The following error occurs if you code more than one DST. operator for the SUM command:

(FOC1856) ONLY ONE DISTINCT FIELD IS ALLOWED IN AGGREGATION

The following error occurs if you reformat a BY field (when used with the PRINT command,
the DST.fieldname becomes a BY field):

(FOC1862) REFORMAT DST.FIELD IS NOT SUPPORTED WITH PRINT

68 Information Builders

Manipulating Display Fields With Prefix Operators

The following error occurs if you use the DST. operator in an ACROSS or FOR phrase:

(FOC1864) THE DST OPERATOR IS NOT SUPPORTED FOR ACROSS OR FOR

The following error occurs if you use a multi-verb request, SUM DST.fieldname BY field
PRINT fld BY fld (a verb object operator used with the SUM command must be at the
lowest level of aggregation):

(FOC1867) DST OPERATOR MUST BE AT THE LOWEST LEVEL OF AGGREGATION

The DST. operator may not be used as part of a HEADING or a FOOTING.

TABLE requests that contain the DST. operator are not candidates for AUTOTABLEF.

Retrieving First and Last Records
FST. is a prefix that displays the first retrieved record selected for a given field. LST. displays
the last retrieved record selected for a given field.

When using the FST. and LST. prefix operators, it is important to understand how your data
source is structured.

If the record is in a segment with values organized from lowest to highest (segment type
S1), the first logical record that the FST. prefix operator retrieves is the lowest value in
the set of values. The LST. prefix operator would, therefore, retrieve the highest value in
the set of values.

If the record is in a segment with values organized from highest to lowest (segment type
SH1), the first logical record that the FST. prefix operator retrieves is the highest value
in the set of values. The LST. prefix operator would, therefore, retrieve the lowest value
in the set of values.

For more information on segment types and file design, see the Describing Data manual.
If you wish to reorganize the data in the data source or restructure the data source while
reporting, see Improving Report Processing on page 903.

Retrieving the First RecordExample:

The following request retrieves the first logical record in the EMP_ID field:

TABLE FILE EMPLOYEE
SUM FST.EMP_ID
END

The output is:

FST
EMP_ID

071382660

Creating Reports 69

2. Displaying Report Data

Segment Types and Retrieving RecordsExample:

The EMPLOYEE data source contains the DEDUCT segment, which orders the fields
DED_CODE and DED_AMT from lowest value to highest value (segment type of S1). The
DED_CODE field indicates the type of deduction, such as CITY, STATE, FED, and FICA. The
following request retrieves the first logical record for DED_CODE for each employee:

TABLE FILE EMPLOYEE
SUM FST.DED_CODE
BY EMP_ID
END

The output is:

 FST
EMP_ID DED_CODE
------ --------
071382660 CITY
112847612 CITY
117593129 CITY
119265415 CITY
119329144 CITY
123764317 CITY
126724188 CITY
219984371 CITY
326179357 CITY
451123478 CITY
543729165 CITY
818692173 CITY

Note, however, the command SUM LST.DED_CODE would have retrieved the last logical
record for DED_CODE for each employee.

If the record is in a segment with values organized from highest to lowest (segment type
SH1), the first logical record that the FST. prefix operator retrieves is the highest value in
the set of values. The LST. prefix operator would therefore retrieve the lowest value in the
set of values.

For example, the EMPLOYEE data source contains the PAYINFO segment, which orders the
fields JOBCODE, SALARY, PCT_INC, and DAT_INC from highest value to lowest value (segment
type SH1). The following request retrieves the first logical record for SALARY for each
employee:

TABLEF FILE EMPLOYEE
SUM FST.SALARY
BY EMP_ID
END

70 Information Builders

Manipulating Display Fields With Prefix Operators

The output is:

 FST
EMP_ID SALARY
------ ------
071382660 $11,000.00
112847612 $13,200.00
117593129 $18,480.00
119265415 $9,500.00
119329144 $29,700.00
123764317 $26,862.00
126724188 $21,120.00
219984371 $18,480.00
326179357 $21,780.00
451123478 $16,100.00
543729165 $9,000.00
818692173 $27,062.00

However, the command SUM LST.SALARY would have retrieved the last logical record for
SALARY for each employee.

Summing and Counting Values
You can count occurrences and summarize values with one display command using the
prefix operators CNT., SUM., and TOT. Just like the COUNT command, CNT. counts the
occurrences of the field it prefixes. Just like the SUM command, SUM. sums the values of
the field it prefixes. TOT. sums the values of the field it prefixes when used in a heading
(including footings, subheads, and subfoots).

Counting Values With CNTExample:

The following request counts the occurrences of PRODUCT_ID, and sums the value of
UNIT_PRICE.

TABLE FILE GGPRODS
SUM CNT.PRODUCT_ID AND UNIT_PRICE
END

The output is:

Product
Code Unit
COUNT Price
------- -----
 10 660.00

Creating Reports 71

2. Displaying Report Data

Summing Values With SUMExample:

The following request counts the occurrences of PRODUCT_ID, and sums the value of
UNIT_PRICE.

TABLE FILE GGPRODS
COUNT PRODUCT_ID AND SUM.UNIT_PRICE
END

The output is:

Product
Code Unit
COUNT Price
------- -----
 10 660.00

Summing Values With TOTExample:

The following request uses the TOT prefix operator to show the total of current salaries for
all employees.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY DEPARTMENT
ON TABLE SUBFOOT
"Total salaries equal: <TOT.CURR_SAL"
END

The output is:

DEPARTMENT LAST_NAME
---------- ---------
MIS SMITH
 JONES
 MCCOY
 BLACKWOOD
 GREENSPAN
 CROSS
PRODUCTION STEVENS
 SMITH
 BANNING
 IRVING
 ROMANS
 MCKNIGHT
Total salaries equal: $222,284.00

72 Information Builders

Manipulating Display Fields With Prefix Operators

Ranking Sort Field Values With RNK.

How to:

Calculate Ranks Using the RNK. Prefix Operator

RANKED BY fieldname, when used in a sort phrase in a TABLE request, not only sorts the
data by the specified field, but assigns a RANK value to the instances. The RNK. prefix
operator also calculates the rank while allowing the RANK value to be printed anywhere on
the page. You use this operator by specifying RNK.fieldname, where fieldname is a BY field
in the request.

The ranking process occurs after selecting and sorting records. Therefore, the RNK. operator
cannot be used in a WHERE or IF selection test or in a virtual (DEFINE) field. However,
RNK.fieldname can be used in a WHERE TOTAL or IF TOTAL test or in a calculated (COMPUTE)
value. You can change the default column title for the rank field using an AS phrase.

You can apply the RNK. operator to multiple sort fields, in which case the rank for each BY
field is calculated within its higher level BY field.

How to Calculate Ranks Using the RNK. Prefix OperatorSyntax:

In a PRINT command, COMPUTE expression, or IF/WHERE TOTAL expression :

RNK.field ...

where:

field

Is a vertical (BY) sort field in the request.

Creating Reports 73

2. Displaying Report Data

Ranking Within Sort GroupsExample:

The following request ranks years of service within department and ranks salary within years
of service and department. Note that years of service depends on the value of TODAY. The
output for this example was valid when run in September, 2006:

DEFINE FILE EMPDATA
 TODAY/YYMD = &YYMD;
 YRS_SERVICE/I9 = DATEDIF(HIREDATE,TODAY,'Y');
END
TABLE FILE EMPDATA
PRINT SALARY
 RNK.YRS_SERVICE AS 'RANKING,BY,SERVICE'
 RNK.SALARY AS 'SALARY,RANK'
 BY DEPT
 BY HIGHEST YRS_SERVICE
 BY HIGHEST SALARY NOPRINT
WHERE DEPT EQ 'MARKETING' OR 'SALES'
ON TABLE SET PAGE NOPAGE
END

The output is:

 RANKING
 BY SALARY
DEPT YRS_SERVICE SALARY SERVICE RANK
---- ----------- ------ ------- ------
MARKETING 17 $55,500.00 1 1
 $55,500.00 1 1
 16 $62,500.00 2 1
 $62,500.00 2 1
 $62,500.00 2 1
 $58,800.00 2 2
 $52,000.00 2 3
 $35,200.00 2 4
 $32,300.00 2 5
 15 $50,500.00 3 1
 $43,400.00 3 2
SALES 17 $115,000.00 1 1
 $54,100.00 1 2
 16 $70,000.00 2 1
 $43,000.00 2 2
 15 $43,600.00 3 1
 $39,000.00 3 2
 15 $30,500.00 3 3

74 Information Builders

Manipulating Display Fields With Prefix Operators

Using RNK. in a WHERE TOTAL TestExample:

The following request displays only those rows in the highest two salary ranks within the
years of service category. Note that years of service depends on the value of TODAY. The
output for this example was valid when run in September, 2006:

DEFINE FILE EMPDATA
 TODAY/YYMD = &YYMD;
 YRS_SERVICE/I9 = DATEDIF(HIREDATE,TODAY,'Y');
END
TABLE FILE EMPDATA
PRINT LASTNAME FIRSTNAME RNK.SALARY
BY HIGHEST YRS_SERVICE BY HIGHEST SALARY
WHERE TOTAL RNK.SALARY LE 2
END

The output is:

 RANK
YRS_SERVICE SALARY LASTNAME FIRSTNAME SALARY
----------- ------ -------- --------- ------
 17 $115,000.00 LASTRA KAREN 1
 $80,500.00 NOZAWA JIM 2
 16 $83,000.00 SANCHEZ EVELYN 1
 $70,000.00 CASSANOVA LOIS 2
 15 $62,500.00 HIRSCHMAN ROSE 1
 WANG JOHN 1
 $50,500.00 LEWIS CASSANDRA 2

Using RNK. in a COMPUTE CommandExample:

The following request sets a flag to Y for records in which the salary rank within department
is less than or equal to 5 and the rank of years of service within salary and department is
less than or equal to 6. Otherwise, the flag has the value N. Note that the years of service
depends on the value of TODAY. The output for this example was valid when run in September,
2006:

DEFINE FILE EMPDATA
 TODAY/YYMD = &YYMD;
 YRS_SERVICE/I9 = DATEDIF(HIREDATE,TODAY,'Y');
END
PRINT RNK.SALARY RNK.YRS_SERVICE
COMPUTE FLAG/A1 = IF RNK.SALARY LE 5 AND RNK.YRS_SERVICE LE 6
 THEN 'Y' ELSE 'N';
BY DEPT BY SALARY BY YRS_SERVICE
WHERE DEPT EQ 'MARKETING' OR 'SALES'
ON TABLE SET PAGE NOPAGE
END

Creating Reports 75

2. Displaying Report Data

The output is:

 RANK RANK
DEPT SALARY YRS_SERVICE SALARY YRS_SERVICE FLAG
---- ------ ----------- ------ ----------- ----
MARKETING $32,300.00 16 1 1 Y
 $35,200.00 16 2 1 Y
 $43,400.00 15 3 1 Y
 $50,500.00 15 4 1 Y
 $52,000.00 16 5 1 Y
 $55,500.00 17 6 1 N
 6 1 N
 $58,800.00 16 7 1 N
 $62,500.00 16 8 1 N
 8 1 N
 8 1 N
SALES $30,500.00 15 1 1 Y
 $39,000.00 15 2 1 Y
 $43,000.00 16 3 1 Y
 $43,600.00 15 4 1 Y
 $54,100.00 17 5 1 Y
 $70,000.00 16 6 1 N
 $115,000.00 17 7 1 N

Changing the Format of a Report Column

In this section:

Determining the Width of a Report Column

Reference:

Usage Notes for Changing Column Format

A field's format is defined in the Master File. You can, however, change the format of a
report column. Column titles in a report can be left justified, right justified, or centered. By
default, column titles for alphanumeric fields are left justified, and column titles for numeric
and date fields are right justified.

For details, see Customizing Tabular Reports on page 357.

Changing a Column's FormatExample:

The UNIT_PRICE field has a format of D7.2 as defined in the GGPRODS Master File. To add
a floating dollar sign to the display, the field format can be redefined as follows:

TABLE FILE GGPRODS
PRINT UNIT_PRICE/D7.2M
END

76 Information Builders

Changing the Format of a Report Column

The output is:

 Unit
 Price

 $58.00
 $81.00
 $76.00
 $13.00
 $17.00
 $28.00
 $26.00
 $96.00
$125.00
$140.00

Using Multiple Format SpecificationsExample:

The following request illustrates column title justification with a format specification, a BY
field specification, and an AS phrase specification:

TABLE FILE CAR
PRINT MODEL/A10 STANDARD/A15/R AS 'RJUST,STANDARD' BY CAR/C
WHERE CAR EQ 'JAGUAR' OR 'TOYOTA'
END

The output is:

 RJUST
 CAR MODEL STANDARD
---------------- ----- ---------------
JAGUAR V12XKE AUT POWER STEERING
 XJ12L AUTO RECLINING BUCKE
 WHITEWALL RADIA
 WRAP AROUND BUM
 4 WHEEL DISC BR
TOYOTA COROLLA 4 BODY SIDE MOLDI
 MACPHERSON STRU

Usage Notes for Changing Column FormatReference:

Each time you reformat a column, the field is counted twice against the limit for display
fields in a single report.

If you create an extract file from the report, that is, a HOLD, PCHOLD, SAVE, or SAVB
file, the extract file contains fields for both the original format and the redefined format,
unless HOLDLIST=PRINTONLY. Extract files are described in Saving and Reusing Your
Report Output on page 421.

Format redefinition may not be used on a field in a BY or ACROSS phrase or with SUM
CNT.fieldname.

Creating Reports 77

2. Displaying Report Data

When the size of a word in a text field instance is greater than the format of the text field
in the Master File, the word wraps to a second line, and the next word begins on the
same line.

You may specify justification for display fields, BY fields, and ACROSS fields. For ACROSS
fields, data values, not column titles, are justified as specified.

For display commands only, the justification parameter may be combined with a format
specification. The format specification may precede or follow the justification parameter.

If a title is specified with an AS phrase or in the Master File, that title is justified as
specified in FORMAT.

When multiple ACROSS fields are requested, justification is performed on the lowest
ACROSS level only. All other justification parameters for ACROSS fields are ignored.

Determining the Width of a Report Column

In this section:

Controlling Missing Values for a Reformatted Field

The width of a report column is set to the width of the column title, or the corresponding
field display length, whichever is wider. You can change the width by reformatting the column
or editing the title.

For example, the LAST_NAME field is defined with a format of A15 in the Master File, while
its field name is only nine characters wide, so the LAST_NAME column in a report will be 15
characters wide.

Furthermore, two spaces are placed between columns on the printed report unless the report
width is too wide, in which case one space is inserted between columns. If the report is still
too wide, it needs to be paneled.

Note: The default spacing can be overridden by using IN or OVER. You can also use SET
SPACES to control column spacing. For more information, see Customizing Tabular Reports
on page 357.

Controlling Missing Values for a Reformatted Field

When a field is reformatted in a request (for example, SUM field/format), an internal COMPUTE
field is created to contain the reformatted field value and display on the report output. If the
original field has a missing value, that missing value can be propagated to the internal field
by setting the COMPMISS parameter ON. If the missing value is not propagated to the internal
field, it displays a zero (if it is numeric) or a blank (if it is alphanumeric). If the missing value
is propagated to the internal field, it displays the missing data symbol on the report output.

78 Information Builders

Changing the Format of a Report Column

How to Control Missing Values in Reformatted FieldsSyntax:

SET COMPMISS = {ON|OFF}

where:

ON

Propagates a missing value to a reformatted field. ON is the default value.

OFF

Displays a blank or zero for a reformatted field.

Controlling Missing Values in Reformatted FieldsExample:

The following procedure prints the RETURNS field from the SALES data source for store 14Z.
With COMPMISS OFF, the missing values display as zeros in the column for the reformatted
field value. (Note: Before trying this example, you must make sure that the SALEMISS
procedure, which adds missing values to the SALES data source, has been run.)

SET COMPMISS = OFF
TABLE FILE SALES
PRINT RETURNS RETURNS/D12.2 AS 'REFORMATTED,RETURNS'
BY STORE_CODE
WHERE STORE_CODE EQ '14Z'
END

The output is:

 REFORMATTED
STORE_CODE RETURNS RETURNS
---------- ------- -----------
14Z 2 2.00
 2 2.00
 0 .00
 . .00
 4 4.00
 0 .00
 3 3.00
 4 4.00
 . .00
 4 4.00

With COMPMISS ON, the column for the reformatted version of RETURNS displays the missing
data symbol when a value is missing:

SET COMPMISS = ON
TABLE FILE SALES
PRINT RETURNS RETURNS/D12.2 AS 'REFORMATTED,RETURNS'
BY STORE_CODE
WHERE STORE_CODE EQ '14Z'
END

Creating Reports 79

2. Displaying Report Data

The output is:

 REFORMATTED
STORE_CODE RETURNS RETURNS
---------- ------- -----------
14Z 2 2.00
 2 2.00
 0 .00
 . .
 4 4.00
 0 .00
 3 3.00
 4 4.00
 . .
 4 4.00

Usage Notes for SET COMPMISSReference:

If you create a HOLD file with COMPMISS ON, the HOLD Master File for the reformatted
field indicates MISSING = ON (as does the original field). With COMPMISS = OFF, the
reformatted field does NOT have MISSING = ON in the generated Master File.

The COMPMISS parameter cannot be set in an ON TABLE command.

80 Information Builders

Changing the Format of a Report Column

FOCUS

Viewing and Printing Report Output3
Topics:

Reports can be displayed on a terminal
screen, sent to a printer, or routed to a
file. FOCUS provides the Hot Screen
facility and the Terminal Operator
Environment for displaying reports on a
screen, and the OFFLINE command and
the Hot Screen facility for printing
reports.

Displaying Reports in Hot Screen

Scrolling a Report

Displaying Reports in the Panel Facility

Printing Reports

To display reports on a terminal screen,
the value of the SET command PRINT
parameter must be ONLINE, which is the
default.

Displaying Reports in the Terminal
Operator Environment

To send reports to a printer, the PRINT
parameter must be set to OFFLINE.

Creating Reports 81

Displaying Reports in Hot Screen

In this section:

Using PRINTPLUS

Accessing Help Information

How to:

Activate Hot Screen

By default, FOCUS reports are displayed in Hot Screen, the FOCUS full-screen output facility
that enables you to scroll within a report, store report data in a separate file, and print a
report. Many of these functions can be invoked by using keys or by issuing commands at
the command line. You can abbreviate a command name by using its shortest unique
truncation.

How to Activate Hot ScreenSyntax:

FOCUS automatically activates Hot Screen every time you start a FOCUS session.

To check if Hot Screen is activated, issue the following query at the FOCUS command prompt.
The value of the SCREEN parameter should be ON:

? SET SCREEN

If you are using a full-screen terminal, you can activate Hot Screen by issuing the following
command at the FOCUS command prompt:

SET SCREEN=ON

This is the default setting for full-screen terminals.

Other acceptable values for SCREEN are OFF and PAPER.

If SCREEN is set to OFF, then Hot Screen is inactive. In this setting, FOCUS displays
report output in line mode. It is the only setting for line terminals.

If SCREEN is set to PAPER, Hot Screen is active and FOCUS uses the settings for the
LINES and PAPER parameters to set the format of the screen display. The default settings
are LINES=57 and PAPER=66. See the Developing Applications manual for more
information about the LINES and PAPER parameters.

Use SET SCREEN=PAPER when you want the report display on your full-screen terminal
to match the printed report.

Note: You can reset the SCREEN parameter with both the SET SCREEN command or the
ON TABLE SET SCREEN command in a report request.

82 Information Builders

Displaying Reports in Hot Screen

Using PRINTPLUS

How to:

Use PRINTPLUS

PRINTPLUS includes enhancements to the display alternatives offered by the FOCUS Report
Writer. For example, you might wish to place a FOOTING after a SUBFOOT in your report.
PRINTPLUS provides the flexibility to produce the exact report you desire.

The PRINTPLUS parameter must be set to ON to use the following TABLE capabilities:

PAGE-BREAK is handled internally to provide the correct spacing of pages. For example,
if a new report page is started and an instruction to skip a line at the top of the new page
is encountered, WebFOCUS knows to suppress the blank line and start at the top of the
page.

NOSPLIT is handled internally. (Use NOSPLIT to force a break at a specific spot.)

You can perform RECAPs in cases where pre-specified conditions are met.

A Report SUBFOOT now prints above the footing instead of below it.

Data displays correctly in subfoots when IF/WHERE TOTAL or BY HIGHEST is used.

BY field actions are linked with BY field options so they appear on the same page. The
footing no longer splits on two pages.

Footings and Subfoots always appear on a page with at least one data item, and will
never split between two pages.

Printing beyond the length of the page no longer occurs.

Splitting of fields linked by OVER onto separate pages no longer occurs.

There is no reserved space for conditional output. The output page is fully used.

The order of sort fields is no longer relevant.

Note: PRINTPLUS is not supported for StyleSheets. A warning message is generated in this
case.

How to Use PRINTPLUSSyntax:

Issue the command

SET PRINTPLUS = {ON|OFF}

Creating Reports 83

3. Viewing and Printing Report Output

Using PRINTPLUS With SUBFOOT and FOOTINGExample:

With PRINTPLUS on, the SUBFOOT prints first, followed by the FOOTING.

SET PRINTPLUS = ON
 TABLE FILE CAR
 PRINT CAR MODEL
 BY SEATS BY COUNTRY
 IF COUNTRY EQ ENGLAND OR FRANCE OR ITALY
 ON TABLE SUBFOOT
 " "
 " SUMMARY OF CARS IN COUNTRY BY SEATING CAPACITY"
 FOOTING
 " RELPMEK CAR SURVEY "
 END

The output is:

SEATS COUNTRY CAR MODEL
----- ------- --- -----
 2 ENGLAND TRIUMPH TR7
 ITALY ALFA ROMEO 2000 GT VELOCE
 ALFA ROMEO 2000 SPIDER VELOCE
 MASERATI DORA 2 DOOR
 4 ENGLAND JAGUAR V12XKE AUTO
 JENSEN INTERCEPTOR III
 ITALY ALFA ROMEO 2000 4 DOOR BERLINA
 5 ENGLAND JAGUAR XJ12L AUTO
 FRANCE PEUGEOT 504 4 DOOR

 SUMMARY OF CARS IN COUNTRY BY SEATING CAPACITY

 RELPMEK CAR SURVEY

Accessing Help Information
To access help information about PF key assignments in Hot Screen, press PF1:

To view additional information about PF keys, press PF1 a second time.

To clear the Help window, press PF1 a third time.

You can also issue the SET HOTMENU command to display the Hot Screen PF key legend
at the bottom of the Hot Screen report. For more information about the SET HOTMENU
command, see the Developing Applications manual.

84 Information Builders

Displaying Reports in Hot Screen

Scrolling a Report

In this section:

Scrolling Forward

Scrolling Backward

Scrolling Horizontally

Scrolling From Fixed Columns (Fencing)

Scrolling Report Headings

Saving Selected Data

Locating Character Strings

Repeating Commands

Redisplaying Reports

Previewing Your Report

Displaying BY Fields With Panels

Scrolling by Columns of BY Fields

The SET COLUMNS Command

You can use Hot Screen PF keys or commands to scroll within a report.

This section describes the keys and commands you use to scroll, save data, locate character
strings, repeat commands, redisplay a report, preview a report, and display BY fields with
panels.

Scrolling Forward
To scroll forward in a report one page at a time, press PF8. Hot Screen displays the bottom
two lines of the previous screen as the top two lines of the next screen.

When there are no more report lines, FOCUS displays the END-OF-REPORT message at the
bottom of the screen. To clear this message and the end of the report, press Enter. Hot
Screen returns to the FOCUS command line.

Creating Reports 85

3. Viewing and Printing Report Output

You can also issue the following commands at the bottom of the screen to scroll forward
through a report:

DescriptionCommand

Scrolls the display directly to the last page of the report.BOTTOM

Scrolls the display forward by the number of pages you specify.NEXT n

Like NEXT, scrolls the display forward the number of pages you specify.FORW n

Like NEXT and FORW, scrolls the display forward the number of pages
you specify.

DOWN n

Note: If omitted, n defaults to 1.

Scrolling Backward
To scroll backward from the bottom of a report, press PF7.

You can also use the following commands to scroll backward through the report:

DescriptionCommand

Scrolls the display directly back to the first page of the report.TOP

Scrolls the display back the number of pages you specify.UP n

Like UP, scrolls the display back the number of pages you specify.BACK n

Note: If omitted, n defaults to 1.

Scrolling Horizontally
When a report exceeds the width of a screen, you can view it by scrolling horizontally to the
left and to the right.

FOCUS displays the following symbol in the bottom right corner of the screen when the report
is too wide:

MORE =>

86 Information Builders

Scrolling a Report

You can also have Hot Screen scroll directly back to your first report screen.

To scroll horizontally to the left one screen, press PF10. You can also issue:

LEFT n

where n is the number of characters. If n is omitted, it defaults to half of a screen.

To scroll horizontally to the right one screen, press PF11 or issue:

RIGHT n

where n is the number of characters. If n is omitted, it defaults to 4 characters.

If you wish to scroll horizontally from a particular column, move the cursor to that location
and press PF10 to scroll left or PF11 to scroll right.

Scrolling From Fixed Columns (Fencing)
To help you view a wide report in Hot Screen, you can hold the display of sort fields in the
left-most columns of the screen while you scroll horizontally to the right to view the remaining
columns.

To define a block of fixed columns, the steps are:

1. Scroll the display to the start of the first column to be held.

2. Press PF2.

3. Move the cursor to the end of the last column to be held.

4. Press PF2 again.

Scrolling Report Headings
You can make report headings and footers scroll along with the report contents in your
HotScreen report by using the SET BYSCROLL command. The headings and footers scroll
along with data to avoid confusion in matching the data with a corresponding header or
footer.

To scroll report headings along with data, the syntax is:

SET BYSCROLL = {ON|OFF}

where:

ON

Enables BYSCROLL.

OFF

Disables BYSCROLL. OFF is the default.

Creating Reports 87

3. Viewing and Printing Report Output

In order to use BYSCROLL, the text in the report must be longer than 80 characters, and
BYPANEL must be set ON. With BYPANEL OFF, headings and footings do not scroll. Note
that fencing is not supported while BYPANEL is on. To determine the setting of BYSCROLL,
enter ? SET BYSCROLL.

Saving Selected Data
Hot Screen also enables you to select and save data from a report request for use in
subsequent requests. The steps are:

1. Position the cursor under the first character of the text to be saved.

2. Press PF6. FOCUS saves the text from that start character to the end of the line in a file
with the file name SAVE. See Saving and Reusing Your Report Output on page 421 for
information about SAVE files.

Each time you repeat these steps, new text is appended to the SAVE file.

Locating Character Strings
To locate a character string in a report, the steps are:

1. Press PF5. FOCUS prompts for the string:

ENTER STRING TO LOCATE /

2. Type the string you want to locate and press Enter.

FOCUS searches from the current position forward. When it locates the string, the cursor is
placed under the first occurrence of the string in the report. To locate additional instances
of the string, press Enter for each instance. If the string is not found, a message is displayed
at the bottom of the screen.

You can also issue the following command from the command line:

LOCATE/string

Repeating Commands
If you want to use a command repeatedly, issue it with a doubled first letter.

For example:

RRIGHT 5

After the command is executed, it remains on the command line and can be repeated by
pressing Enter.

You can cancel a command implicitly, by using a key command, or explicitly, by tabbing the
cursor down to the command line and overwriting it with another command or with spaces.

88 Information Builders

Scrolling a Report

Redisplaying Reports
To redisplay reports immediately after you clear the last display, issue the command:

RETYPE

RETYPE only redisplays the report; the retrieval process is not repeated.

You can also use the RETYPE command to reformat specific fields in the report. The syntax
is

RETYPE [field1/format1 ... fieldn/formatn]

where:

field1

Is a field name from the previous report request. It can be the full field name, alias,
qualified field name, or unique truncation.

format1

Is the format of the field whose field type (D, I, P, F) is the same as the original field in
the request. All formats are supported, except for alpha (A), text (TX), dates, and fields
with date edit options.

When no arguments are provided, RETYPE redisplays the report. When one or more arguments
are supplied, RETYPE redisplays the entire report, and reformats the specified fields to the
new format.

Note:

RETYPE with a reformatted field does not recognize labels in FML.

When reformatting a packed field, you may not change the number of places after the
decimal point. For example, a P7 field can be redisplayed as P9 or P12.0C, but not as
P9.2.

You can save the internal matrix and issue a RETYPE later in the session if SAVEMATRIX
is set to ON (see the Developing Applications manual).

You can issue any number of RETYPE commands, one after the other:

TABLE FILE EMPLOYEE
.
.
.
END

RETYPE
RETYPE

Creating Reports 89

3. Viewing and Printing Report Output

Previewing Your Report
You can also preview the format of a report without actually accessing any data. The SET
XRETRIEVAL command enables you to perform TABLE, TABLEF, or MATCH FILE requests and
produce HOLD Master Files without processing the report. The syntax is

SET XRETRIEVAL = {OFF|ON}

where:

OFF

Specifies that no retrieval is to be performed.

ON

Specifies retrieval is to be performed. ON is the default.

SET XRETRIEVAL may also be issued from within a FOCUS request.

Displaying BY Fields With Panels

Reference:

BYPANEL Conditions

Hot Screen also enables you to display BY fields in the left portion of each panel of multi-
panel reports. BY fields are vertical sort fields (see Chapter 4, Sorting Tabular Reports). The
non-BY fields are displayed on the right portion of the panel. BY paneling is also available
for OFFLINE reports.

To enable the display of BY fields with panels, set the BYPANEL parameter to one of the
following values before issuing the request or within the request (using the ON TABLE phrase):

DescriptionValue

Displays all BY fields specified in the report on each panel, and prevents
column splitting.

ON

Is the number of BY fields to be displayed; n is less than or equal to
the total number of BY fields, specified in the request, from the major
sort (first BY field) down. This prevents column splitting.

Column splitting occurs when a report column is too large to fit on the
defined panel. By default, FOCUS splits the column, displaying as many
characters as possible, and the remaining characters continue on the
next panel.

n

90 Information Builders

Scrolling a Report

DescriptionValue

Zero displays BY fields only on the first panel. This prevents column
splitting.

0

Displays BY fields on the first panel only. Column splitting is permitted.
This is the default.

OFF

In the following example, SET BYPANEL=ON displays the BY fields COUNTRY and CAR on
each panel:

SET BYPANEL=ON
TABLE FILE CAR
PRINT SEG.LENGTH BY COUNTRY BY CAR
WHERE COUNTRY EQ 'ENGLAND'
END

The output is:

BYPANEL ConditionsReference:

In Hot Screen, the panel width for the SET BYPANEL command is the physical screen
width. The SET PANEL command is ignored.

Creating Reports 91

3. Viewing and Printing Report Output

In OFFLINE reports, the SET PANEL command is respected when used with SET BYPANEL.
If you choose to override the report width, define a panel large enough to enable the
BYPANEL feature using the SET PANEL command. The panel size should accommodate
all the BY fields in the request, plus one non-BY field. If the defined panel is too small,
the BYPANEL feature is disabled for the request and you receive a FOCUS error message.

In OFFLINE reports, the SET BYPANEL command only works for widths of up to 132
characters.

When SET BYPANEL is specified, the maximum number of panels is 99. When SET
BYPANEL is OFF, the maximum number of panels is 4.

BYPANEL may not be set from within a TABLE request using the ON TABLE SET command.

Setting SCREEN=PAPER respects the SET BYPANEL command.

The BYPANEL command may truncate summary text.

The BYPANEL = ON command may truncate heading text. The heading is repeated from
the beginning on the panels which follow.

FOCUS treats the OVER phrase as a physical block when it is used with the BYPANEL
feature. As a result, FOCUS may split the column even though you have specified BYPANEL.

In a request with several display commands, the number of BY fields in the first display
command determines the BY field count for the BYPANEL command.

You may not use FOLD-LINE and IN to position columns with the BYPANEL command.

You may not use BYPANEL with the GRAPH facility.

Scrolling by Columns of BY Fields
When a report is wider than the screen width and the SET COLUMNS command is specified,
you can scroll columns using PF keys:

To move to the right one column, press PF10.

To move to the left one column, press PF11.

To move up within the same column, press PF7.

To move down within the same column, press PF8.

92 Information Builders

Scrolling a Report

The SET COLUMNS Command
To enable column scrolling as described in this section, specify the SET COLUMNS command
as ON. To turn column scrolling off, specify SET COLUMNS as OFF.

Note the following usage information:

If you specify the panel feature (SET PANEL), the panel size must be greater than the
screen width in order for you to perform column scrolling.

You cannot control column scrolling from within a TABLE request using the ON TABLE
SET command.

Report output must extend beyond the screen for column scrolling to have an effect.

The OVER formatting option is not supported.

Column width is determined by either the column title or field format, whichever is larger.

When COLUMNS and BYPANEL are both set to ON, column scrolling is not enabled.

Heading and footing lines are not maintained across the report as you scroll.

Displaying Reports in the Panel Facility
The Panel facility enables you to view reports that are too wide to fit on a typical 80-character
terminal screen by dividing the display into a maximum of four panels. Pages are automatically
numbered with decimal notation indicating the panel number (for example, 1.1, 1.2, 1.3),
so that the results can be easily referenced. When these pages are produced as hardcopy,
the page numbers also help you place the panels side by side. This feature is also very
useful for reports over the 132-character standard line printer width.

To panel your report, issue

SET PANEL=n

before a report request. n is the number of characters you want displayed in each panel.
This number must be in the range of 40 to 130.

For example:

SET PANEL=73
TABLE FILE EMPLOYEE
.
.
.
END

Creating Reports 93

3. Viewing and Printing Report Output

However, if you did not issue the panel command and the request has already been executed,
FOCUS automatically prompts you for a panel width:

REPORT WIDTH IS ### IT EXCEEDS TERMINAL PRINT LINE OF 130
TO PROCEED ENTER A PANEL WIDTH (40-130) OR 0 TO END =

At that point, you can either enter a number between 40 and 130, or enter 0 to end the
report request.

Note:

If the SET BYPANEL command is specified, the SET PANEL command is ignored for reports
displayed in Hot Screen, and the terminal screen can be divided into a maximum of 99
panels.

The PANEL setting is ignored if StyleSheets are enabled.

Printing Reports

In this section:

The OFFLINE Command

Printing Reports in Hot Screen

You can print reports by issuing a command or by pressing a function key while in Hot Screen.

The OFFLINE Command
You can use the OFFLINE command to send reports directly to a printer or a file without first
displaying them on the screen. Simply issue the command

OFFLINE

before a report request.

Generally, this directs all offline reports to the default output spool file. This file is assigned
automatically when you enter FOCUS, and is in almost all cases a printer.

However, if you already issued the report request to be displayed online, you can still send
its output to the printer simply by entering the following two commands at the FOCUS
command prompt:

OFFLINE
RETYPE

You can also direct report output to a printer from within a report request by using the ON
TABLE command:

ON TABLE SET PRINT OFFLINE

94 Information Builders

Printing Reports

You can use OFFLINE to send reports to a file by allocating the ddname OFFLINE, as device
type DISK, to the desired file using the FILEDEF command under CMS, or the FOCUS DYNAM
command under z/OS. The FILEDEF and DYNAM commands are described in the Overview
and Operating Environments manual.

You can reroute report output to your screen by issuing the following command at the FOCUS
command prompt:

ONLINE

You can reroute it only for the current request by including an ON TABLE SET PRINT ONLINE
command in the request. Be sure also to issue the following command to close any current
spool file and enable you to allocate new ones:

OFFLINE CLOSE

Printing Reports in Hot Screen
To send all or part of a report displayed in Hot Screen to an OFFLINE output device, press
PF4.

The following print menu is displayed at the bottom of the screen:

1-Print entire report 2-Print this page 3-Cancel 4-Hold

1. Reformats the report to current page settings and then sends the entire report to a
printer.

2. Prints the report page displayed, as formatted on the terminal screen.

3. Removes the print menu.

4. Creates a HOLD file using the entire report. The Master and FOCTEMP files have the
default name HOLD.

Press the desired number key (not function key) and then press Enter.

Displaying Reports in the Terminal Operator Environment
The FOCUS Terminal Operator Environment, discussed in the Overview and Operating
Environments manual, provides a Table window that displays the report of the most recently
executed report request. This enables you to view the report again without resubmitting the
request. Unlike the RETYPE command, the most recent report is available even if other
commands have been issued after the request.

The Table window displays a TABLE report as soon as you have terminated the report in Hot
Screen. It holds up to the first 10 pages of report data. That is up to 200 lines that are up
to a width of 130 characters.

Note: The Table Window does not record TABLEF reports, offline reports, or reports issued
while the FOCUS SET SCREEN command is set to OFF.

Creating Reports 95

3. Viewing and Printing Report Output

96 Information Builders

Displaying Reports in the Terminal Operator Environment

FOCUS

Sorting Tabular Reports4
Topics:

Sorting enables you to group or organize
report information vertically and
horizontally, in rows and columns, and
specify a desired sequence of data items
in the report.

Sorting Tabular Reports Overview

Sorting Rows

Any field in the data source can be the
sort field. If you wish, you can select
several sort fields, nesting one within
another. Sort fields appear only when
their values change.

Sorting Columns

Manipulating Display Field Values in a
Sort Group

Creating a Matrix Report

Specifying the Sort Order

Ranking Sort Field Values

Grouping Numeric Data Into Ranges

Restricting Sort Field Values by
Highest/Lowest Rank

Sorting and Aggregating Report
Columns

Hiding Sort Values

Sorting With Multiple Display
Commands

Improving Efficiency With External
Sorts

Creating Reports 97

Sorting Tabular Reports Overview

Reference:

Sorting and Displaying Data

You sort a report using vertical (BY) and horizontal (ACROSS) phrases:

BY displays the sort field values vertically, creating rows. Vertical sort fields are displayed
in the left-most columns of the report.

ACROSS displays the sort field values horizontally, creating columns. Horizontal sort
fields are displayed across the top of the report.

BY and ACROSS phrases used in the same report create rows and columns, producing
a grid or matrix.

Additional sorting options include:

Sorting from low to high values or from high to low values, and defining your own sorting
sequence.

Leaving the value of the sort field out of the report.

Grouping numeric data into tiles such as percentiles or deciles.

Aggregating and sorting numeric columns simultaneously.

Grouping numeric data into ranges.

Ranking data, and selecting data based on rank.

Sorting and Displaying DataReference:

There are two ways that you can sort information, depending on the type of display command
you use:

You can sort and display individual values of a field using the PRINT or LIST command.

You can group and aggregate information; for example, showing the number of field
occurrences per sort value using the COUNT command, or summing the field values using
the SUM command.

When you use the display commands PRINT and LIST, the report may generate several rows
per sort value; specifically, one row for each occurrence of the display field. When you use
the commands SUM and COUNT, the report generates one row for each unique set of sort
values. For related information, see Sorting With Multiple Display Commands on page 139.

For details on all display commands, see Displaying Report Data on page 45.

98 Information Builders

Sorting Tabular Reports Overview

Sorting Rows

In this section:

Displaying All Vertical (BY) Sort Field Values

Using Multiple Vertical (BY) Sort Fields

Displaying a Row for Data Excluded by a Sort Phrase

How to:

Sort by Rows

Reference:

Usage Notes for Sorting Rows

You can sort report information vertically using the BY phrase. This creates rows in your
report. You can include up to 32 BY phrases per report request (31 if using PRINT or LIST
display commands).

Sort fields appear when their value changes. However, you can display every sort value using
the BYDISPLAY parameter. For an example, see Displaying All Vertical (BY) Sort Field Values
on page 101.

How to Sort by RowsSyntax:

BY sortfield

where:

sortfield

Is the name of the sort field.

Usage Notes for Sorting RowsReference:

When using the display command LIST with a BY phrase, the LIST counter is reset to 1
each time the major sort value changes.

The default sort sequence is low-to-high, with the following variations for different operating
systems. In z/OS and VM the sequence is a-z, A-Z, 0-9 for alphanumeric fields; 0-9 for
numeric fields. In UNIX and Windows the sequence is 0-9, A-Z, a-z for alphanumeric fields;
0-9 for numeric. You can specify other sorting sequences, as described in Specifying the
Sort Order on page 116.

You cannot use text fields as sort fields. Text fields are those described in the Master
File with a FORMAT value of TX.

Creating Reports 99

4. Sorting Tabular Reports

You can use a temporary field created by a DEFINE command, or by the DEFINE attribute
in a Master File, as a sort field. However, you cannot use a temporary field created by a
COMPUTE command as a sort field. You can accomplish this indirectly by first creating
a HOLD file that includes the field, and then reporting from the HOLD file (HOLD files are
described in Saving and Reusing Your Report Output on page 421).

If you specify several sort fields when reporting from a multi-path data source, all the
sort fields must be in the same path.

Sort phrases cannot contain format information for fields.

Each sort field value appears only once in the report. For example, if there are six
employees in the MIS department, a request that declares

PRINT LAST_NAME BY DEPARTMENT

prints MIS once, followed by six employee names. You can populate every vertical sort
column cell with a value, even if the value is repeating, using the SET BYDISPLAY
parameter. For details, see Displaying All Vertical (BY) Sort Field Values on page 101.

Sorting Rows With BYExample:

The following illustrates how to display all employee IDs by department.

TABLE FILE EMPLOYEE
PRINT EMP_ID
BY DEPARTMENT
END

The output displays a row for each EMP_ID in each department:

DEPARTMENT EMP_ID
---------- ------
MIS 112847612
 117593129
 219984371
 326179357
 543729165
 818692173
PRODUCTION 071382660
 119265415
 119329144
 123764317
 126724188
 451123478

100 Information Builders

Sorting Rows

Displaying All Vertical (BY) Sort Field Values

How to:

Display All Vertical (BY) Sort Field Values

Within a vertical sort group, the sort field value displays only on the first line of the rows for
its sort group, and on the first line of a page. However, using the SET BYDISPLAY command,
you can display the appropriate BY field on every row of a report produced in a styled output
format.

Although SET BYDISPLAY is supported for all styled output formats, it is especially important
for making report output more usable by Excel, which cannot sort columns properly when
they have blank values in some rows.

This feature enables you to avoid specifying the sort field twice, once as a display field and
once for sorting (with the NOPRINT option). For example:

PRINT FIRST_NAME LAST_NAME
BY FIRST_NAME NOPRINT

How to Display All Vertical (BY) Sort Field ValuesSyntax:

SET BYDISPLAY = {OFF|ON}

or

ON TABLE SET BYDISPLAY {OFF|ON}

where:

OFF

Displays a BY field value only on the first line of the report output for the sort group and
on the first line of a page. OFF is the default value.

ON

Displays the associated BY field value on every line of report output produced in a styled
format.

Creating Reports 101

4. Sorting Tabular Reports

Displaying All Vertical (BY) Sort Field ValuesExample:

The following illustrates how you can display every instance of a vertical (BY) sort field value
in a styled report using SET BYDISPLAY.

SET BYDISPLAY = ON
TABLE FILE CENTHR
PRINT LNAME
BY FNAME
WHERE FNAME EQ 'CAROLYN' OR 'DAVID' ON
TABLE HOLD FORMAT EXL2K
END

The output is:

Using Multiple Vertical (BY) Sort Fields
You can organize information in a report by using more than one sort field. When you specify
several sort fields, the sequence of the BY phrases determines the sort order. The first BY
phrase sets the major sort break, the second BY phrase sets the second sort break, and
so on. Each successive sort is nested within the previous one.

102 Information Builders

Sorting Rows

Sorting With Multiple Vertical (BY) Sort FieldsExample:

The following request uses multiple vertical (BY) sort fields.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY DEPARTMENT BY LAST_NAME
WHERE CURR_SAL GT 21500
END

The output is:

DEPARTMENT LAST_NAME CURR_SAL
---------- --------- --------
MIS BLACKWOOD $21,780.00
 CROSS $27,062.00
PRODUCTION BANNING $29,700.00
 IRVING $26,862.00

Displaying a Row for Data Excluded by a Sort Phrase

How to:

Display Data Excluded by a Sort Phrase

Reference:

Usage Notes for PLUS OTHERS

In a sort phrase, you can restrict the number of sort values displayed. With the PLUS OTHERS
phrase, you can aggregate all other values to a separate group and display this group as an
additional report row.

How to Display Data Excluded by a Sort PhraseSyntax:

[RANKED] BY {HIGHEST|LOWEST|TOP|BOTTOM} nsrtfield [AS 'text']
 [PLUS OTHERS AS 'othertext']
 [IN-GROUPS-OF m1 [TOP n2]]
 [IN-RANGES-OF m3 [TOP n4]

where:

LOWEST

Sorts in ascending order, beginning with the lowest value and continuing to the highest
value (a-z, A-Z, 0-9 for alphanumeric fields; 0-9 for numeric fields). BOTTOM is a synonym
for LOWEST.

HIGHEST

Sorts in descending order, beginning with the highest value and continuing to the lowest
value. TOP is a synonym for HIGHEST.

Creating Reports 103

4. Sorting Tabular Reports

n

Specifies that only n sort field values are included in the report.

srtfield

Is the name of the sort field.

text

Is the text to be used as the column heading for the sort field values.

othertext

Is the text to be used as the row title for the "others" grouping. This AS phrase must
be the AS phrase immediately following the PLUS OTHERS phrase.

m1

Is the incremental value between sort field groups.

n2

Is an optional number that defines the highest group label to be included in the report.

m3

Is an integer greater than zero indicating the range by which sort field values are grouped.

n4

Is an optional number that defines the highest range label to be included in the report.
The range is extended to include all data values higher than this value.

Usage Notes for PLUS OTHERSReference:

Alphanumeric group keys are not supported.

Only one PLUS OTHERS phrase is supported in a request.

In a request with multiple display commands, the BY field that has the PLUS OTHERS
phrase does not have to be the last BY field in the request.

The BY ROWS OVER, TILES, ACROSS, and BY TOTAL phrases are not supported with
PLUS OTHERS.

PLUS OTHERS is not supported in a MATCH FILE request. However, MORE in a TABLE
request is supported.

HOLD is supported for formats PDF, PS, HTML, DOC, and WP.

104 Information Builders

Sorting Rows

Displaying a Row Representing Sort Field Values Excluded by a Sort PhraseExample:

The following request displays the top two ED_HRS values and aggregates the values not
included in a row labeled Others:

TABLE FILE EMPLOYEE
PRINT CURR_SAL LAST_NAME
 BY HIGHEST 2 ED_HRS
 PLUS OTHERS AS 'Others'
END

The output is:

ED_HRS CURR_SAL LAST_NAME
------ -------- ---------
 75.00 $21,780.00 BLACKWOOD
 50.00 $18,480.00 JONES
 $16,100.00 MCKNIGHT
Others $165,924.00

Displaying a Row Representing Data Not Included in Any Sort Field GroupingExample:

The following request sorts by highest 2 ED_HRS and groups the sort field values by
increments of 25 ED_HRS. Values that fall below the lowest group label are included in the
Others category. All values above the top group label are included in the top group:

TABLE FILE EMPLOYEE
PRINT CURR_SAL LAST_NAME
 BY HIGHEST 2 ED_HRS
 PLUS OTHERS AS 'Others'
IN-GROUPS-OF 25 TOP 50
END

The output is:

ED_HRS CURR_SAL LAST_NAME
------ -------- ---------
 50.00 $18,480.00 JONES
 $21,780.00 BLACKWOOD
 $16,100.00 MCKNIGHT
 25.00 $11,000.00 STEVENS
 $13,200.00 SMITH
 $26,862.00 IRVING
 $9,000.00 GREENSPAN
 $27,062.00 CROSS
Others $78,800.00

Creating Reports 105

4. Sorting Tabular Reports

If the BY HIGHEST phrase is changed to BY LOWEST, all values above the top grouping (50
ED_HRS and above) are included in the Others category:

TABLE FILE EMPLOYEE
PRINT CURR_SAL LAST_NAME
 BY LOWEST 2 ED_HRS
 PLUS OTHERS AS 'Others'
IN-GROUPS-OF 25 TOP 50
END

The output is:

ED_HRS CURR_SAL LAST_NAME
------ -------- ---------
 .00 $9,500.00 SMITH
 $29,700.00 BANNING
 $21,120.00 ROMANS
 $18,480.00 MCCOY
 25.00 $11,000.00 STEVENS
 $13,200.00 SMITH
 $26,862.00 IRVING
 $9,000.00 GREENSPAN
 $27,062.00 CROSS
Others $56,360.00

Sorting Columns

In this section:

Controlling Underlines for ACROSS Objects

Using Multiple Horizontal (ACROSS) Sort Fields

Collapsing PRINT With ACROSS

How to:

Sort Columns

Reference:

Usage Notes for Sorting Columns

You can sort report information horizontally using the ACROSS phrase. This creates columns
in your report. You can have up to five ACROSS phrases per report request. Each ACROSS
phrase can generate up to 255 columns of data. The total number of ACROSS columns is
equal to the total number of ACROSS sort field values multiplied by the total number of
display fields.

106 Information Builders

Sorting Columns

The maximum number of display fields your report can contain is determined by a combination
of factors. In general, if a horizontal (ACROSS) sort field contains many data values, you
may exceed the allowed width for reports, or create a report that is difficult to read. For
details, see Displaying Report Data on page 45.

You can produce column totals or summaries for ACROSS sort field values using ACROSS-
TOTAL, SUBTOTAL, SUB-TOTAL, RECOMPUTE, and SUMMARIZE. For details, see Including
Totals and Subtotals on page 269.

How to Sort ColumnsSyntax:

ACROSS sortfield

where:

sortfield

Is the name of the sort field.

Usage Notes for Sorting ColumnsReference:

You cannot use text fields as sort fields. Text fields are those described in the Master
File with a FORMAT value of TX.

You can use a temporary field created by a DEFINE command, or by the DEFINE attribute
in a Master File, as a sort field. However, you cannot use a temporary field created by a
COMPUTE command as a sort field. You can accomplish this indirectly by first creating
a HOLD file that includes the field, and then reporting from the HOLD file. HOLD files are
described in Saving and Reusing Your Report Output on page 421.

For an ACROSS phrase, the SET SPACES parameter controls the distance between
ACROSS sets. For more information, see Customizing Tabular Reports on page 357.

Sort phrases cannot contain format information for fields.

If you specify several sort fields when reporting from a multi-path data source, all the
sort fields must be in the same path.

Each sort field value is displayed only once in the report. For example, if there are six
employees in the MIS department, a report that declares

PRINT LAST_NAME ACROSS DEPARTMENT

prints MIS once, followed by six employee names.

Creating Reports 107

4. Sorting Tabular Reports

Sorting Columns With ACROSSExample:

The following illustrates how to show the total salary outlay for each department. This request
is sorted horizontally with an ACROSS phrase.

TABLE FILE EMPLOYEE
SUM CURR_SAL ACROSS DEPARTMENT
END

The output is:

DEPARTMENT
MIS PRODUCTION

$108,002.00 $114,282.00

Notice that the horizontal sort displays a column for each sort field (department).

Controlling Underlines for ACROSS Objects

How to:

Control Underlining for ACROSS Objects

The SET ACROSSLINE command allows users to turn off/on optional underlining in reports
to highlight ACROSS objects. The feature is only available for Hotscreen reports and report
output formats WP, HTML, and PDF.

How to Control Underlining for ACROSS ObjectsSyntax:

Issue the following command in any supported profile, or in a FOCEXEC, or at the command
prompt:

SET ACROSSLINE= (ON|OFF|SKIP)

where:

ON

Underlines ACROSS objects in report headings with a dashed line. ON is the default
value.

OFF

Replaces the underline with a blank line.

SKIP

Specifies no underline and no blank line.

108 Information Builders

Sorting Columns

Underlining ACROSS Objects With a Dashed Line (SET ACROSSLINE=ON)Example:

SET ACROSSLINE=ON
TABLE FILE GGSALES
SUM UNITS BY PRODUCT
ACROSS REGION
END

The output is:

 Region
 Midwest Northeast Southeast West
Product

Biscotti 86105 145242 119594 70436
Cappuccino . 44785 73264 71168
Coffee Grinder 50393 40977 47083 48081
Coffee Pot 47156 46185 49922 47432
Croissant 139182 137394 156456 197022
Espresso 101154 68127 68030 71675
Latte 231623 222866 209654 213920
Mug 86718 91497 88474 93881
Scone 116127 70732 73779 72776
Thermos 46587 48870 48976 45648

Removing Underlines for ACROSS Objects (SET ACROSSLINE=SKIP)Example:

SET ACROSSLINE=SKIP
TABLE FILE GGSALES
SUM UNITS BY PRODUCT
ACROSS REGION
END

The output is:

 Region
 Midwest Northeast Southeast West
Product
Biscotti 86105 145242 119594 70436
Cappuccino . 44785 73264 71168
Coffee Grinder 50393 40977 47083 48081
Coffee Pot 47156 46185 49922 47432
Croissant 139182 137394 156456 197022
Espresso 101154 68127 68030 71675
Latte 231623 222866 209654 213920
Mug 86718 91497 88474 93881
Scone 116127 70732 73779 72776
Thermos 46587 48870 48976 45648

Creating Reports 109

4. Sorting Tabular Reports

Replacing the Underline With a Blank Line (SET ACROSSLINE=OFF)Example:

SET ACROSSLINE=OFF
TABLE FILE GGSALES
SUM UNITS BY PRODUCT
ACROSS REGION
END

Turning ACROSSLINE=OFF replaces the (default) dashed line with an extra blank line between
the report heading and the detail lines:

 Region
 Midwest Northeast Southeast West
Product

Biscotti 86105 145242 119594 70436
Cappuccino . 44785 73264 71168
Coffee Grinder 50393 40977 47083 48081
Coffee Pot 47156 46185 49922 47432
Croissant 139182 137394 156456 197022
Espresso 101154 68127 68030 71675
Latte 231623 222866 209654 213920
Mug 86718 91497 88474 93881
Scone 116127 70732 73779 72776
Thermos 46587 48870 48976 45648

Using Multiple Horizontal (ACROSS) Sort Fields
You can sort a report using more than one sort field. When several sort fields are used, the
ACROSS phrase order determines the sorting order. The first ACROSS phrase sets the first
sort break, the second ACROSS phrase sets the second sort break, and so on. Each
successive sort is nested within the previous one.

Sorting With Multiple Horizontal (ACROSS) PhrasesExample:

The following request sorts the sum of current salaries, first by department and then by job
code.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT ACROSS CURR_JOBCODE
WHERE CURR_SAL GT 21500
END

The output is:

DEPARTMENT
 MIS PRODUCTION
CURR_JOBCODE
 A17 B04 A15 A17
--
 $27,062.00 $21,780.00 $26,862.00 $29,700.00

110 Information Builders

Sorting Columns

Collapsing PRINT With ACROSS

How to:

Compress Report Lines

Reference:

Usage Notes for SET ACROSSPRT

The PRINT command generates a report that has a single line for each record retrieved from
the data source after screening out those that fail IF or WHERE tests. When PRINT is used
in conjunction with an ACROSS phrase, many of the generated columns may be empty. Those
columns display the missing data symbol.

To avoid printing such a sparse report, you can use the SET ACROSSPRT command to
compress the lines in the report. The number of lines is reduced within each sort group by
swapping non-missing values from lower lines with missing values from higher lines, and
then eliminating any lines whose columns all have missing values.

Because data may be moved to different report lines, row-based calculations such as ROW-
TOTAL and ACROSS-TOTAL in a compressed report are different from those in a non-
compressed report. Column calculations are not affected by compressing the report lines.

How to Compress Report LinesSyntax:

SET ACROSSPRT = {NORMAL|COMPRESS}

ON TABLE SET ACROSSPRT{NORMAL|COMPRESS}

where:

NORMAL

Does not compress report lines. NORMAL is the default value.

COMPRESS

Compresses report lines by promoting data values up to replace missing values within
a sort group.

Usage Notes for SET ACROSSPRTReference:

Compression applies only to ACROSS fields, including ACROSS … COLUMNS. It has no
effect on BY fields.

The only data values that are subject to compression are true missing values. If the value
of the stored data is either 0 or blank and the metadata indicates that MISSING is ON,
that value is not subject to compression.

Creating Reports 111

4. Sorting Tabular Reports

Compressing Report Output With SET ACROSSPRTExample:

The following request against the GGSALES data source prints unit sales by product across
region:

TABLE FILE GGSALES
PRINT UNITS/I5
BY PRODUCT
ACROSS REGION
WHERE DATE FROM '19971201' TO '19971231';
WHERE PRODUCT EQ 'Capuccino' OR 'Espresso';
ON TABLE SET ACROSSPRT NORMAL
ON TABLE SET PAGE NOPAGE
END

Each line of the report represents one sale in one region, so at most one column in each
row has a non-missing value when ACROSSPRT is set to NORMAL:

 Region
 Midwest Northeast Southeast West
Product Unit Sales Unit Sales Unit Sales Unit Sales

Capuccino . 936 . .
 . 116 . .
 . 136 . .
 . . 1616 .
 . . 1118 .
 . . 774 .
 . . . 1696
 . . . 1519
 . . . 836
Espresso 1333 . . .
 280 . . .
 139 . . .
 . 1363 . .
 . 634 . .
 . 406 . .
 . . 1028 .
 . . 1014 .
 . . 885 .
 . . . 1782
 . . . 1399
 . . . 551

112 Information Builders

Sorting Columns

Setting ACROSSPRT to COMPRESS promotes non-missing values up to replace missing
values within the same BY group and then eliminates lines consisting of all missing values:

TABLE FILE GGSALES
PRINT UNITS/I5
BY PRODUCT
ACROSS REGION
WHERE DATE FROM '19971201' TO '19971231';
WHERE PRODUCT EQ 'Capuccino' OR 'Espresso';
ON TABLE SET ACROSSPRT COMPRESS ON TABLE SET PAGE NOPAGE

END

The output is:

 Region
 Midwest Northeast Southeast West
Product Unit Sales Unit Sales Unit Sales Unit Sales
--
Capuccino . 936 1616 1696
 . 116 1118 1519
 . 136 774 836
Espresso 1333 1363 1028 1782
 280 634 1014 1399
 139 406 885 551

Manipulating Display Field Values in a Sort Group

How to:

Use WITHIN to Manipulate Display Fields

You can use the WITHIN phrase to manipulate a display field values as they are aggregated
within a sort group. This technique can be used with a prefix operator to perform calculations
on a specific aggregate field rather than a report column. In contrast, the SUM and COUNT
commands aggregate an entire column.

You can use up to 64 fields in a display command when using the WITHIN phrase. The
WITHIN phrase requires a BY phrase and/or an ACROSS phrase. A maximum of two WITHIN
phrases can be used per display field. If one WITHIN phrase is used, it must act on a BY
phrase. If two WITHIN phrases are used, the first must act on a BY phrase and the second
on an ACROSS phrase.

You can also use WITHIN TABLE, which allows you to return the original value within a request
command. The WITHIN TABLE command can also be used when an ACROSS phrase is
needed without a BY phrase. Otherwise, a single WITHIN phrase requires a BY phrase.

Creating Reports 113

4. Sorting Tabular Reports

How to Use WITHIN to Manipulate Display FieldsSyntax:

{SUM|COUNT} display_field WITHIN by_sort_field [WITHIN across_sort_field]
 BY by_sort_field [ACROSS across_sort_field]

where:

display_field

Is the object of a SUM or COUNT display command.

by_sort_field

Is the object of a BY phrase.

across_sort_field

Is the object of an ACROSS phrase.

Summing Values Within Sort GroupsExample:

The following report shows the units sold and the percent of units sold for each product
within store and within the table:

TABLE FILE SALES
SUM UNIT_SOLD AS 'UNITS'
AND PCT.UNIT_SOLD AS 'PCT,SOLD,WITHIN,TABLE'
AND PCT.UNIT_SOLD WITHIN STORE_CODE AS 'PCT,SOLD,WITHIN,STORE'
BY STORE_CODE SKIP-LINE BY PROD_CODE
END

114 Information Builders

Manipulating Display Field Values in a Sort Group

The output is:

 PCT PCT
 SOLD SOLD
 WITHIN WITHIN
STORE_CODE PROD_CODE UNITS TABLE STORE
---------- --------- ----- ------ ------

K1 B10 13 2 30
 B12 29 4 69

14B B10 60 9 15
 B12 40 6 10
 B17 29 4 7
 C13 25 3 6
 C7 45 6 11
 D12 27 4 7
 E2 80 12 21
 E3 70 10 18

14Z B10 30 4 18
 B17 20 3 12
 B20 15 2 9
 C17 12 1 7
 D12 20 3 12
 E1 30 4 18
 E3 35 5 21

77F B20 25 3 38
 C7 40 6 61

Creating a Matrix Report
You can create a matrix report by sorting both rows and columns. When you include both
BY and ACROSS phrases in a report request, information is sorted vertically and horizontally,
turning the report into a matrix of information that you read like a grid. A matrix report can
have multiple BY and ACROSS sort fields.

Creating a Simple MatrixExample:

The following request displays total salary outlay across departments and by job codes,
creating a matrix report.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT
BY CURR_JOBCODE
END

Creating Reports 115

4. Sorting Tabular Reports

The output is:

 DEPARTMENT
 MIS PRODUCTION
CURR_JOBCODE
--
A01 . $9,500.00
A07 $9,000.00 $11,000.00
A15 . $26,862.00
A17 $27,062.00 $29,700.00
B02 $18,480.00 $16,100.00
B03 $18,480.00 .
B04 $21,780.00 $21,120.00
B14 $13,200.00 .

Creating a Matrix With Several Sort FieldsExample:

The following request uses several BY and ACROSS sort fields to create a matrix report.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT ACROSS LAST_NAME
BY CURR_JOBCODE BY ED_HRS
WHERE DEPARTMENT EQ 'MIS'
WHERE CURR_SAL GT 21500
END

The output is:

 DEPARTMENT
 MIS
 LAST_NAME
 BLACKWOOD CROSS
CURR_JOBCODE ED_HRS
--
A17 45.00 . $27,062.00
B04 75.00 $21,780.00 .

Specifying the Sort Order

In this section:

Specifying Your Own Sort Order

How to:

Specify the Sort Order

Sort field values are automatically displayed in ascending order, beginning with the lowest
value and continuing to the highest. The default sorting sequence varies for operating
systems. On z/OS and VM it is a-z, A-Z, 0-9 for alphanumeric fields; 0-9 for numeric fields.
On UNIX and Windows it is 0-9, A-Z, a-z for alphanumeric fields; 0-9 for numeric fields.

116 Information Builders

Specifying the Sort Order

You have the option of overriding this default and displaying values in descending order,
ranging from the highest value to the lowest value, by including HIGHEST in the sort phrase.

How to Specify the Sort OrderSyntax:

{BY|ACROSS} {LOWEST|HIGHEST} sortfield

where:

LOWEST

Sorts in ascending order, beginning with the lowest value and continuing to the highest
value (a-z, A-Z, 0-9 for alphanumeric fields; 0-9 for numeric fields). This option is the
default.

HIGHEST

Sorts in descending order, beginning with the highest value and continuing to the lowest
value. You can also use TOP as a synonym for HIGHEST.

sortfield

Is the name of the sort field.

Sorting in Ascending OrderExample:

The following report request does not specify a particular sorting order, and so, by default,
it lists salaries ranging from the lowest to the highest.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY CURR_SAL
END

You can specify this same ascending order explicitly by including LOWEST in the sort phrase.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY LOWEST CURR_SAL
END

Creating Reports 117

4. Sorting Tabular Reports

The output is:

 CURR_SAL LAST_NAME
 -------- ---------
 $9,000.00 GREENSPAN
 $9,500.00 SMITH
$11,000.00 STEVENS
$13,200.00 SMITH
$16,100.00 MCKNIGHT
$18,480.00 JONES
 MCCOY
$21,120.00 ROMANS
$21,780.00 BLACKWOOD
$26,862.00 IRVING
$27,062.00 CROSS
$29,700.00 BANNING

Sorting in Descending OrderExample:

The following request lists salaries ranging from the highest to lowest.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY HIGHEST CURR_SAL
END

The output is:

 CURR_SAL LAST_NAME
 -------- ---------
$29,700.00 BANNING
$27,062.00 CROSS
$26,862.00 IRVING
$21,780.00 BLACKWOOD
$21,120.00 ROMANS
$18,480.00 JONES
 MCCOY
$16,100.00 MCKNIGHT
$13,200.00 SMITH
$11,000.00 STEVENS
 $9,500.00 SMITH
 $9,000.00 GREENSPAN

118 Information Builders

Specifying the Sort Order

Specifying Your Own Sort Order

How to:

Define Your Own Sort Order

Define Column Sort Sequence

Reference:

Usage Notes for Defining Your Sort Order

Usage Notes for Defining Column Sort Sequence

Sort field values are automatically displayed in ascending order, beginning with the lowest
value and continuing to the highest.

You can override the default order and display values in your own user-defined sorting
sequence. To do this, you need to decide the following:

1. Which sort field values you want to allow. You can specify every sort field value, or a
subset of values. When you issue your report request, only records containing those
values are included in the report.

2. The order in which you want the values to appear. You can specify any order; for example,
you could specify that an A1 sort field containing a single-letter code be sorted in the
order A, Z, B, C, Y...

There are two ways to specify your own sorting order, depending on whether you are sorting
rows with BY, or sorting columns with ACROSS:

The BY ROWS OVER phrase, for defining your own row sort sequence.

The ACROSS COLUMNS AND phrase, for defining your own column sort sequence.

How to Define Your Own Sort OrderSyntax:

BY sortfield ROWS value1 OVER value2 [... OVER valuen]

where:

sortfield

Is the name of the sort field.

value1

Is the sort field value that is first in the sorting sequence.

value2

Is the sort field value that is second in the sorting sequence.

Creating Reports 119

4. Sorting Tabular Reports

valuen

Is the sort field value that is last in the sorting sequence.

An alternative syntax is

FOR sortfield value1 OVER value2 [... OVER valuen]

which uses the row-based reporting phrase FOR, described in Creating Financial Reports With
Financial Modeling Language (FML) on page 937.

Usage Notes for Defining Your Sort OrderReference:

Any sort field value that you do not specify in the BY ROWS OVER phrase is not included
in the sorting sequence, and does not appear in the report.

Sort field values that contain embedded blank spaces should be enclosed in single
quotation marks.

Any sort field value that you do specify in the BY ROWS OVER phrase is included in the
report, whether or not there is data.

The name of the sort field is not included in the report.

Each report request can contain only one BY ROWS OVER phrase. BY ROWS OVER is not
supported with the FOR phrase. For information about the FOR phrase, see Creating
Financial Reports With Financial Modeling Language (FML) on page 937.

Defining Your Row Sort OrderExample:

The following illustrates how to sort employees by the banks at which their paychecks are
automatically deposited, and how to define your own label in the sorting sequence for the
bank field.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY BANK_NAME ROWS 'BEST BANK' OVER STATE
 OVER ASSOCIATED OVER 'BANK ASSOCIATION'
END

The output is:

 LAST_NAME

BEST BANK BANNING
STATE JONES
ASSOCIATED IRVING
ASSOCIATED BLACKWOOD
ASSOCIATED MCKNIGHT
BANK ASSOCIATION CROSS

120 Information Builders

Specifying the Sort Order

How to Define Column Sort SequenceSyntax:

ACROSS sortfield COLUMNS value1 AND value2 [... AND valuen]

where:

sortfield

Is the name of the sort field.

value1

Is the sort field value that is first in the sorting sequence.

value2

Is the sort field value that is second in the sorting sequence.

valuen

Is the sort field value that is last in the sorting sequence.

Usage Notes for Defining Column Sort SequenceReference:

Any sort field value that you do not specify in the ACROSS COLUMNS AND phrase is not
included in the label within the sorting sequence, and does not appear in the report.

Sort field values that contain embedded blank spaces should be enclosed in single
quotation marks.

Any sort field value that you do specify in the ACROSS COLUMNS AND phrase is included
in the report, whether or not there is data.

When using a COMPUTE with an ACROSS COLUMNS phrase, the COLUMNS should be
specified last:

ACROSS acrossfield [AND] COMPUTE compute_expression; COLUMNS values

Each report request may contain only one BY ROWS OVER phrase.

Defining Column Sort SequenceExample:

The following illustrates how to sum employee salaries by the bank at which they are
automatically deposited, and to define your own label within the sorting sequence for the
bank field.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS BANK_NAME COLUMNS 'BEST BANK' AND STATE
 AND ASSOCIATED AND 'BANK ASSOCIATION'
END

Creating Reports 121

4. Sorting Tabular Reports

The output is:

BANK_NAME

BEST BANK STATE ASSOCIATED BANK ASSOCIATION

 $29,700.00 $18,480.00 $64,742.00 $27,062.00

Ranking Sort Field Values

How to:

Rank Sort Field Values

When you sort report rows using the BY phrase, you can indicate the numeric rank of each
row. Ranking sort field values is frequently combined with restricting sort field values by
rank.

Note that it is possible for several report rows to have the same rank if they have identical
sort field values.

The default column title for RANKED BY is RANK. You can change the title using an AS
phrase. The RANK field has format I7. Therefore, the RANK column in a report can be up to
seven digits.

You can rank aggregated values using the syntax RANKED BY TOTAL. For details, see Sorting
and Aggregating Report Columns on page 135.

How to Rank Sort Field ValuesSyntax:

RANKED [AS 'name'] BY sortfield

where:

sortfield

Is the name of the sort field. The field can be numeric or alphanumeric.

name

Is the new name for the RANK column title.

122 Information Builders

Ranking Sort Field Values

Ranking Sort Field ValuesExample:

Issue the following request to display a list of employee names in salary order, indicating
the rank of each employee by salary. Note that employees Jones and McCoy have the same
rank since their current salary is the same.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
RANKED AS 'Sequence' BY CURR_SAL
END

The output is:

Sequence CURR_SAL LAST_NAME
-------- -------- ---------
 1 $9,000.00 GREENSPAN
 2 $9,500.00 SMITH
 3 $11,000.00 STEVENS
 4 $13,200.00 SMITH
 5 $16,100.00 MCKNIGHT
 6 $18,480.00 JONES
 MCCOY
 7 $21,120.00 ROMANS
 8 $21,780.00 BLACKWOOD
 9 $26,862.00 IRVING
 10 $27,062.00 CROSS
 11 $29,700.00 BANNING

Ranking and Restricting Sort Field ValuesExample:

Ranking sort field values is frequently combined with restricting sort field values by rank, as
in the following example.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
RANKED BY HIGHEST 5 CURR_SAL
END

The output is:

RANK CURR_SAL LAST_NAME
---- -------- ---------
 1 $29,700.00 BANNING
 2 $27,062.00 CROSS
 3 $26,862.00 IRVING
 4 $21,780.00 BLACKWOOD
 5 $21,120.00 ROMANS

Creating Reports 123

4. Sorting Tabular Reports

Grouping Numeric Data Into Ranges

In this section:

Grouping Numeric Data Into Tiles

How to:

Define Groups of Equal Range

Define Equal Ranges

Define Custom Groups of Data Values

When you sort a report using a numeric sort field, you can group the sort field values together
and define the range of each group.

There are several ways of defining groups. You can define groups of:

Equal range using the IN-GROUPS-OF phrase.

Each report request can contain a total of five IN-GROUPS-OF phrases plus IN-RANGES-
OF phrases. The IN-GROUPS-OF phrase can only be used once per BY field. The first sort
field range starts from the lowest value of a multiple of the IN-GROUPS-OF value, and the
value displayed is the start point of each range.

Equal range using the IN-RANGES-OF phrase.

Each report request can contain a total of five IN-GROUPS-OF phrases plus IN-RANGES-
OF phrases. The IN-RANGES-OF phrase can only be used once per BY field. The first sort
field range starts from the lowest value of a multiple of the IN-GROUPS-OF value. No
message is generated if you specify a range of zero, but the values displayed on the
report are unpredictable.

Unequal range using the FOR phrase.

Tiles. These include percentiles, quartiles, or deciles. For details, see Grouping Numeric
Data Into Tiles on page 127.

The FOR phrase is usually used to produce matrix reports and is part of the Financial Modeling
Language (FML). However, you can also use it to create columnar reports that group sort
field values in unequal ranges.

The FOR phrase displays the sort value for each individual row. The ranges do not have to
be contiguous, that is, you can define your ranges with gaps between them. The FOR phrase
is described in more detail in Creating Financial Reports With Financial Modeling Language
(FML) on page 937.

Note: If there is not any data for a group, a row for the group still appears in the report.

124 Information Builders

Grouping Numeric Data Into Ranges

How to Define Groups of Equal RangeSyntax:

{BY|ACROSS} sortfield IN-GROUPS-OF value [TOP limit]

where:

sortfield

Is the name of the sort field. The sort field must be numeric: its format must be I (integer),
F (floating-point number), D (decimal number), or P (packed number).

value

Is a positive integer that specifies the range by which sort field values are grouped.

limit

Is an optional number that defines the highest group label to be included in the report.

Defining Groups of Equal RangesExample:

The following illustrates how to show which employees fall into which salary ranges, and to
define the ranges by $5,000 increments.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY CURR_SAL IN-GROUPS-OF 5000
END

The output is:

 CURR_SAL LAST_NAME
 -------- ---------
 $5,000.00 SMITH
 GREENSPAN
$10,000.00 STEVENS
 SMITH
$15,000.00 JONES
 MCCOY
 MCKNIGHT
$20,000.00 ROMANS
 BLACKWOOD
$25,000.00 BANNING
 IRVING
 CROSS

How to Define Equal RangesSyntax:

{BY|ACROSS} sortfield IN-RANGES-OF value [TOP limit]

where:

sortfield

Is the name of the sort field. The sort field must be numeric: its format must be I (Integer),
F (floating-point), D (double-precision), or P (packed).

Creating Reports 125

4. Sorting Tabular Reports

value

Is an integer greater than zero indicating the range by which sort field values are grouped.

limit

Is an optional number that defines the highest range label to be included in the report.
The range is extended to include all data values higher than this value.

Defining Equal RangesExample:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY CURR_SAL IN-RANGES-OF 5000
END

The output is:

CURR_SAL LAST_NAME
-------- ---------
 $5,000.00 - $9,999.99 SMITH
 GREENSPAN
 $10,000.00 - $14,999.99 STEVENS
 SMITH
 $15,000.00 - $19,999.99 JONES
 MCCOY
 MCKNIGHT
 $20,000.00 - $24,999.99 ROMANS
 BLACKWOOD
 $25,000.00 - $29,999.99 BANNING
 IRVING
 CROSS

How to Define Custom Groups of Data ValuesSyntax:

FOR sortfield begin1 TO end1 [OVER begin2 TO end2 ...]

where:

sortfield

Is the name of the sort field.

begin

Is a value that identifies the beginning of a range.

end

Is a value that identifies the end of a range.

126 Information Builders

Grouping Numeric Data Into Ranges

Defining Custom Groups of Data ValuesExample:

The following request displays employee salaries, but it groups them in an arbitrary way.
Notice that the starting value of each range prints in the report.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
FOR CURR_SAL
9000 TO 13500 OVER
14000 TO 19700 OVER
19800 TO 30000
END

The output is:

 LAST_NAME

9000 STEVENS
9000 SMITH
9000 SMITH
9000 GREENSPAN
14000 JONES
14000 MCCOY
14000 MCKNIGHT
19800 BANNING
19800 IRVING
19800 ROMANS
19800 BLACKWOOD
19800 CROSS

Grouping Numeric Data Into Tiles

How to:

Group Numeric Data Into Tiles

Reference:

Usage Notes for Tiles

You can group numeric data into any number of tiles (percentiles, deciles, quartiles, etc.)
in tabular reports. For example, you can group students' test scores into deciles to determine
which students are in the top ten percent of the class, or determine which salesmen are in
the top half of all salesmen based on total sales.

Grouping is based on the values in the selected vertical (BY) field, and data is apportioned
as equally as possible into the number of tile groups you specify.

Creating Reports 127

4. Sorting Tabular Reports

The following occurs when you group data into tiles:

A new column, labeled TILE by default, is added to the report output and displays the
tile number assigned to each instance of the tile field. You can change the column heading
with an AS phrase.

Tiling is calculated within all of the higher-level sort fields in the request, and restarts
whenever a sort field at a higher level than the tile field value changes.

Instances are counted using the tile field. If the request prints fields from lower level
segments, there may be multiple report lines that correspond to one instance of the tile
field.

128 Information Builders

Grouping Numeric Data Into Ranges

Instances with the same tile field value are placed in the same tile. For example, consider
the following data, which is to be apportioned into three tiles:

1 5 5 5 8 9

In this case, dividing the instances into groups containing an equal number of records
produces the following:

Data ValuesGroup

1,51

5,52

8,93

However, because all of the same data values must be in the same tile, the fives (5)
that are in group 2 are moved to group 1. Group 2 remains empty. The final tiles are:

Data ValuesTile Number

1,5,5,51

2

8,93

How to Group Numeric Data Into TilesSyntax:

BY [{HIGHEST|LOWEST} [k]] tilefield [AS 'head1']
 IN-GROUPS-OF n TILES [TOP m] [AS 'head2']

where:

HIGHEST

Sorts the data in descending order so that the highest data values are placed in tile 1.

LOWEST

Sorts the data in ascending order so that the lowest data values are placed in tile 1.
This is the default sort order.

Creating Reports 129

4. Sorting Tabular Reports

k

Is a positive integer representing the number of tile groups to display in the report. For
example, BY HIGHEST 2 displays the two non-empty tiles with the highest data values.

tilefield

Is the field whose values are used to assign the tile numbers.

head1

Is a heading for the column that displays the values of the tile sort field.

n

Is a positive integer not greater than 32,767, specifying the number of tiles to be used
in grouping the data. For example, 100 tiles produces percentiles, while 10 tiles produces
deciles.

m

Is a positive integer indicating the highest tile value to display in the report. For example,
TOP 3 does not display any data row that is assigned a tile number greater than 3.

head2

Is a new heading for the column that displays the tile numbers.

Note:

The syntax accepts numbers that are not integers for k, n, and m. On z/OS and VM,
values with decimals are rounded to integers; on UNIX and Windows they are truncated.
If the numbers supplied are negative or zero, an error message is generated.

Both k and m limit the number of rows displayed within each sort break in the report. If
you specify both, the more restrictive value controls the display. If k and m are both
greater than n (the number of tiles), n is used.

Grouping Data Into Five TilesExample:

The following illustrates how to group data into five tiles.

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LISTPR IN-GROUPS-OF 5 TILES
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

130 Information Builders

Grouping Numeric Data Into Ranges

The output is:

CATEGORY LISTPR TILE TITLE
-------- ------ ---- -----
ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 19.98 4 ROBOCOP
 19.99 5 TOTAL RECALL
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI
 29.95 4 ALICE IN WONDERLAND
 SLEEPING BEAUTY
 44.95 5 SHAGGY DOG, THE

Note that the tiles are assigned within the higher-level sort field CATEGORY. The ACTION
category does not have any data assigned to tile 3. The CHILDREN category has all five tiles.

Displaying the First Three Tile GroupsExample:

The following request prints only the first three tiles in each category:

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LOWEST 3 LISTPR IN-GROUPS-OF 5 TILES
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

CATEGORY LISTPR TILE TITLE
-------- ------ ---- -----
ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 19.98 4 ROBOCOP
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI

Note that the request displays three tile groups in each category. Because no data was
assigned to tile 3 in the ACTION category, tiles 1, 2, and 4 display for that category.

Creating Reports 131

4. Sorting Tabular Reports

Displaying Tiles With a Value of Three or LessExample:

In the following request, the TOP 3 phrase restricts the display to tile numbers less than or
equal to 3:

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LOWEST 3 LISTPR IN-GROUPS-OF 5 TILES TOP 3
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

 CATEGORY LISTPR TILE TITLE
 -------- ------ ---- -----
 ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI

Because no data was assigned to tile 3 in the ACTION category, only tiles 1 and 2 display
for that category.

Grouping Data Into Tiles and Customizing Column HeadingsExample:

The following request changes the column headings for both the LISTPR and TILE columns:

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LISTPR AS 'PRICE' IN-GROUPS-OF 10 TILES TOP 3 AS 'DECILE'
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

CATEGORY PRICE DECILE TITLE
-------- ----- ------ -----
ACTION 14.95 1 TOP GUN
 19.95 3 JAWS
 RAMBO III
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 2 ROMPER ROOM-ASK MISS MOLLY
 19.95 3 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF

132 Information Builders

Grouping Numeric Data Into Ranges

Usage Notes for TilesReference:

If a request retrieves data from segments that are descendants of the segment containing
the tile field, multiple report rows may correspond to one instance of the tile field. These
additional report rows do not affect the number of instances used to assign the tile
values. However, if you retrieve fields from multiple segments and create a single-segment
output file, this flat file will have multiple instances of the tile field, and this increased
number of instances may affect the tile values assigned. Therefore, when you run the
same request against the multi-level file and the single-segment file, different tile
assignments may result.

Tiles are always calculated on a BY sort field in the request.

Only one tiles calculation is supported per request. However, the request can contain up
to five (the maximum allowed) non-tile IN-GROUP-OF phrases in addition to the TILES
phrase.

Comparisons for the purpose of assigning tile numbers use exact data values regardless
of their display format. Therefore, if you display a floating-point value as D7, you may not
be showing enough significant digits to indicate why values are placed in separate tiles.

The tile field can be a real field or a virtual field created with a DEFINE command or a
DEFINE in the Master File. The COMPUTE command cannot be used to create a tile field.

Empty tiles do not display in the report output.

In requests with multiple sort fields, tiles are supported only at the lowest level and only
with the BY LOWEST phrase.

Tiles are supported with output files. However, the field used to calculate the tiles
propagates three fields to a HOLD file (the actual field value, the tile, and a ranking field)
unless you set HOLDLIST to PRINTONLY.

Tiles are not supported with BY TOTAL, TABLEF, FML, and GRAPH.

Restricting Sort Field Values by Highest/Lowest Rank

How to:

Restrict Sort Field Values by Highest/Lowest Rank

When you sort report rows using the BY phrase, you can restrict the sort field values to a
group of high or low values. You choose the number of fields to include in the report. For
example, you can choose to display only the 10 highest (or lowest) sort field values in your
report by using BY HIGHEST (or LOWEST).

You can have up to five sort fields with BY HIGHEST or BY LOWEST.

Creating Reports 133

4. Sorting Tabular Reports

How to Restrict Sort Field Values by Highest/Lowest RankSyntax:

BY {HIGHEST n|LOWEST n} sortfield

where:

HIGHEST n

Specifies that only the highest n sort field values are included in the report. TOP is a
synonym for HIGHEST.

LOWEST n

Specifies that only the lowest n sort field values are included in the report.

sortfield

Is the name of the sort field. The sort field can be numeric or alphanumeric.

Note: HIGHEST/LOWEST n refers to the number of sort field values, not the number of report
rows. If several records have the same sort field value that satisfies the HIGHEST/LOWEST
n criteria, all of them are included in the report.

Restricting Sort Field Values to a GroupExample:

The following request displays the names of the employees earning the five highest salaries.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY HIGHEST 5 CURR_SAL
END

The output is:

 CURR_SAL LAST_NAME
 -------- ---------
$29,700.00 BANNING
$27,062.00 CROSS
$26,862.00 IRVING
$21,780.00 BLACKWOOD
$21,120.00 ROMANS

134 Information Builders

Restricting Sort Field Values by Highest/Lowest Rank

Sorting and Aggregating Report Columns

In this section:

Restricting the Number of Columns in a Report

How to:

Sort and Aggregate a Report Column

Using the BY TOTAL phrase, you can apply aggregation and sorting simultaneously to numeric
columns in your report in one pass of the data. For BY TOTAL to work correctly, you must
have an aggregating display command such as SUM. A non-aggregating display command,
such as PRINT, simply retrieves the data without aggregating it. Records are sorted in either
ascending or descending sequence, based on your query. Ascending order is the default.

You can also use the BY TOTAL phrase to sort based on temporary values calculated by the
COMPUTE command.

Note: On z/OS and VM, the sort on the aggregated value is calculated using an external
sort package, even if EXTSORT = OFF.

How to Sort and Aggregate a Report ColumnSyntax:

[RANKED] BY [HIGHEST|LOWEST [n]]
 TOTAL {display_field|COMPUTE name/format=expression;}

where:

RANKED

Adds a column to the report in which a rank number is assigned to each aggregated sort
value in the report output. If multiple rows have the same ranking, the rank number only
appears in the first row.

n

Is the number of sort field values you wish to display in the report. If n is omitted, all
values of the calculated sort field are displayed. The default order is from lowest to
highest.

display_field

Can be a field name, a field name preceded by an operator (that is,
prefixoperator.fieldname), or a calculated value.

A BY TOTAL field is treated as a display field when the internal matrix is created. After
the matrix is created, the output lines are aggregated and re-sorted based on all of the
sort fields.

Creating Reports 135

4. Sorting Tabular Reports

Sorting and Aggregating Report ColumnsExample:

In this example, the average of the wholesale prices is calculated and used as a sort field,
and the highest two are displayed.

TABLE FILE MOVIES
SUM WHOLESALEPR CNT.WHOLESALEPR
BY CATEGORY
BY HIGHEST 2 TOTAL AVE.WHOLESALEPR AS 'AVE.WHOLESALEPR'
BY RATING
WHERE CATEGORY EQ 'CLASSIC' OR 'FOREIGN' OR 'MUSICALS'
END

The output is:

 WHOLESALEPR
CATEGORY AVE.WHOLESALEPR RATING WHOLESALEPR COUNT
-------- --------------- ------ ----------- -----------
CLASSIC 40.99 G 40.99 1
 16.08 NR 160.80 10
FOREIGN 31.00 PG 62.00 2
 23.66 R 70.99 3
MUSICALS 15.00 G 15.00 1
 13.99 PG 13.99 1
 R 13.99 1

Sorting, Aggregating, and Ranking Report ColumnsExample:

In this example, the average of the wholesale prices is calculated and used as a sort field,
and the highest two are displayed and ranked.

TABLE FILE MOVIES
SUM WHOLESALEPR CNT.WHOLESALEPR
BY CATEGORY
RANKED BY HIGHEST 2 TOTAL AVE.WHOLESALEPR AS 'AVE.WHOLESALEPR'
BY RATING
WHERE CATEGORY EQ 'CLASSIC' OR 'FOREIGN' OR 'MUSICALS'
END

The output is:

 WHOLESALEPR
CATEGORY RANK AVE.WHOLESALEPR RATING WHOLESALEPR COUNT
-------- ---- --------------- ------ ----------- -----------
CLASSIC 1 40.99 G 40.99 1
 2 16.08 NR 160.80 10
FOREIGN 1 31.00 PG 62.00 2
 2 23.66 R 70.99 3
MUSICALS 1 15.00 G 15.00 1
 2 13.99 PG 13.99 1
 R 13.99 1

136 Information Builders

Sorting and Aggregating Report Columns

Sorting and Aggregating Report Columns With COMPUTEExample:

In this example, the monthly salary is calculated using a COMPUTE within a sort field. The
two highest monthly salaries are displayed.

TABLE FILE EMPLOYEE
SUM SALARY CNT.SALARY
BY DEPARTMENT
BY HIGHEST 2 TOTAL COMPUTE MONTHLY_SALARY/D12.2M=SALARY/12;
AS 'HIGHEST,MONTHLY,SALARIES'
BY CURR_JOBCODE
END

The output is:

 HIGHEST
 MONTHLY SALARY
DEPARTMENT SALARIES CURR_JOBCODE SALARY COUNT
---------- -------- ------------ ------ ------
MIS $4,403.08 A17 $52,837.00 2
 $3,019.17 B03 $36,230.00 2
PRODUCTION $4,273.50 A15 $51,282.00 2
 $2,591.67 B02 $31,100.00 2

Restricting the Number of Columns in a Report
The maximum number of report columns created using the ACROSS phrase in a report is
255. The actual number of columns created by ACROSS depends on the number of:

fields being displayed.

values for each of these fields.

ACROSS and ACROSS-TOTAL phrases in the request.

Note: If you exceed the maximum number of ACROSS columns, a message displays.

Other factors that affect the number of ACROSS columns allowed in a report include the
sizes of:

Column titles created using the AS phrase.

Fields displayed in the report, since the maximum width of a report is 32K bytes.

Row totals, BY columns, SUBHEADs, SUBFOOTs, and fields used in headings and footings
do not count in calculating the number of ACROSS columns.

Creating Reports 137

4. Sorting Tabular Reports

Hiding Sort Values

How to:

Hide Sort Values

When you sort a report, you can omit the sort field value itself from the report by using the
phrase NOPRINT. This can be helpful in several situations; for instance, when you use the
same field as a sort field and a display field, or when you want to sort by a field but not
display its values in the report output.

How to Hide Sort ValuesSyntax:

{BY|ACROSS} sortfield {NOPRINT|SUP-PRINT}

where:

sortfield

Is the name of the sort field.

You can use SUP-PRINT as a synonym for NOPRINT.

Hiding Sort ValuesExample:

If you want to display a list of employee names sorted in alphabetical order, the following
request is insufficient.

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
END

The output lists the names in the order that they were entered into the data source:

LAST_NAME FIRST_NAME
--------- ----------
STEVENS ALFRED
SMITH MARY
JONES DIANE
SMITH RICHARD
BANNING JOHN
IRVING JOAN
ROMANS ANTHONY
MCCOY JOHN
BLACKWOOD ROSEMARIE
MCKNIGHT ROGER
GREENSPAN MARY
CROSS BARBARA

138 Information Builders

Hiding Sort Values

To list the employee names in alphabetical order, you would sort the report by the LAST_NAME
field and hide the sort field occurrence using the phrase NOPRINT.

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
BY LAST_NAME NOPRINT
END

This request generates the desired output:

LAST_NAME FIRST_NAME
--------- ----------
BANNING JOHN
BLACKWOOD ROSEMARIE
CROSS BARBARA
GREENSPAN MARY
IRVING JOAN
JONES DIANE
MCCOY JOHN
MCKNIGHT ROGER
ROMANS ANTHONY
SMITH MARY
SMITH RICHARD
STEVENS ALFRED

Sorting With Multiple Display Commands

In this section:

Controlling Formatting of Reports With Multiple Display Commands

A request can consist of up to sixteen sets of separate display commands (also known as
verb phrases), each with its own sort conditions. In order to display all of the information,
a meaningful relationship has to exist among the separate sort condition sets. The following
rules apply:

Up to sixteen display commands and their associated sort conditions can be used. The
first display command does not have to have any sort condition. Only the last display
command may be a detail command, such as PRINT or LIST; other preceding display
commands must be aggregating commands.

WHERE and IF criteria apply to the records selected for the report as a whole. WHERE
and IF criteria are explained in Selecting Records for Your Report on page 157.

Creating Reports 139

4. Sorting Tabular Reports

When a sort phrase is used with a display command, the display commands following it
must use the same sorting condition in the same order. For example:

TABLE FILE EMPLOYEE
SUM ED_HRS
SUM CURR_SAL CNT.CURR_SAL
BY DEPARTMENT
PRINT FIRST_NAME
BY DEPARTMENT
BY LAST_NAME
END

The first SUM does not have a sort condition. The second SUM has a sort condition: BY
DEPARTMENT. Because of this sort condition, the PRINT command must have BY
DEPARTMENT as the first sort condition, and other sort conditions may be added as
needed.

Using Multiple Display and Sort FieldsExample:

The following request summarizes several levels of detail in the data source.

TABLE FILE EMPLOYEE
SUM CURR_SAL
SUM CURR_SAL BY DEPARTMENT
SUM CURR_SAL BY DEPARTMENT BY LAST_NAME
END

The command SUM CURR_SAL calculates the total amount of current salaries; SUM
CURR_SAL BY DEPARTMENT calculates the total amounts of current salaries in each
department; SUM CURR_SAL BY DEPARTMENT BY LAST_NAME calculates the total amounts
of current salaries for each employee name.

The output is:

 CURR_SAL DEPARTMENT CURR_SAL LAST_NAME CURR_SAL
 -------- ---------- -------- --------- --------
$222,284.00 MIS $108,002.00 BLACKWOOD $21,780.00
 CROSS $27,062.00
 GREENSPAN $9,000.00
 JONES $18,480.00
 MCCOY $18,480.00
 SMITH $13,200.00
 PRODUCTION $114,282.00 BANNING $29,700.00
 IRVING $26,862.00
 MCKNIGHT $16,100.00
 ROMANS $21,120.00
 SMITH $9,500.00
 STEVENS $11,000.00

140 Information Builders

Sorting With Multiple Display Commands

Controlling Formatting of Reports With Multiple Display Commands

How to:

Control the Format of Reports With Multiple Display Commands

Style a Report With SET DUPLICATECOL=ON

You can use the SET DUPLICATECOL command to reformat report requests that use multiple
display commands, placing aggregated fields in the same column above the displayed field.

By default, each new display command in a request generates additional sort field and
display field columns. With DUPLICATECOL set to OFF, each field occupies only one column
in the request, with the values from each display command stacked under the values for
the previous display command.

How to Control the Format of Reports With Multiple Display CommandsSyntax:

SET DUPLICATECOL={ON|OFF}

where:

ON

Displays the report with each field as a column. This is the default value.

OFF

Displays the report with common fields as a row.

Displaying Reports With Multiple Display CommandsExample:

The following request sums current salaries and education hours for the entire EMPLOYEE
data source and for each department:

TABLE FILE EMPLOYEE
SUM CURR_SAL ED_HRS
SUM CURR_SAL ED_HRS BY DEPARTMENT
END

With DUPLICATECOL=ON, the output has separate columns for the grand totals and for the
departmental totals:

 CURR_SAL ED_HRS DEPARTMENT CURR_SAL ED_HRS
 -------- ------ ---------- -------- ------
$222,284.00 351.00 MIS $108,002.00 231.00
 PRODUCTION $114,282.00 120.00

Creating Reports 141

4. Sorting Tabular Reports

With DUPLICATECOL=OFF, the output has one column for each field. The grand totals are
on the top row of the report, and the departmental totals are on additional rows below the
grand totals:

DEPARTMENT CURR_SAL ED_HRS
---------- -------- ------
 $222,284.00 351.00
MIS $108,002.00 231.00
PRODUCTION $114,282.00 120.00

The following request adds a PRINT command sorted by department and by last name to
the previous request:

SET SPACES = 1
TABLE FILE EMPLOYEE
SUM CURR_SAL ED_HRS
SUM CURR_SAL ED_HRS BY DEPARTMENT AS 'DEPT'
PRINT FIRST_NAME CURR_SAL ED_HRS BY DEPARTMENT BY LAST_NAME
END

With DUPLICATECOL=ON, the output has separate columns for the grand totals, for the
departmental totals, and for each last name:

142 Information Builders

Sorting With Multiple Display Commands

With DUPLICATECOL=OFF, the output has one column for each field. The grand totals are
on the top row of the report, the departmental totals are on additional rows below the grand
totals, and the values for each last name are on additional rows below their departmental
totals:

DEPT LAST_NAME FIRST_NAME CURR_SAL ED_HRS
---- --------- ---------- -------- ------
 $222,284.00 351.00
MIS $108,002.00 231.00
 BLACKWOOD ROSEMARIE $21,780.00 75.00
 CROSS BARBARA $27,062.00 45.00
 GREENSPAN MARY $9,000.00 25.00
 JONES DIANE $18,480.00 50.00
 MCCOY JOHN $18,480.00 .00
 SMITH MARY $13,200.00 36.00
PRODUCTION $114,282.00 120.00
 BANNING JOHN $29,700.00 .00
 IRVING JOAN $26,862.00 30.00
 MCKNIGHT ROGER $16,100.00 50.00
 ROMANS ANTHONY $21,120.00 5.00
 SMITH RICHARD $9,500.00 10.00
 STEVENS ALFRED $11,000.00 25.00

How to Style a Report With SET DUPLICATECOL=ONSyntax:

In a StyleSheet, you can identify the rows you want to style by specifying which display
command created those rows:

VERBSET = n

where:

n

Is the ordinal number of the display command in the report request.

Styling Rows Associated With a Specific Display CommandExample:

The following request has two display commands:

1. SUM CURR_SAL ED_HRS BY DEPARTMENT (totals by department).

Creating Reports 143

4. Sorting Tabular Reports

2. PRINT FIRST_NAME CURR_SAL ED_HRS BY DEPARTMENT BY LAST_NAME (values by
employee by department).

SET DUPLICATECOL = OFF
TABLE FILE EMPLOYEE
SUM CURR_SAL ED_HRS BY DEPARTMENT
PRINT FIRST_NAME CURR_SAL ED_HRS BY DEPARTMENT BY LAST_NAME ON TABLE
 HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE = REPORT, COLUMN= P4, VERBSET = 1, STYLE = ITALIC, COLOR=BLUE,$
TYPE = REPORT, COLUMN= B2, VERBSET = 2, STYLE = UNDERLINE, COLOR = RED,$
ENDSTYLE
END

On the output:

The fourth displayed column (P4, department total of CURR_SAL) for the SUM command
is italic and blue.

The second BY field (LAST_NAME) for the PRINT command is underlined and red.

When you style specific columns, using P notation means that you count every column that
displays on the report output, including BY columns. Therefore, P1 is the DEPARTMENT
column, P2 is the LAST_NAME column (this is also B2, the second BY field column), P3 is
the FIRST_NAME column, P4 is the displayed version of the CURR_SAL column (the internal
matrix has multiple CURR_SAL columns), and P5 is the displayed ED_HRS column (the
internal matrix has multiple ED_HRS columns).

144 Information Builders

Sorting With Multiple Display Commands

The output is:

Creating Reports 145

4. Sorting Tabular Reports

Improving Efficiency With External Sorts

In this section:

Providing an Estimate of Input Records or Report Size for Sorting

Mainframe External Sort Utilities and Message Options

Aggregation by External Sort (Mainframe Environments Only)

Changing Retrieval Order With Aggregation

Creating a HOLD File With an External Sort

How to:

Determine the Type of Sort Used

Control External Sorting

Query the Sort Type

Reference:

Requirements for External Sorting

When a report is generated, by default it is sorted using an internal sorting procedure. This
sorting procedure is optimized for reports of up to approximately 180 to 200K, although
many factors affect the size of the data that can be handled by the internal sort.

The FOCSORT file used for the internal sort can grow to any size allowed by the operating
system running and the available disk space. The user does not have to break a request up
to accommodate massive files. In previous releases, the FOCSORT file was limited to 2 GB
and the user received a FOC298 message when the FOCUS limit was exceeded. With no
limit enforced by FOCUS, the operating system provides whatever warning and error handling
it has for the management of a FOCSORT file that exceeds its limits.

You can generate larger reports somewhat faster by using dedicated sorting products, such
as SyncSort, or DFSORT.

To use an external sort, the EXTSORT parameter must be ON. Use of a StyleSheet turns off
external sorting.

Note that in Mainframe environments, external sorting is supported with the French, Spanish,
German, and Scandinavian National Languages (Swedish, Danish, Finnish, and Norwegian).
To specify the National Language Support Environment, use the LANG parameter as described
in the Developing Applications manual.

146 Information Builders

Improving Efficiency With External Sorts

Requirements for External SortingReference:

You can use the DFSORT and SyncSort external sort products with any TABLE, FML, GRAPH,
or MATCH request.

How to Determine the Type of Sort UsedProcedure:

To determine which sort is used, the following criteria are evaluated, in this sequence:

1. BINS. If an entire report can be sorted within the work area (BINS), the external sort is
not invoked, even if EXTSORT is set ON.

2. EXTERNAL. If BINS is not large enough to sort the entire report and EXTSORT is set
ON, the external sort utility will be invoked.

How to Control External SortingSyntax:

You can turn the external sorting feature on and off using the SET EXTSORT command.

SET EXTSORT = {ON|OFF}

where:

ON

Enables the selective use of a dedicated external sorting product to sort reports. This
value is the default.

OFF

Uses the internal sorting procedure to sort all reports.

How to Query the Sort TypeSyntax:

To determine which sort is being used for a given report, issue the following command after
the report request:

? STAT

The command displays the following values for the SORT USED parameter:

FOCUS

The internal sorting procedure was used to sort the entire report.

SQL

You are using a relational data source and the RDBMS supplied data already in order.

EXTERNAL

An external sorting product sorted the report.

Creating Reports 147

4. Sorting Tabular Reports

NONE

The report did not require sorting.

Providing an Estimate of Input Records or Report Size for Sorting

How to:

Provide an Estimate of Input Records or Report Size for Sorting

There are two advantages to providing an estimate for the input size (ESTRECORDS) or the
report size (ESTLINES):

If the request cannot be converted to a TABLEF request and the file size estimate shows
that the external sort will be needed, FOCUS initiates the external sort immediately, which
makes a FOCUS merge unnecessary. Without the estimate, such a request always
performs this merge.

In Mainframe environments, FOCUS passes the file size to the external sort, which enables
it to allocate work files of the appropriate size.

How to Provide an Estimate of Input Records or Report Size for SortingSyntax:

From the command line:

SET ESTRECORDS = n
SET ESTLINES = n

In a request:

ON TABLE SET ESTRECORDS nON TABLE SET ESTLINES n

where:

n

Is the estimated number of records or lines to be sorted.

Note: These parameters cannot be set in FOCPARM.

148 Information Builders

Improving Efficiency With External Sorts

Mainframe External Sort Utilities and Message Options

In this section:

Diagnosing External Sort Errors

How to:

Select a Sort Utility and Message Options

By default, error messages created by a Mainframe external sort product are not displayed.
However, you may wish to display these messages on your screen for diagnostic purposes.

How to Select a Sort Utility and Message OptionsProcedure:

You use the SET SORTLIB command to both specify the sort utility used at your site and,
for DFSORT and SYNCSORT on z/OS, to display sort messages.

1. Issue the SET SORTLIB command to specify the sort utility being used:

SET SORTLIB = {sortutility|DEFAULT}

where:

sortutility

Can be one of the following:

VMSORT for VMSORT on z/VM. On z/OS, this becomes DFSORT.

DFSORT for DFSORT on z/VM or DFSORT without messages on z/OS.

MVSMSGDF for DFSORT on z/VM or DFSORT with messages on z/OS.

SYNCSORT for SyncSort on z/VM or SyncSort without messages on z/OS.

MVSMSGSS for SyncSort on z/VM or SyncSort with standard messages on z/OS.

MVSMSGSD for SyncSort on z/VM or SyncSort with debug (verbose) messages on
z/OS.

DEFAULT for VMSORT on z/VM or DFSORT on z/OS. However, It is more efficient
and highly recommended that you explicitly specify the sort utility using one of the
other values.

Creating Reports 149

4. Sorting Tabular Reports

2. If you specified a sort option that produces sort messages on z/OS, you must direct
the sort messages to the batch output stream, a file, or the terminal. On z/VM, you
must FILEDEF DDNAMEs SYSOUT and SORTRACE in order to generate sort messages.

Allocate DDNAME SYSOUT to the batch output stream or a file on z/OS by inserting the
appropriate following DD card into your FOCUS batch JCL, if it is not already there. For
example, the following DD card allocates DDNAME SYSOUT to the batch output stream:

//SYSOUT DD SYSOUT=*

Online, the following ALLOCATE command allocates DDNAME SYSOUT to the terminal:

ALLOC F(SYSOUT) DA(*) REU

On z/VM, you must FILEDEF DDNAMEs SORTRACE (to generate sort messages) and
DDNAME SYSOUT (to print the messages) after issuing the SET SORTLIB command to
specify the sort utility.

If you want to send sort messages to the terminal on z/VM, Issue the following FILEDEF
commands after issuing the SET SORTLIB command to specify the sort utility:

CMS FILEDEF SYSOUT TERM (PERM
CMS FILEDEF SORTRACE TERM (PERM

Diagnosing External Sort Errors

When an external sort generates an error, you can generate a trace of sort processing and
examine the FOCUS return codes and messages to diagnose the problem.

How to Trace Sort ProcessingProcedure:

When an external sort problem occurs, one of the following messages is generated:

(FOC909) CRITICAL ERROR IN EXTERNAL SORT. RETURN CODE IS: xxxx
(FOC1810) External sort not found
(FOC1899) Load of %1 (external-sort module) under %2 failed

In response to these messages, as well as for any other problem with sorting, it is useful
to trace sort processing. For information on diagnosing external sort problems, see Diagnosing
External Sort Errors on page 150.

1. Allocate (on z/OS) or FILEDEF (on z/VM) DDNAME FSTRACE to the terminal or a file. The
following example sends trace output to the terminal:

//FSTRACE DD SYSOUT=*,DCB=(RECFM=FA,LRECL=133,BLKSIZE=133)

or

FILEDEF FSTRACE TERM (RECFM FA LRECL 133 BLKSIZE 133 PERM

150 Information Builders

Improving Efficiency With External Sorts

2. Activate the trace by adding the following commands in any supported profile or a
FOCEXEC:

SET TRACEUSER = ON
SET TRACEON = SORT/1/FSTRACE

External Sort Messages and Return CodesReference:

When you receive a FOC909 message, it includes a return code:

(FOC909) CRITICAL ERROR IN EXTERNAL SORT. RETURN CODE IS: xxxx

You may also receive one of the following messages:

(FOC1810) External sort not found
(FOC1899) Load of %1 (external-sort module) under %2 failed

The following notes apply when this message or a FOC1800 or FOC1899 message is
generated by a TABLE request:

The most common value for xxxx is 16. However, return code 16 is issued for a number
of problems, including but not limited to the following:

Syntax errors.

Memory shortage.

I/O errors (depending on installation options).

Space problems with output.

Space problems with work files.

In order to diagnose the error, you must generate external sort messages (using the
instructions in How to Select a Sort Utility and Message Options on page 149 and How to
Trace Sort Processing on page 150) and then reproduce the failure.

For return codes not described below, follow the same procedure described for return
code 16.

Return code 20 is issued by DFSORT under z/OS if messages were requested (using the
MVSMSGDJ option of the SET SORTLIB command), but the SYSOUT DD card is missing.
DFSORT terminates after issuing the return code. Under the same conditions, SyncSort
attempts to open SYSOUT, producing the following message, and then continues with
messages written to the operator or terminal:

IEC130I SYSOUT DD STATEMENT MISSING.

Creating Reports 151

4. Sorting Tabular Reports

On z/VM, return code 24 or a FOC1810 message means that the external sort could not
be found. Take the following steps:

1. Global the sort library before executing FOCUS.

One of the following examples may apply:

GLOBAL TXTLIB VMSLIB

or

GLOBAL TXTLIB SYNCSORT

2. Ensure that the FOCADLIB EXEC is accessed. This EXEC is usually on the FOCUS
production disk. This is the EXEC used by the sort routines to GLOBAL the SORT
TXTLIBs.

3. The sort library SORTLIB, if found, will automatically be accessed. If no SORTLIB TXTLIB
is accessed before executing FOCUS, this might be the problem. Make a copy of the
current sort TXTLIB named as SORTLIB TXTLIB on any accessed disk.

Return code 36 or a FOC1899 message under z/OS means that the external sort module
could not be found; check the STEPLIBs allocated.

When REBUILD INDEX invokes an external sort that fails, it generates a message similar to
the following:

ERROR OCCURRED IN THE SORT yyyyyyyyzzzzzzzz

In this case, the return code is yyyyyyyy and it is expressed in hex. The final eight digits
(zzzzzzzz) should be ignored.

Translate the return code into decimal and follow the instructions for return codes in a TABLE
request.

Note also that when a TABLE request generates a non-zero return code from an external
sort, FOCUS is terminated. By contrast, when REBUILD INDEX gets a non-zero return code
from an external sort, the REBUILD command is terminated but FOCUS continues.

Responding to an Indication of Inadequate Sort Work SpaceReference:

Before following these instructions, make sure that external sort messages were generated
(for information, see How to Select a Sort Utility and Message Options on page 149) and that
they clearly show that the reason for failure was inadequate sort work space.

1. Make an estimate of the number of lines of output the request will produce.

2. Set the ESTLINES parameter in the request or FOCEXEC. For information, see Providing
an Estimate of Input Records or Report Size for Sorting on page 148.

152 Information Builders

Improving Efficiency With External Sorts

FOCUS will pass this estimate to the external sort utility through the parameter list.

Do not override the DD cards for SORTWKnn, S001WKnn, DFSPARM, or $ORTPARM
without direct instructions from technical support. The instructions in How to Select a
Sort Utility and Message Options on page 149, How to Trace Sort Processing on page 150,
and Providing an Estimate of Input Records or Report Size for Sorting on page 148 should
provide equivalent capabilities.

Aggregation by External Sort (Mainframe Environments Only)

How to:

Use Aggregation in Your External Sort

Reference:

Usage Notes for Aggregating With an External Sort

External sorts can be used to perform aggregation with a significant decrease in processing
time in comparison to using the internal sort facility. The gains are most notable with relatively
simple requests against large data sources.

When aggregation is performed by an external sort, the statistical variables &RECORDS and
&LINES are equal because the external sort products do not return a line count for the
answer set. This is a behavior change, and affects any code that checks the value of &LINES.
(If you must test &LINES, do not use this feature.)

How to Use Aggregation in Your External SortSyntax:

SET EXTAGGR = aggropt

where:

aggropt

Can be one of the following:

OFF disallows aggregation by an external sort.

NOFLOAT allows aggregation if there are no floating point data fields present.

ON allows aggregation by an external sort. This value is the default.

Usage Notes for Aggregating With an External SortReference:

You must use SyncSort or DFSORT.

Your query should be simple (that is, it should be able to take advantage of the TABLEF
facility).

Creating Reports 153

4. Sorting Tabular Reports

The PRINT display command may not be used in the query.

SET ALL must be equal to OFF.

Only the following column prefixes are allowed: SUM, AVG, CNT, FST.

Columns can be calculated values or have a row total.

CMS DFSORT does not support aggregation of numeric data types.

When SET EXTAGGR = NOFLOAT and your query aggregates numeric data, the external
sort is not called, and aggregation is performed through the internal sorting procedure.

Changing Output by Using an External Sort for AggregationExample:

If you use SUM on an alphanumeric field in your report request without using an external
sort, the last instance of the sorted fields is displayed in the output. Turning on aggregation
in the external sort displays the first record instead. However, you can control the order of
display using the SUMPREFIX parameter. With SUMPREFIX = LST (the default), the last
instance displays even with EXTAGGR = ON.

The following command turns aggregation ON and leaves SUMPREFIX set to LST (the default)
and, therefore, displays the last record:

SET EXTAGGR = ON
SET SUMPREFIX = LST
TABLE FILE CAR
SUM CAR BY COUNTRY
END

The output is:

COUNTRY CAR
------- ---
ENGLAND TRIUMPH
FRANCE PEUGEOT
ITALY MASERATI
JAPAN TOYOTA
W GERMANY BMW

Note: SUMPREFIX is described in Changing Retrieval Order With Aggregation on page 155.

With SUMPREFIX = FST, the output is:

COUNTRY CAR
------- ---
ENGLAND JAGUAR
FRANCE PEUGEOT
ITALY ALFA ROMEO
JAPAN DATSUN
W GERMANY AUDI

154 Information Builders

Improving Efficiency With External Sorts

Changing Retrieval Order With Aggregation

How to:

Set Retrieval Order

When an external sort product performs aggregation of alphanumeric or smart date formats,
the order of the answer set returned differs from the order of the internally sorted answer
sets.

External sort products return the first alphanumeric or smart date record that was aggregated.
Conversely, internal sorting returns the last record.

The SUMPREFIX command allows users to choose the answer set display order.

How to Set Retrieval OrderSyntax:

SET SUMPREFIX = {LST|FST}

where:

LST

Displays the last value when alphanumeric or smart date data types are aggregated.
This value is the default.

FST

Displays the first value when alphanumeric or smart date data types are aggregated.

Creating a HOLD File With an External Sort

How to:

Create HOLD Files With an External Sort

Reference:

Usage Notes for Creating a HOLD File With an External Sort

You can use Mainframe external sort packages to create HOLD files, producing substantial
savings in processing time. The gains are most notable with relatively simple requests
against large data sources.

Creating Reports 155

4. Sorting Tabular Reports

How to Create HOLD Files With an External SortSyntax:

SET EXTHOLD = {OFF|ON}

where:

OFF

Disables HOLD files by an external sort.

ON

Enables HOLD files by an external sort. This value is the default.

Usage Notes for Creating a HOLD File With an External SortReference:

The default setting of EXTSORT=ON must be in effect.

EXTHOLD must be ON.

The request must contain a BY field.

The type of HOLD file created must be a FOCUS, XFOCUS, ALPHA, or BINARY file.

Your query should be simple. AUTOTABLEF analyzes a query and determines whether the
combination of display commands and formatting options requires the internal matrix.
In cases where it is determined that a matrix is not necessary to satisfy the query, you
may avoid the extra internal costs associated with creating the matrix. The internal matrix
is stored in a file or data set named FOCSORT. The AUTOTABLEF default is ON, in order
to realize performance gains.

SET ALL must be OFF.

There cannot be an IF/WHERE TOTAL or BY TOTAL in the request.

If a request contains a SUM command, EXTAGGR must be set ON, and the only column
prefixes allowed are SUM. and FST.

156 Information Builders

Improving Efficiency With External Sorts

FOCUS

Selecting Records for Your Report5
Topics:

When generating a report and selecting
fields, you may not want to include every
instance of a field. By including selection
criteria, you can display only those field
values that meet your needs. In effect,
you can select a subset of data that you
can easily redefine each time you issue
the report request.

Selecting Records Overview

Choosing a Filtering Method

Selections Based on Individual Values

Selection Based on Aggregate Values

Using Compound Expressions for
Record Selection

Using Operators in Record Selection
Tests

Types of Record Selection Tests

Selections Based on Group Key Values

Setting Limits on the Number of
Records Read

Selecting Records Using IF Phrases

Reading Selection Values From a File

Assigning Screening Conditions to a
File

VSAM Record Selection Efficiencies

Creating Reports 157

Selecting Records Overview
When developing a report request, you can define criteria that select records based on a
variety of factors:

The values of an individual field. See Selections Based on Individual Values on page 159.

The aggregate value of a field (for example, the sum or average of field values). See
Selection Based on Aggregate Values on page 167.

The existence of missing values for a field, whether field values fall within a range, or
whether a field does not contain a certain value. See Types of Record Selection Tests on
page 174.

The number of records that exist for a field (for example, the first 50 records), rather
than on the field values. See Setting Limits on the Number of Records Read on page 189.

For non-FOCUS data sources that have group keys, you can select records based on
group key values. See Selections Based on Group Key Values on page 188.

In addition, you can take advantage of a variety of record selection efficiencies, including
assigning filtering criteria to a data source and reading selection values from a file.

Choosing a Filtering Method
There are two phrases for selecting records: WHERE and IF. It is recommended that you use
WHERE to select records. IF offers a subset of the functionality of WHERE. Everything that
you can accomplish with IF, you can also accomplish with WHERE. WHERE can accomplish
things that IF cannot.

If you used IF to select records in the past, remember that WHERE and IF are two different
phrases, and may require different syntax to achieve the same result.

WHERE syntax is described and illustrated throughout this topic. For details on IF syntax,
see Selecting Records Using IF Phrases on page 190.

158 Information Builders

Selecting Records Overview

Selections Based on Individual Values

In this section:

Controlling Record Selection in Multi-path Data Sources

How to:

Select Records With WHERE

Reference:

Usage Notes for WHERE Phrases

The WHERE phrase selects records from the data source to be included in a report. The
data is evaluated according to the selection criteria before it is retrieved from the data
source.

You can use as many WHERE phrases as necessary to define your selection criteria. For an
illustration, see Using Multiple WHERE Phrases on page 161. For additional information, see
Using Compound Expressions for Record Selection on page 169.

Note: Multiple selection tests on fields that reside on separate paths of a multi-path data
source are processed as though connected by either AND or OR operators, based on the
setting of a parameter called MULTIPATH. For details, see Controlling Record Selection in
Multi-path Data Sources on page 162.

How to Select Records With WHERESyntax:

WHERE criteria [;]

where:

criteria

Are the criteria for selecting records to include in the report. The criteria must be defined
in a valid expression that evaluates as true or false (that is, a Boolean expression).
Expressions are described in detail in Using Expressions on page 323. Operators that can
be used in WHERE expressions (such as, CONTAINS, IS, and GT), are described in
Operators Supported for WHERE and IF Tests on page 171.

;

Is an optional semicolon that can be used to enhance the readability of the request. It
does not affect the report.

Creating Reports 159

5. Selecting Records for Your Report

Usage Notes for WHERE PhrasesReference:

The WHERE phrase can include:

Most expressions that would be valid on the right-hand side of a DEFINE expression.
However, the logical expression IF ... THEN ... ELSE cannot be used.

Real fields, temporary fields, and fields in joined files. If a field name is enclosed in single
or double quotation marks, it is treated as a literal string, not a field reference.

The operators EQ, NE, GE, GT, LT, LE, CONTAINS, OMITS, FROM ... TO, NOT-FROM ... TO,
INCLUDES, EXCLUDES, LIKE, and NOT LIKE.

All arithmetic operators (+, -, *, /, **), as well as, functions (MIN, MAX, ABS, and SQRT).

An alphanumeric expression, which can be a literal, or a function yielding an alphanumeric
or numeric result using EDIT or DECODE.

Note that files used with DECODE expressions can contain two columns, one for field
values and one for numeric decode values.

Alphanumeric and date literals enclosed in single quotation marks and date-time literals
in the form DT (date-time literal).

A date literal used in a selection test against a date field cannot contain the day of the
week value.

Text fields. However, the only operators supported for use with text fields are CONTAINS
and OMITS.

All functions.

You can build complex selection criteria by joining simple expressions with AND and OR
logical operators and, optionally, adding parentheses to specify explicitly the order of
evaluation. This is easier than trying to achieve the same effect with the IF phrase, which
may require the use of a separate DEFINE command. For details, see Using Compound
Expressions for Record Selection on page 169.

Selecting Records for Partitioned FOCUS Data SourcesReference:

When you are reporting from a partitioned FOCUS data source, if your selection criteria are
based on the same fields used to place data in the partitions, only those partitions with
relevant data are opened for retrieval. For details on partitioned FOCUS data sources, see
the Describing Data manual.

160 Information Builders

Selections Based on Individual Values

Using a Simple WHERE TestExample:

To show only the names and salaries of employees earning more than $20,000 a year,
issue the following request:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND CURR_SAL
BY LAST_NAME NOPRINT
WHERE CURR_SAL GT 20000
END

In this example, CURR_SAL is a selected field, and CURR_SAL GT 20000 is the selection
criterion. Only those records with a current salary greater than $20,000 are retrieved; all
other records are ignored.

The output is:

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
BANNING JOHN $29,700.00
BLACKWOOD ROSEMARIE $21,780.00
CROSS BARBARA $27,062.00
IRVING JOAN $26,862.00
ROMANS ANTHONY $21,120.00

Using Multiple WHERE PhrasesExample:

You can use as many WHERE phrases as necessary to define your selection criteria. This
request uses multiple WHERE phrases so that only those employees in the MIS or Production
departments with the last name of Cross or Banning are included in the report.

TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME
WHERE SALARY GT 20000
WHERE DEPARTMENT IS 'MIS' OR 'PRODUCTION'
WHERE LAST_NAME IS 'CROSS' OR 'BANNING'
END

The output is:

EMP_ID LAST_NAME
------ ---------
119329144 BANNING
818692173 CROSS

For related information, see Using Compound Expressions for Record Selection on page 169.

Creating Reports 161

5. Selecting Records for Your Report

Controlling Record Selection in Multi-path Data Sources

How to:

Control Record Selection in Multi-path Data Sources

Reference:

Requirements and Usage Notes for MULTIPATH = COMPOUND

MULTIPATH and SET ALL Combinations

Rules for Determining If a Segment Is Required

When you report from a multi-path data source, a parent segment may have children down
some paths, but not others. The MULTIPATH parameter allows you to control whether such
a parent segment is omitted from the report output.

The MULTIPATH setting also affects the processing of selection tests on independent paths.
If MULTIPATH is set to:

COMPOUND, WHERE or IF tests on separate paths are treated as if they are connected
by an AND operator. That is, all paths must pass the screening tests in order for the
parent to be included in the report output.

SIMPLE, WHERE or IF tests on separate paths are considered independently, as if an OR
operator connected them. Therefore, a parent instance is included in the report if at least
one of the paths passes its screening test. A warning message is produced, indicating
that if the request contains a test on one path, data is also retrieved from another,
independent path. Records on the independent path are retrieved regardless of whether
the condition is satisfied on the tested path.

The MULTIPATH settings apply in all types of data sources and in all reporting environments
(TABLE, TABLEF, MATCH, GRAPH, and requests with multiple display commands). MULTIPATH
also works with alternate views, indexed views, filters, DBA, and joined structures.

How to Control Record Selection in Multi-path Data SourcesSyntax:

To set MULTIPATH from the command level or in a stored procedure, use

SET MULTIPATH = {SIMPLE|COMPOUND}

162 Information Builders

Selections Based on Individual Values

To set MULTIPATH in a report request, use

ON TABLE SET MULTIPATH {SIMPLE|COMPOUND}

where:

SIMPLE

Is the default value. Includes a parent segment in the report output if:

It has at least one child that passes its screening conditions.

Note: A unique segment is considered a part of its parent segment, and therefore
does not invoke independent path processing.

It lacks any referenced child on a path, but the child is optional.

The (FOC144) warning message is generated when a request screens data in a multi-
path report:

(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA

COMPOUND

Includes a parent in the report output if it has all of its required children. WHERE or IF
tests on separate paths are treated as if they are connected by an AND operator. That
is, all paths must pass the screening tests in order for the parent to be included in the
report output.

For related information, see MULTIPATH and SET ALL Combinations on page 165 and Rules
for Determining If a Segment Is Required on page 166.

Requirements and Usage Notes for MULTIPATH = COMPOUNDReference:

The minimum memory requirement for the MULTIPATH = COMPOUND setting is 4K per
active segment. If there is insufficient memory, the SIMPLE setting is implemented and
a message is returned.

There is no limit to the number of segment instances (rows). However, no single segment
instance can have more than 4K of active fields (referenced fields or fields needed for
retrieving referenced fields). If this limit is exceeded, the SIMPLE setting is implemented
and a message is returned.

SET MULTIPATH = COMPOUND creates a pool boundary when reports are pooled.

WHERE criteria that screen on more than one path with the OR operator are not supported.

Creating Reports 163

5. Selecting Records for Your Report

Retrieving Data From Multiple PathsExample:

This example uses the following segments from the EMPLOYEE data source:

The request that follows retrieves data from both paths with MULTIPATH = SIMPLE, and
displays data if either criterion is met:

SET ALL = OFF
SET MULTIPATH = SIMPLE
TABLE FILE EMPLOYEE
PRINT GROSS DATE_ATTEND COURSE_NAME
BY LAST_NAME BY FIRST_NAME
WHERE PAY_DATE EQ 820730
WHERE COURSE_CODE EQ '103'
END

The following warning message is generated:

(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA

Although several employees have not taken any courses, they are included in the report
output since they have instances on one of the two paths.

164 Information Builders

Selections Based on Individual Values

The output is:

LAST_NAME FIRST_NAME GROSS DATE_ATTEND COURSE_NAME
--------- ---------- ----- ----------- -----------
BLACKWOOD ROSEMARIE $1,815.00 . .
CROSS BARBARA $2,255.00 . .
GREENSPAN MARY $750.00 . .
IRVING JOAN $2,238.50 . .
JONES DIANE $1,540.00 82/05/26 BASIC REPORT PREP FOR PROG
MCKNIGHT ROGER $1,342.00 . .
ROMANS ANTHONY $1,760.00 . .
SMITH MARY $1,100.00 81/11/16 BASIC REPORT PREP FOR PROG
 RICHARD $791.67 . .
STEVENS ALFRED $916.67 . .

If you run the same request with MULTIPATH = COMPOUND, the employees without instances
for COURSE_NAME are omitted from the report output, and the warning message is not
generated.

The output is:

LAST_NAME FIRST_NAME GROSS DATE_ATTEND COURSE_NAME
--------- ---------- ----- ----------- -----------
JONES DIANE $1,540.00 82/05/26 BASIC REPORT PREP FOR PROG
SMITH MARY $1,100.00 81/11/16 BASIC REPORT PREP FOR PROG

MULTIPATH and SET ALL CombinationsReference:

The ALL parameter affects independent path processing. The following table uses examples
from the EMPLOYEE data source to explain the interaction of ALL and MULTIPATH.

MULTIPATH=COMPOUNDMULTIPATH=SIMPLERequest

Shows employees who have
both SALINFO and
ATTNDSEG data.

Shows employees who have
either SALINFO data or
ATTNDSEG data.

SET ALL = OFF
PRINT EMP_ID
PAY_DATE DATE_ATTEND

Same as SIMPLE.Shows employees who have
SALINFO data or ATTNDSEG
data or no child data at all.

SET ALL = ON
PRINT EMP_ID
PAY_DATE DATE_ATTEND

Shows employees who have
both SALINFO data for
980115 and ATTNDSEG
data.

Shows employees who have
either SALINFO data for
980115 or any ATTNDSEG
data.

Produces (FOC144) message.

SET ALL = OFF
PRINT EMP_ID
PAY_DATE DATE_ATTEND
WHERE PAY_DATE EQ
980115

Creating Reports 165

5. Selecting Records for Your Report

MULTIPATH=COMPOUNDMULTIPATH=SIMPLERequest

Shows employees who have
SALINFO data for 980115.
Any DATE_ATTEND data is
also shown.

Shows employees who have
either SALINFO data for
980115 or any ATTNDSEG
data.

Produces (FOC144) message.

SET ALL = ON
PRINT EMP_ID
PAY_DATE DATE_ATTEND
WHERE PAY_DATE EQ
980115

Shows employees who have
SALINFO data for 980115.
Any DATE_ATTEND data is
also shown.

Shows employees who have
either SALINFO data for
980115 or any ATTNDSEG
data.

Produces (FOC144) message.

SET ALL = OFF
PRINT ALL.EMP_ID
DATE_ATTEND
WHERE PAY_DATE EQ
980115

Shows employees who have
both SALINFO data for
980115 and COURSE 103.

Shows employees who have
either SALINFO data for
980115 or COURSE 103.

Note: SIMPLE treats AND in
the WHERE clause as OR.

Produces (FOC144) message.

SET ALL = ON or OFF
PRINT EMP_ID
PAY_DATE DATE_ATTEND
WHERE PAY_DATE EQ
980115 AND
COURSE_CODE EQ
'103'

Note: SET ALL = PASS is not supported with MULTIPATH = COMPOUND.

For related information about the ALL parameter, see Handling Records With Missing Field
Values on page 807.

Rules for Determining If a Segment Is RequiredReference:

The segment rule is applied level by level, descending through the data source/view hierarchy.
That is, a parent segment existence depends on the child segment existence, and the child
segment depends on the grandchild existence, and so on, for the full data source tree.

The following rules are used to determine if a segment is required or optional:

When SET ALL is ON or OFF, a segment with WHERE or IF criteria is required for its parent,
and all segments up to the root segment are required for their parents.

When SET ALL = PASS, a segment with WHERE or IF criteria is optional.

IF SET ALL = ON or PASS, all referenced segments with no WHERE or IF criteria are
optional for their parents (outer join).

IF SET ALL = OFF, all referenced segments are required (inner join).

166 Information Builders

Selections Based on Individual Values

A referenced segment can become optional if its parent segment uses the ALL. field
prefix operator.

Note: ALL = PASS is not supported for all data adapters and, if it is supported, it may behave
slightly differently. Check your specific data adapter documentation for detailed information.

For related information about the ALL parameter, see Handling Records With Missing Field
Values on page 807, and the Describing Data manual.

Selection Based on Aggregate Values

How to:

Select Records With WHERE TOTAL

Reference:

Usage Notes for WHERE TOTAL

You can select records based on the aggregate value of a field. For example, on the sum of
field values, or on the average of field values, by using the WHERE TOTAL phrase. WHERE
TOTAL is very helpful when you employ the aggregate display commands SUM and COUNT,
and is required for fields with a prefix operator, such as AVE. and PCT.

In WHERE tests, data is evaluated before it is retrieved. In WHERE TOTAL tests, however,
data is selected after all the data has been retrieved and processed. For an example, see
Using WHERE TOTAL for Record Selection on page 168.

How to Select Records With WHERE TOTALSyntax:

WHERE TOTAL criteria[;]

where:

criteria

Are the criteria for selecting records to include in the report. The criteria must be defined
in a valid expression that evaluates as true or false (that is, a Boolean expression).
Expressions are described in detail in Using Expressions on page 323. Operators that can
be used in WHERE expressions (such as, IS and GT) are described in Operators Supported
for WHERE and IF Tests on page 171.

;

Is an optional semicolon that can be used to enhance the readability of the request. It
does not affect the report.

Creating Reports 167

5. Selecting Records for Your Report

Usage Notes for WHERE TOTALReference:

Any reference to a calculated value, or use of a feature that aggregates values, such as
TOT.field, AVE.field, requires the use of WHERE TOTAL.

Fields with prefix operators require the use of WHERE TOTAL.

WHERE TOTAL tests are performed at the lowest sort level.

Alphanumeric and date literals must be enclosed in single quotation marks. Date-time
literals must be in the form DT (date-time literal).

When you use ACROSS with WHERE TOTAL, data that does not satisfy the selection
criteria is represented in the report with the NODATA character.

If you save the output from your report request in a HOLD file, the WHERE TOTAL test
creates a field called WH$$$T1, which contains its internal computations. If there is
more than one WHERE TOTAL test, each TOTAL test creates a corresponding WH$$$T
field and the fields are numbered consecutively.

Using WHERE TOTAL for Record SelectionExample:

The following example sums current salaries by department.

TABLE FILE EMPLOYEE
SUM CURR_SAL
BY DEPARTMENT
END

The output is:

DEPARTMENT CURR_SAL
---------- --------
MIS $108,002.00
PRODUCTION $114,282.00

Now, add a WHERE TOTAL phrase to the request in order to generate a report that lists only
the departments where the total of the salaries is more than $110,000.

TABLE FILE EMPLOYEE
SUM CURR_SAL
BY DEPARTMENT
WHERE TOTAL CURR_SAL EXCEEDS 110000
END

The values for each department are calculated and then each final value is compared to
$110,000. The output is:

DEPARTMENT CURR_SAL
---------- --------
PRODUCTION $114,282.00

168 Information Builders

Selection Based on Aggregate Values

Combining WHERE TOTAL and WHERE for Record SelectionExample:

The following request extracts records for the MIS department. Then, CURR_SAL is summed
for each employee. If the total salary for an employee is greater than $20,000, the values
of CURR_SAL are processed for the report. In other words, WHERE TOTAL screens data after
records are selected.

TABLE FILE EMPLOYEE
SUM CURR_SAL
BY LAST_NAME AND BY FIRST_NAME
WHERE TOTAL CURR_SAL EXCEEDS 20000
WHERE DEPARTMENT IS 'MIS'
END

The output is:

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
BLACKWOOD ROSEMARIE $21,780.00
CROSS BARBARA $27,062.00

Using Compound Expressions for Record Selection
You can combine two or more simple WHERE expressions, connected by AND and/or OR
operators, to create a compound expression.

By default, when multiple WHERE phrases are evaluated, logical ANDs are processed before
logical ORs. In compound expressions, you can use parentheses to change the order of
evaluation. All AND and OR operators enclosed in parentheses are evaluated first, followed
by AND and OR operators outside of parentheses.

You should always use parentheses in complex expressions to ensure that the expression
is evaluated correctly. For example:

WHERE (SEATS EQ 2) AND (SEATS NOT-FROM 3 TO 4)

This is especially useful when mixing literal OR tests with logical AND and OR tests:

In a logical AND or OR test, all field names, test relations, and test values are explicitly
referenced and connected by the words OR or AND. For example:

WHERE (LAST_NAME EQ 'CROSS') OR (LAST_NAME EQ 'JONES')

or

WHERE (CURR_SAL GT 20000) AND (DEPARTMENT IS 'MIS')
 AND (CURR_JOBCODE CONTAINS 'A')

In a literal OR test, the word OR is repeated between test values of a field name, but the
field name itself and the connecting relational operator are not repeated. For example:

WHERE (LAST_NAME EQ 'CROSS' OR 'JONES')

Creating Reports 169

5. Selecting Records for Your Report

Mixing AND and OR Record Selection TestsExample:

This example illustrates the impact of parentheses on the evaluation of literal ORs and
logical ANDs.

In this request, each expression enclosed in parentheses is evaluated first in the order in
which it appears. Notice that the first expression contains a literal OR. The result of each
expression is then evaluated using the logical AND.

If parentheses are excluded, the logical AND is evaluated before the literal OR.

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME
WHERE (LAST_NAME EQ 'CROSS' OR 'JONES')
AND (CURR_SAL GT 22000)
END

The output is:

LAST_NAME CURR_SAL
--------- --------
CROSS $27,062.00

170 Information Builders

Using Compound Expressions for Record Selection

Using Operators in Record Selection Tests

Reference:

Operators Supported for WHERE and IF Tests

You can include a variety of operators in your WHERE and IF selection tests. Many of the
operators are common for WHERE and IF. However, several are supported only for WHERE
tests.

Operators Supported for WHERE and IF TestsReference:

You can define WHERE and IF selection criteria using the following operators.

MeaningIF OperatorWHERE Operator

Tests for and selects values equal
to the test expression.

EQ
IS

EQ
IS

Tests for and selects values not
equal to the test expression.

NE
IS-NOT

NE
IS-NOT

Tests for and selects values greater
than or equal to the test value
(based on the characters 0 to 9 for
numeric values, A to Z and a to z for
alphanumeric values).

GE
FROM
IS-FROM

GE

Tests for and selects values greater
than the test value.

GT
EXCEEDS
IS-MORE-THAN

GT
EXCEEDS
IS-MORE-THAN

Tests for and selects values less
than the test value.

LT
IS-LESS-THAN

LT
IS-LESS-THAN

Tests for and selects values less
than or equal to the test value.

LE
TO

LE

Tests for and selects values within
a range of values.

GE lower AND
...
LE upper

Tests for and selects values outside
of a range of values.

LT lower OR
... GT upper

Creating Reports 171

5. Selecting Records for Your Report

MeaningIF OperatorWHERE Operator

FROM lower
TO upper

Tests for and selects values within
a range of values.

Tests for and selects values within
a range of values. For WHERE, this
is alternate syntax for FROM lower
to UPPER. Both operators produce
identical results.

IS-FROM lower
TO upper

IS-FROM lower
TO upper

Tests for and selects values that
are outside a range of values.

NOT-FROM lower
TO upper

NOT-FROM lower
TO upper

Tests whether a field contains
missing values. If some instances
of the field contain no data, they
have missing data. For information
on missing data, see Handling
Records With Missing Field Values
on page 807.

IS MISSING
IS-NOT MISSING
NE MISSING

IS MISSING
IS-NOT MISSING
NE MISSING

Tests for and selects values that
include a character string matching
test value. The string can occur in
any position in the value being
tested. When used with WHERE,
CONTAINS can test alphanumeric
fields. When used with IF, it can test
both alphanumeric and text fields.

CONTAINS
LIKE

CONTAINS
LIKE

Tests for and selects values that do
not include a character string
matching test value. The string
cannot occur in any position in the
value being tested. When used with
WHERE, OMITS can test
alphanumeric fields. When used with
IF, it can test both alphanumeric and
text fields.

OMITS
UNLIKE

OMITS
NOT LIKE

Tests whether a chain of values of
a given field in a child segment
includes all of a list of literals.

INCLUDESINCLUDES

172 Information Builders

Using Operators in Record Selection Tests

MeaningIF OperatorWHERE Operator

EXCLUDES Tests whether a chain of values of
a given field in a child segment
excludes all of a list of literals.

EXCLUDES

Selects records based on values
found in an unordered list.

IN (z,x,y)

Selects records based on values not
found in an unordered list.

NOT ... IN
(z,x,y)

Selects records based on values
stored in a sequential file.

IN FILE

Selects records with field values not
found in a sequential file.

NOT ... IN FILE

Using Operators to Compare a Field to One or More ValuesExample:

The following examples illustrate field selection criteria that use one or more values. You
may use the operators: EQ, IS, IS-NOT, EXCEEDS, IS-LESS-THAN, and IN.

Example 1: The field LAST_NAME must equal the value JONES:

WHERE LAST_NAME EQ 'JONES'

Example 2: The field LAST_NAME begins with 'CR' or 'MC:'

WHERE EDIT (LAST_NAME, '99') EQ 'CR' OR 'MC'

Example 3: The field AREA must not equal the value EAST or WEST:

WHERE AREA IS-NOT 'EAST' OR 'WEST'

Example 4: The value of the field AREA must equal the value of the field REGION:

WHERE AREA EQ REGION

Note that you cannot compare one field to another in an IF test.

Example 5: The ratio between retail cost and dealer cost must be greater than 1.25:

WHERE RETAIL_COST/DEALER_COST GT 1.25

Example 6: The field UNITS must be equal to or less than the value 50, and AREA must
not be equal to either NORTH EAST or WEST. Note the use of single quotation marks around
NORTH EAST. All alphanumeric strings must be enclosed within single quotation marks.

WHERE UNITS LE 50 WHERE AREA IS-NOT 'NORTH EAST' OR 'WEST'

Creating Reports 173

5. Selecting Records for Your Report

Example 7: The value of AMOUNT must be greater than 40:

WHERE AMOUNT EXCEEDS 40

Example 8: The value of AMOUNT must be less than 50:

WHERE AMOUNT IS-LESS-THAN 50

Example 9: The value of SALES must be equal to one of the numeric values in the unordered
list. Use commas or blanks to separate the list values.

WHERE SALES IN (43000,12000,13000)

Example 10: The value of CAR must be equal to one of the alphanumeric values in the
unordered list. Single quotation marks must enclose alphanumeric list values.

WHERE CAR IN ('JENSEN','JAGUAR')

Types of Record Selection Tests

In this section:

Range Tests With FROM and TO

Range Tests With GE and LE or GT and LT

Missing Data Tests

Character String Screening With CONTAINS and OMITS

Screening on Masked Fields With LIKE and IS

Using an Escape Character for LIKE

Qualifying Parent Segments Using INCLUDES and EXCLUDES

You can select records for your reports using a variety of tests that are implemented using
the operators described in Operators Supported for WHERE and IF Tests on page 171. You
can test for:

Values that lie within or outside of a range. See Range Tests With FROM and TO on page
175 and Range Tests With GE and LE or GT and LT on page 176.

Missing or existing data. See Missing Data Tests on page 178.

The existence or absence of a character string. See Character String Screening With
CONTAINS and OMITS on page 179.

Partially defined character strings in a data field. See Screening on Masked Fields With
LIKE and IS on page 180.

174 Information Builders

Types of Record Selection Tests

Literals in a parent segment. See Qualifying Parent Segments Using INCLUDES and
EXCLUDES on page 187.

Range Tests With FROM and TO

How to:

Specify a Range Test (FROM and TO)

Use the operators FROM ... TO and NOT-FROM ... TO in order to determine whether field
values fall within or outside of a given range. You can use either values or expressions to
specify the lower and upper boundaries. Range tests can also be applied on the sort control
fields. The range test is specified immediately after the sort phrase.

How to Specify a Range Test (FROM and TO)Syntax:

WHERE [TOTAL] fieldname {FROM|IS-FROM} lower TO upper
WHERE [TOTAL] fieldname NOT-FROM lower TO upper

where:

fieldname

Is any valid field name or alias.

lower

Are numeric or alphanumeric values or expressions that indicate lower boundaries. You
may add parentheses around expressions for readability.

upper

Are numeric or alphanumeric values or expressions that indicate upper boundaries. You
may add parentheses around expressions for readability.

Range Test With FROM ... TOExample:

An example of a range test using expressions as boundaries follows:

WHERE SALES FROM (DEALER_COST * 1.4) TO (DEALER_COST * 2.0)

Creating Reports 175

5. Selecting Records for Your Report

Range Test With NOT-FROM ... TOExample:

The following illustrates how you can use the range test NOT-FROM ... TO to display only
those records that fall outside of the specified range. In this example, it is all employees
whose salaries do not fall in the range between $12,000 and $22,000.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
WHERE CURR_SAL NOT-FROM 12000 TO 22000
END

The output is:

LAST_NAME CURR_SAL
--------- --------
BANNING $29,700.00
CROSS $27,062.00
GREENSPAN $9,000.00
IRVING $26,862.00
SMITH $9,500.00
STEVENS $11,000.00

Range Tests on Sort Fields With FROM ... TOExample:

The following examples demonstrate how to perform range tests when sorting a field using
the BY or ACROSS sort phrases:

BY MONTH FROM 4 TO 8

or

ACROSS MONTH FROM 6 TO 10

Range Tests With GE and LE or GT and LT

How to:

Specify Range Tests (GE and LE)

The operators GE (greater than or equal to), LE (less than or equal to), GT (greater than),
and LT (less than) can be used to specify a range.

GE ... LE enable you to specify values within the range test boundaries.

LT ...GT enable you to specify values outside the range test boundaries.

176 Information Builders

Types of Record Selection Tests

How to Specify Range Tests (GE and LE)Syntax:

To select values that fall within a range, use

WHERE fieldname GE lower AND fieldname LE upper

To find records whose values do not fall in a specified range, use

WHERE fieldname LT lower OR fieldname GT upper

where:

fieldname

Is any valid field name or alias.

lower

Are numeric or alphanumeric values or expressions that indicate lower boundaries. You
may add parentheses around expressions for readability.

upper

Are numeric or alphanumeric values or expressions that indicate upper boundaries. You
may add parentheses around expressions for readability.

Selecting Values Inside a RangeExample:

This WHERE phrase selects records in which the UNIT value is between 10,000 and 14,000.

WHERE UNITS GE 10000 AND UNITS LE 14000

This example is equivalent to:

WHERE UNITS GE 10000
WHERE UNITS LE 14000

Selecting Values Outside a RangeExample:

The following illustrates how you can select values that are outside a range of values using
the LT and GT operators. In this example, only those employees whose salaries are less
than $12,000 and greater than $22,000 are included in the output.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
WHERE CURR_SAL LT 12000 OR CURR_SAL GT 22000
END

Creating Reports 177

5. Selecting Records for Your Report

The output is:

LAST_NAME CURR_SAL
--------- --------
BANNING $29,700.00
CROSS $27,062.00
GREENSPAN $9,000.00
IRVING $26,862.00
SMITH $9,500.00
STEVENS $11,000.00

Missing Data Tests

How to:

Test for Missing Data

Test for Existing Data

When creating report requests, you may want to test for missing data. This type of test is
most useful when fields that have missing data also have the MISSING attribute set to ON
in the Master File. For information on missing data, see Handling Records With Missing Field
Values on page 807, and the Describing Data manual.

How to Test for Missing DataSyntax:

{WHERE|IF} fieldname {EQ|IS} MISSING

where:

fieldname

Is any valid field name or alias.

EQ|IS

Are record selection operators. EQ and IS are synonyms.

How to Test for Existing DataSyntax:

{WHERE|IF} fieldname {NE|IS-NOT} MISSING

where:

fieldname

Is any valid field name or alias.

NE|IS-NOT

Are record selection operators. NE and IS-NOT are synonyms.

178 Information Builders

Types of Record Selection Tests

Character String Screening With CONTAINS and OMITS
The CONTAINS and OMITS operators test alphanumeric fields when used with WHERE, and
both alphanumeric and text fields when used with IF. With CONTAINS, if the characters in
the given literal or literals appear anywhere within the characters of the field value, the test
is passed.

OMITS is the opposite of CONTAINS; if the characters of the given literal or literals appear
anywhere within the characters of the field's value, the test fails.

CONTAINS and OMITS tests are useful when you do not know the exact spelling of a value.
As long as you know that a specific string appears within the value, you can retrieve the
desired data.

Selecting Records With CONTAINS and OMITSExample:

The following examples illustrate several ways to use the CONTAINS and OMITS operators.
The field name that is being tested must appear on the left side of the CONTAINS or OMITS
operator.

In this example, the characters JOHN are contained in JOHNSON, and are selected by
the following phrase:

WHERE LAST_NAME CONTAINS 'JOHN'

The LAST_NAME field may contain the characters JOHN anywhere in the field.

In this example, any last name without the string JOHN is selected:

WHERE LAST_NAME OMITS 'JOHN'

In this example, all names that contain the letters ING are retrieved.

TABLE FILE EMPLOYEE
LIST LAST_NAME AND FIRST_NAME
WHERE LAST_NAME CONTAINS 'ING'
END

The output is:

 LIST LAST_NAME FIRST_NAME
 ---- --------- ----------
 1 BANNING JOHN
 2 IRVING JOAN

Creating Reports 179

5. Selecting Records for Your Report

Screening on Masked Fields With LIKE and IS

How to:

Screen Fields Based on a Mask (Using LIKE and NOT LIKE)

Screen Using LIKE and UNLIKE in an IF Phrase

Screen Fields Based on a Mask (Using IS and IS-NOT)

Reference:

Restrictions on Masking Characters

A mask is an alphanumeric pattern that you supply for comparison to characters in a data
field. The data field must have an alphanumeric format (A). You can use the LIKE and NOT
LIKE or the IS and IS-NOT operators to perform screening on masked fields.

The wildcard characters for screening on masked fields with:

LIKE and NOT LIKE operators are % and _. The percent allows any following sequence of
zero or more characters. The underscore indicates that any character in that position is
acceptable. The LIKE operator is supported in expressions that are used to derive
temporary fields with either the DEFINE or COMPUTE command.

IS (or EQ) and IS-NOT (or NE) operators are $ and $*. The dollar sign indicates that any
character in that position is acceptable. The $* is shorthand for writing a sequence of
dollar signs to fill the end of the mask without specifying a length. This combination can
only be used at the end of the mask.

Note: The IS (or EQ) and IS-NOT (or NE) operators support screening based on a mask for
fixed length formats only. If the format is a variable length format, for example, AnV, use
the LIKE or NOT LIKE operator to screen based on a mask.

How to Screen Fields Based on a Mask (Using LIKE and NOT LIKE)Syntax:

To search for records with the LIKE operator, use

WHERE field LIKE 'mask'

180 Information Builders

Types of Record Selection Tests

To reject records based on the mask value, use either

WHERE field NOT LIKE 'mask'

or

WHERE NOT field LIKE 'mask'

where:

field

Is any valid field name or alias.

mask

Is an alphanumeric or text character string you supply. There are two wildcard characters
that you can use in the mask. The underscore (_) indicates that any character in that
position is acceptable, and the percent sign (%) allows any following sequence of zero
or more characters.

For related information, see Restrictions on Masking Characters on page 182.

How to Screen Using LIKE and UNLIKE in an IF PhraseSyntax:

To search for records with the LIKE operator, use

IF field LIKE 'mask1' [OR 'mask2'...]

To reject records based on the mask value, use

IF field UNLIKE 'mask1' [OR 'mask2' ...]

where:

field

Is any valid field name or alias.

mask1, mask2

Are the alphanumeric patterns you want to use for comparison. The single quotation
marks are required if the mask contains blanks. There are two wildcard characters that
you can use in a mask. The underscore (_) indicates that any character in that position
is acceptable, and the percent sign (%) allows any following sequence of zero or more
characters. Every other character in the mask accepts only itself in that position as a
match to the pattern.

How to Screen Fields Based on a Mask (Using IS and IS-NOT)Syntax:

To search for records with the IS operator, use

{WHERE|IF} field {IS|EQ} 'mask'

Creating Reports 181

5. Selecting Records for Your Report

To reject records based on the mask value, use

{WHERE|IF} field {IS-NOT|NE} 'mask'

where:

field

Is any valid field name or alias.

IS|IS-NOT

Are record selection operators. EQ is a synonym for IS. NE is a synonym for IS-NOT.

mask

Is an alphanumeric or text character string you supply. The wildcard characters that you
can use in the mask are the dollar sign ($) and the combination $*. The dollar sign
indicates that any character in that position is acceptable. The $* combination allows
any sequence of zero or more characters. The $* is shorthand for writing a sequence
of dollar signs to fill the end of the mask without specifying a specific length. This
combination can only be used at the end of the mask.

For related information, see Restrictions on Masking Characters on page 182.

Restrictions on Masking CharactersReference:

The wildcard characters dollar sign ($) and dollar sign with an asterisk ($*), which are
used with IS operators, are treated as literals with LIKE operators.

Masking with the characters $ and $* is not supported for compound WHERE phrases
that use the AND or OR logical operators.

Screening on Initial CharactersExample:

To list all employees who have taken basic-level courses, where every basic course begins
with the word BASIC, issue the following request:

TABLE FILE EMPLOYEE
PRINT COURSE_NAME COURSE_CODE
BY LAST_NAME BY FIRST_NAME
WHERE COURSE_NAME LIKE 'BASIC%'
END

The output is:

LAST_NAME FIRST_NAME COURSE_NAME COURSE_CODE
--------- ---------- ----------- -----------
BLACKWOOD ROSEMARIE BASIC REPORT PREP NON-PROG 102
CROSS BARBARA BASIC REPORT PREP DP MGRS 107
JONES DIANE BASIC REPORT PREP FOR PROG 103
SMITH MARY BASIC REPORT PREP FOR PROG 103
 RICHARD BASIC RPT NON-DP MGRS 108

182 Information Builders

Types of Record Selection Tests

Screening on Characters Anywhere in a FieldExample:

If you want to see which employees have taken a FOCUS course, but you do not know where
the word FOCUS appears in the title, bracket the word FOCUS with wildcards (which is
equivalent to using the CONTAINS operator):

TABLE FILE EMPLOYEE
PRINT COURSE_NAME COURSE_CODE
BY LAST_NAME BY FIRST_NAME
WHERE COURSE_NAME LIKE '%FOCUS%'
END

The output is:

LAST_NAME FIRST_NAME COURSE_NAME COURSE_CODE
--------- ---------- ----------- -----------
BLACKWOOD ROSEMARIE WHAT'S NEW IN FOCUS 202
JONES DIANE FOCUS INTERNALS 203

If you want to list all employees who have taken a 20x-series course, and you know that all
of these courses have the same code except for the final character, issue the following
request:

TABLE FILE EMPLOYEE
PRINT COURSE_NAME COURSE_CODE
BY LAST_NAME BY FIRST_NAME
WHERE COURSE_CODE LIKE '20_'
END

The output is:

LAST_NAME FIRST_NAME COURSE_NAME COURSE_CODE
--------- ---------- ----------- -----------
BLACKWOOD ROSEMARIE WHAT'S NEW IN FOCUS 202
JONES DIANE FOCUS INTERNALS 203
 ADVANCED TECHNIQUES 201

Screening on Initial Characters and Specific LengthExample:

The following example illustrates how to screen on initial characters and specify the length
of the field value you are searching for. In this example, the WHERE phrase states that the
last name must begin with BAN and be 7 characters in length (the three initial characters
BAN and the 4 placeholders, in this case the dollar sign). The remaining characters in the
field (positions 8 through 15) must be blank.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
WHERE LAST_NAME IS 'BAN$$$$'
END

Creating Reports 183

5. Selecting Records for Your Report

The output is:

LAST_NAME

BANNING

Screening on Records of Unspecified LengthExample:

To retrieve records with unspecified lengths, use the dollar sign followed by an asterisk ($*):

WHERE LAST_NAME IS 'BAN$*'

This phrase searches for last names that start with the letters BAN, regardless of the name
length. The characters $* reduce typing, and enable you to define a screen mask without
knowing the exact length of the field you wish to retrieve.

Using an Escape Character for LIKE

How to:

Use an Escape Character in a WHERE Phrase

Specify an Escape Character for a Mask in an IF Phrase

Reference:

Usage Notes for Escape Characters

You can use an escape character in the LIKE syntax to treat the masking characters (% and _)
as literals within the search pattern, rather than as wildcards. This technique enables you
to search for these characters in the data. For related information, see Screening on Masked
Fields With LIKE and IS on page 180.

How to Use an Escape Character in a WHERE PhraseSyntax:

Any single character can be used as an escape character, if prefaced with the word ESCAPE

WHERE fieldname LIKE 'mask' ESCAPE 'c'

where:

fieldname

Is any valid field name or alias to be evaluated in the selection test.

mask

Is the search pattern that you supply. The single quotation marks are required.

184 Information Builders

Types of Record Selection Tests

c

Is any single character that you identify as the escape character. If you embed the escape
character in the mask, before a % or _, the % or _ character is treated as a literal, rather
than as a wildcard. The single quotation marks are required.

How to Specify an Escape Character for a Mask in an IF PhraseSyntax:

You can assign any single character as an escape character by prefacing it with the word
ESCAPE in the LIKE or UNLIKE syntax

IF field {LIKE|UNLIKE} 'mask1' ESCAPE 'a' [OR 'mask2' ESCAPE 'b' ...

where:

field

Is any valid field name or alias to be evaluated in the selection test.

mask1, mask2

Are search patterns that you supply. The single quotation marks are required.

a, b ...

Are single characters that you identify as escape characters. Each mask can specify its
own escape character or use the same character as other masks. If you embed the
escape character in the mask, before a % or _, the % or _ character is treated as a literal,
rather than as a wildcard. The single quotation marks are required if the mask contains
blanks.

Usage Notes for Escape CharactersReference:

The use of an escape character in front of any character other than %, _, and itself is
ignored.

The escape character itself can be escaped, thus becoming a normal character in a string
(for example, 'abc\%\\').

Only one escape character can be used per LIKE phrase in a WHERE phrase.

The escape character is only in effect when the ESCAPE syntax is included in the LIKE
phrase.

Every LIKE phrase can provide its own escape character.

If a WHERE criterion is used with literal OR phrases, the ESCAPE must be on the first OR
phrase, and applies to all subsequent phrases in that WHERE expression. For example:

WHERE field LIKE 'ABCg_' ESCAPE 'g' OR 'ABCg%' OR 'g%ABC'

Creating Reports 185

5. Selecting Records for Your Report

Using the Escape Character in a WHERE PhraseExample:

The VIDEOTR2 data source contains an e-mail address field. To search for the e-mail address
with the characters 'handy_' you can issue the following request:

TABLE FILE VIDEOTR2
PRINT CUSTID LASTNAME FIRSTNAME EMAIL
WHERE EMAIL LIKE 'handy_%'
END

Because the underscore character functions as a wildcard character, this request returns
two instances, only one of which contains the underscore character.

The output is:

CUSTID LASTNAME FIRSTNAME EMAIL
------ -------- --------- -----
0944 HANDLER EVAN handy_man@usa.com
0944 HANDLER EVAN handyman@usa.com

To retrieve only the instance that contains the underscore character, you must indicate that
the underscore should be treated as a normal character, not a wildcard. The following request
retrieves only the instance with the underscore character in the e-mail field:

TABLE FILE VIDEOTR2
PRINT CUSTID LASTNAME FIRSTNAME EMAIL
WHERE EMAIL LIKE 'handy_%' ESCAPE '\'
END

The output is:

CUSTID LASTNAME FIRSTNAME EMAIL
------ -------- --------- -----
0944 HANDLER EVAN handy_man@usa.com

Using an Escape Character in an IF PhraseExample:

The VIDEOTR2 data source contains an e-mail address field. To search for e-mail addresses
with the characters 'handy_' you can issue the following request:

TABLE FILE VIDEOTR2
PRINT CUSTID LASTNAME FIRSTNAME EMAI
IF EMAIL LIKE 'handy_%'
END

Because the underscore character functions as a wildcard character, this request returns
two instances, only one of which contains the underscore character.

The output is:

CUSTID LASTNAME FIRSTNAME EMAIL
------ -------- --------- -----
0944 HANDLER EVAN handy_man@usa.com
0944 HANDLER EVAN handyman@usa.com

186 Information Builders

Types of Record Selection Tests

To retrieve only the instance that contains the underscore character, you must indicate that
the underscore should be treated as a normal character, not a wildcard. The following request
retrieves only the instance with the underscore character in the e-mail field:

TABLE FILE VIDEOTR2
PRINT CUSTID LASTNAME FIRSTNAME EMAI
IF EMAIL LIKE 'handy_%' ESCAPE '\'
END

The output is:

CUSTID LASTNAME FIRSTNAME EMAIL
------ -------- --------- -----
0944 HANDLER EVAN handy_man@usa.com

Qualifying Parent Segments Using INCLUDES and EXCLUDES

Reference:

Usage Notes for INCLUDES and EXCLUDES

You can test whether instances of a given field in a child segment include or exclude all
literals in a list using the INCLUDES and EXCLUDES operators. INCLUDES and EXCLUDES
retrieve only parent records. You cannot print or list any field in the same segment as the
field specified for the INCLUDES or EXCLUDES test.

Note: INCLUDES and EXCLUDES work only with multi-segment FOCUS data sources.

Usage Notes for INCLUDES and EXCLUDESReference:

Literals containing embedded blanks must be enclosed in single quotation marks.

The total number of literals must be 31 or less.

To use more than one INCLUDES or EXCLUDES phrase in a request, begin each phrase
on a separate line.

You can connect the literals you are testing for with ANDs and ORs; however, the ORs
are changed to ANDs.

Selecting Records With INCLUDES and EXCLUDESExample:

A request that contains the phrase

WHERE JOBCODE INCLUDES A01 OR B01

returns employee records with JOBCODE instances for both A01 and B01, as if you had
used AND.

Creating Reports 187

5. Selecting Records for Your Report

In the following example, for a record to be selected, its JOBCODE field must have values
of both A01 and B01:

WHERE JOBCODE INCLUDES A01 AND B01

If either one is missing, the record is not selected for the report.

If the selection criterion is

WHERE JOBCODE EXCLUDES A01 AND B01

every record that does not have both values is selected for the report.

In the CAR data source, only England produces Jaguars and Jensens, and so the request

TABLE FILE CAR
PRINT COUNTRY
WHERE CAR INCLUDES JAGUAR AND JENSEN
END

generates this output:

COUNTRY

ENGLAND

Selections Based on Group Key Values
Some data sources use group keys. A group key is a single key composed of several fields.
You can use a group name to refer to group key fields.

To select records based on a group key value, you need to supply the value of each field.
The values must be separated by the slash character (/).

Note that a WHERE phrase that refers to a group field cannot be used in conjunction with
AND or OR. For related information, see Using Compound Expressions for Record Selection
on page 169.

Selecting Records Using Group KeysExample:

Suppose that a data source has a group key named PRODNO, which contains three separate
fields. The first is stored in alphanumeric format, the second as a packed decimal, the third
as an integer. A screening phrase on this group might be:

WHERE PRODNO EQ 'RS/62/83'

188 Information Builders

Selections Based on Group Key Values

Setting Limits on the Number of Records Read

How to:

Limit the Number of Records Read

For some reports, a limited number of records is satisfactory. When the specified number
of records is retrieved, record retrieval can stop. This is useful when:

You are designing a new report, and you need only a few records from the actual data
source to test your design.

The database administrator needs to limit the size of reports by placing an upper limit
on retrieval from very large data sources. This limit is attached to the user password.

You know the number of records that meet the test criteria. You can specify that number
so that the search does not continue beyond the last record that meets the criteria. For
example, suppose only ten employees use electronic transfer of funds, and you want to
retrieve only those records. The record limit would be ten, and retrieval would stop when
the tenth record is retrieved. The data source would not be searched any further.

How to Limit the Number of Records ReadSyntax:

There are two ways to limit the number of records retrieved. You can use

WHERE RECORDLIMIT EQ n

where:

n

Is a number greater than 0, and indicates the number of records to be retrieved. This
syntax can be used with FOCUS and non-FOCUS data sources.

For all non-FOCUS data sources, you can also use

WHERE READLIMIT EQ n

where:

n

Is a number greater than 0, and indicates the number of read operations (not records)
to be performed. For details, see the appropriate data adapter manual.

Tip: If an attempt is made to apply the READLIMIT test to a FOCUS data source, the request
is processed correctly, but the READLIMIT phrase is ignored.

Creating Reports 189

5. Selecting Records for Your Report

Limiting the Number of Records ReadExample:

The following request retrieves four records, generating a four-line report:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND EMP_ID
WHERE RECORDLIMIT EQ 4
END

The output is:

LAST_NAME FIRST_NAME EMP_ID
--------- ---------- ------
STEVENS ALFRED 071382660
SMITH MARY 112847612
JONES DIANE 117593129
SMITH RICHARD 119265415

Selecting Records Using IF Phrases

How to:

Select Records Using the IF Phrase

The IF phrase selects records to be included in a report, and offers a subset of the
functionality of WHERE. For a list of supported IF operators, see Using Operators in Record
Selection Tests on page 171.

Tip: Unless you specifically require IF syntax (for example, to support legacy applications),
we recommend using WHERE.

How to Select Records Using the IF PhraseSyntax:

IF fieldname operator literal [OR literal]

where:

fieldname

Is the field you want to test (the test value).

operator

Is the type of selection operator you want. Valid operators are described in Operators
Supported for WHERE and IF Tests on page 171.

literal

Can be the MISSING keyword (as described in Missing Data Tests on page 178) or
alphanumeric or numeric values that are in your data source, with the word OR between
values.

190 Information Builders

Selecting Records Using IF Phrases

Note that all literals that contain blanks (for example, New York City) and all date and
date-time literals must be enclosed within single quotation marks.

Note: The IF phrase alone cannot be used to create compound expressions by connecting
simple expressions with AND and OR logical operators. Compound logic requires that the IF
phrase be used with the DEFINE command, as described in Using Expressions on page 323.
You can accomplish this more easily with WHERE. See Using Compound Expressions for
Record Selection on page 169.

Using Multiple IF PhrasesExample:

You can use as many IF phrases as necessary to define all your selection criteria, as
illustrated in the following example:

TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME
IF SALARY GT 20000
IF DEPARTMENT IS MIS
IF LAST_NAME IS CROSS OR BANNING
END

All of these criteria must be satisfied in order for a record to be included in a report. The
output is:

EMP_ID LAST_NAME
------ ---------
818692173 CROSS

Reading Selection Values From a File

How to:

Read Selection Values From a File (WHERE)

Read Selection Values From a File (IF)

Reference:

Usage Notes for Reading Values From a File

Instead of typing literal test values in a WHERE or IF phrase, you can store them in a file
and refer to the file in the report request. You can then select records based on equality or
inequality tests on values stored in the file.

This method has the following advantages:

You can save time by coding a large set of selection values once, then using these values
as a set in as many report requests as you wish. You also ensure consistency by
maintaining the criteria in just one location.

Creating Reports 191

5. Selecting Records for Your Report

If the selection values already exist in a data source, you can quickly create a file of
selection values by generating a report and saving the output in a HOLD or SAVE file.
You can then read selection values from that file.

If you use a HOLD file, it must either be in BINARY format (the default) or in ALPHA (simple
character) format. If you use a SAVE file, it must be in ALPHA format (the default). You
can also use a SAVB file if the selection values are alphanumeric. For information on
HOLD and SAVE files, see Saving and Reusing Your Report Output on page 421.

Note that in z/OS, a HOLD file in BINARY format that is used for selection values must
be allocated to ddname HOLD (the default). The other extract files used for this purpose
can be allocated to any ddname.

You can include entries with mixed-case and special characters.

How to Read Selection Values From a File (WHERE)Syntax:

WHERE [NOT] fieldname IN FILE file

where:

fieldname

Is the name of the selection field. It can be any real or temporary field in the data source.

file

Is the name of the file.

For z/OS, this is the ddname assigned by a DYNAM or TSO ALLOCATE command. On
CMS, the ddname is assigned by a FILEDEF command.

For related information, see Usage Notes for Reading Values From a File on page 193.

How to Read Selection Values From a File (IF)Syntax:

IF fieldname operator (file) [OR (file) ...]

where:

fieldname

Is any valid field name or alias.

operator

Is the EQ, IS, NE, or IS-NOT operator (see Operators Supported for WHERE and IF Tests
on page 171).

file

Is the name of the file.

For z/OS, this is the ddname assigned by a DYNAM or TSO ALLOCATE command.

For CMS, this is the ddname assigned by a FILEDEF command.

192 Information Builders

Reading Selection Values From a File

Usage Notes for Reading Values From a FileReference:

In order to read selection criteria from a file, the file must comply with the following rules:

Each value in the file must be on a separate line.

For IF, more information can appear on a line, but only the first data value encountered
on the line is used.

The selection value must start in column one.

The values are assumed to be in character format, unless the file name is HOLD, and
numeric digits are converted to internal computational numbers where needed (for
example, binary integer).

For IF, the total of all files can be up to 32,767 literals, including new line and other
formatting characters. Lower limits apply to fixed sequential and other non-relational data
sources.

For WHERE, the file can be approximately 16,000 bytes. If the file is too large, an error
message displays.

For WHERE, alphanumeric values with embedded blanks or any mathematical operator
(-, +, *, /) must be enclosed in single quotation marks.

For WHERE, when a compound WHERE phrase uses IN FILE more than once, the specified
files must have the same record formats.

If your list of literals is too large, an error is displayed.

For IF, sets of file names may be used, separated by the word OR. Actual literals may
also be mixed with the file names. For example:

IF fieldname operator (filename) OR literal...etc...

Reading Selection Values From a File (WHERE)Example:

Create a file named EXPER, which contains the values B141 and B142.

This request uses selection criteria from the file EXPER. All records for which PRODUCT_ID
has a value of B141 or B142 are selected:

TABLE FILE GGPRODS
SUM UNIT_PRICE
BY PRODUCT_DESCRIPTION
WHERE PRODUCT_ID IN FILE EXPER
END

Creating Reports 193

5. Selecting Records for Your Report

If you include the selection criteria directly in the request, the WHERE phrase specifies the
values explicitly:

WHERE PRODUCT_DESCRIPTION EQ 'B141' or 'B142'

The output is:

 Unit
Product Price
------- -----
French Roast 81.00
Hazelnut 58.00

Reading Selection Values From a File (IF)Example:

Create a file named EXPER, which contains the values B141 and B142.

This request uses selection criteria from the file EXPER. All records for which PRODUCT_ID
has a value of B141 or B142 are selected:

TABLE FILE GGPRODS
SUM UNIT_PRICE
BY PRODUCT_DESCRIPTION
IF PRODUCT_ID IS (EXPER)
END

If you include the selection criteria directly in the request, the IF phrase specifies the values
explicitly:

IF PRODUCT_DESCRIPTION EQ 'B141' or 'B142'

The output is:

 Unit
Product Price
------- -----
French Roast 81.00
Hazelnut 58.00

194 Information Builders

Reading Selection Values From a File

Assigning Screening Conditions to a File

In this section:

Preserving Filters Across Joins

How to:

Declare a Filter

Activate or Deactivate Filters

Query the Status of Filters

Reference:

Usage Notes for Virtual Fields Used in Filters

You can assign screening conditions to a data source, independent of a request, and activate
these screening conditions for use in report requests against the data source.

A filter is a packet of definitions that resides at the file level, containing WHERE and/or IF
criteria. Whenever a report request is issued against a data source, all filters that have been
activated for that data source are in effect. WHERE or IF syntax that is valid in a report
request is also valid in a filter.

A filter can be declared at any time before the report request is run. The filters are available
to subsequent requests during the session in which the filters have been run. For details,
see How to Declare a Filter on page 196.

Filters allow you to:

Declare a common set of screening conditions that apply each time you retrieve data
from a data source. You can declare one or more filters for a data source.

Declare a set of screening conditions and dynamically turn them on and off.

Restrict access to data without specifying rules in the Master File.

In an interactive environment, filters also reduce repetitive ad hoc typing.

Note: Simply declaring a filter for a data source does not make it active. A filter must be
activated with a SET command. For details, see How to Activate or Deactivate Filters on page
198.

Creating Reports 195

5. Selecting Records for Your Report

How to Declare a FilterSyntax:

A filter can be described by the following declaration

 FILTER FILE filename [CLEAR|ADD]
 [filter-defines;]
 NAME=filtername1 [,DESC=text]

where-if phrases
 .
 .
 .
 NAME=filternamen [,DESC=text]

where-if phrases
 END

where:

filename

Is the name of the Master File to which the filters apply.

CLEAR

Deletes any existing filter phrases, including any previously defined virtual fields.

ADD

Enables you to add new filter phrases to an existing filter declaration without clearing
previously defined filters.

filter-defines

Are virtual fields declared for use in filters. For more information, see Usage Notes for
Virtual Fields Used in Filters on page 196.

filtername1...filternamen

Is the name by which the filter is referenced in subsequent SET FILTER commands. This
name may be up to eight characters long and must be unique for a particular file name.

text

Describes the filter for documentation purposes. Text must fit on one line.

where-if phrases

Are screening conditions that can include all valid syntax. They may refer to data source
fields and virtual fields in the Master File. They may not refer to virtual fields declared
using a DEFINE command, or to other filter names.

Usage Notes for Virtual Fields Used in FiltersReference:

Virtual fields used in filters:

Are exclusively local to (or usable by) filters in a specific filter declaration.

Cannot be referenced in a DEFINE or TABLE command.

196 Information Builders

Assigning Screening Conditions to a File

Support any syntax valid for virtual fields in a DEFINE command.

Cannot reference virtual fields in a DEFINE command, but can reference virtual fields in
the Master File.

Do not count toward the display field limit, unlike virtual fields in DEFINE commands.

Must all be declared before the first named filter.

Must each end with a semi-colon.

Cannot be enclosed between the DEFINE FILE and END commands.

Cannot reuse a virtual field name for a the same file.

Declaring FiltersExample:

The first example creates the filter named UK, which consists of one WHERE condition. It
also adds a definition for the virtual field MARK_UP to the set of virtual fields already being
used in filters for the CAR data source.

When a report request is issued for CAR, with UK activated, the condition WHERE MARK_UP
is greater than 1000 is automatically added to the request.

Note: The virtual field MARK_UP cannot be explicitly displayed or referenced in the TABLE
request.

FILTER FILE CAR ADD
MARK_UP/D7=RCOST-DCOST;
NAME=UK
WHERE MARK_UP GT 1000
END

The second example declares three named filters for the CAR data source: ASIA, UK, and
LUXURY. The filter ASIA contains a textual description, for documentation purposes only.
CLEAR, on the first line, erases any previously existing filters for CAR, as well any previously
defined virtual fields used in filters for CAR, before it processes the new definitions.

FILTER FILE CAR CLEAR
NAME=ASIA,DESC=Asian cars only
IF COUNTRY EQ JAPAN
NAME=UK
IF COUNTRY EQ ENGLAND
NAME=LUXURY
IF RETAIL_COST GT 50000
END

Creating Reports 197

5. Selecting Records for Your Report

How to Activate or Deactivate FiltersSyntax:

Filters can be activated and deactivated with the command

SET FILTER= {*|xx[yy zz]} IN file {ON|OFF}

where:

*

Denotes all declared filters. This is the default value.

xx, yy, zz

Are the names of filters as declared in the NAME = syntax of the FILTER FILE command.

file

Is the name of the data source to which you are assigning screening conditions.

ON

Activates all (*) or specifically named filters for the data source. The maximum number
of filters you can activate for a data source is limited by the number of WHERE/IF phrases
that the filters contain, not to exceed the limit of WHERE/IF criteria in any single report
request.

OFF

Deactivates all (*) or specifically named filters for the data source. OFF is the default
value.

Note: The SET FILTER command is limited to one line. To activate more filters than fit on
one line, issue additional SET FILTER commands. As long as you specify ON, the effect is
cumulative.

Activating and Deactivating FiltersExample:

The following commands activate A, B, C, D, E, F and deactivate G (assuming that it was
set ON previously):

SET FILTER = A B C IN CAR ON
SET FILTER = D E F IN CAR ON
SET FILTER = G IN CAR OFF

198 Information Builders

Assigning Screening Conditions to a File

The following commands activate some filters and deactivate others:

SET FILTER = UK LUXURY IN CAR ON
...
TABLE FILE CAR
PRINT COUNTRY MODEL RETAIL_COST
END
...
SET FILTER = LUXURY IN CAR OFF
TABLE FILE CAR
PRINT COUNTRY MODEL RETAIL_COST
END

The first SET FILTER command activates the filters UK and LUXURY, assigned to the CAR
data source, and applies their screening conditions to any subsequent report request against
the CAR data source.

The second SET FILTER command deactivates the filter LUXURY for the CAR data source.
Unless LUXURY is reactivated, any subsequent report request against CAR will not apply the
conditions in LUXURY, but will continue to apply UK.

How to Query the Status of FiltersSyntax:

To determine the status of existing filters, use

? FILTER [{file|*}] [SET] [ALL]]

where:

file

Is the name of a Master File.

*

Displays filters for all Master Files for which filters have been declared.

SET

Displays only active filters.

ALL

Displays all information about the filter, including its description and the exact WHERE/IF
definition.

Creating Reports 199

5. Selecting Records for Your Report

Querying FiltersExample:

To query filters, issue the following command:

FILTER FILE CAR CLEAR
NAME=BOTH, DESC=Asian and British cars only
IF COUNTRY EQ JAPAN AND ENGLAND
END
SET FILTER =BOTH IN CAR ON
TABLE FILE CAR
PRINT CAR RETAIL_COST
BY COUNTRY
END

The output is:

COUNTRY CAR RETAIL_COST
------- --- -----------
ENGLAND JAGUAR 8,878
 JAGUAR 13,491
 JENSEN 17,850
 TRIUMPH 5,100
JAPAN DATSUN 3,139
 TOYOTA 3,339

The following example queries filters for all data sources:

? FILTER

If no filters are defined, the following message displays:

NO FILTERS DEFINED

If filters are defined, the following screen displays:

Set File Filter name Description
--- -------- ----------- -----------------------------------
 CAR ROB Rob's selections
* CAR PETER Peter's selections for CAR
* EMPLOYEE DAVE Dave's tests
 EMPLOYEE BRAD Brad's tests

To query filters for the CAR data source, issue:

? FILTER CAR

If no filters are defined for the CAR data source, the following message displays:

NO FILTERS DEFINED FOR FILE NAMED CAR

If filters are defined for the CAR data source, the following screen displays:

Set File Filter name Description
--- -------- ----------- -----------------------------------
 CAR ROB Rob's selections
* CAR PETER Peter's selections for CAR

200 Information Builders

Assigning Screening Conditions to a File

To see all active filters, issue the following command:

? FILTER * SET

The output is:

Set File Filter name Description
--- -------- ----------- -----------------------------------
* CAR PETER Peter's selections for CAR
* EMPLOYEE DAVE Dave's tests

The asterisk in the first column indicates that a filter is activated.

Preserving Filters Across Joins

How to:

Preserve Filter Definitions With KEEPFILTERS

By default, filters defined on the host data source are cleared by a JOIN command. However,
filters can be maintained when a JOIN command is issued, by issuing the SET
KEEPFILTERS=ON command.

Setting KEEPFILTERS to ON reinstates filter definitions and their individual declared status
after a JOIN command. The set of filters and virtual fields defined prior to each join is called
a context (see your documentation on SET KEEPDEFINES and on DEFINE FILE SAVE for
information about contexts as they relate to virtual fields). Each new JOIN or DEFINE FILE
command creates a new context.

If a new filter is defined after a JOIN command, it cannot have the same name as any
previously defined filter unless you issue the FILTER FILE command with the CLEAR option.
The CLEAR option clears all filter definitions for that data source in all contexts.

When a JOIN is cleared, each filter definition that was in effect prior to the JOIN command
and that was not cleared, is reinstated with its original status. Clearing a join by issuing the
JOIN CLEAR join_name command removes all of the contexts and filter definitions that were
created after the JOIN join_name command was issued.

How to Preserve Filter Definitions With KEEPFILTERSSyntax:

SET KEEPFILTERS = {OFF|ON}

where:

OFF

Does not preserve filters issued prior to a join. OFF is the default value.

ON

Preserves filters across joins.

Creating Reports 201

5. Selecting Records for Your Report

Preserving Filters With KEEPFILTERSExample:

The first filter, UNITPR, is defined prior to issuing any joins, but after setting KEEPFILTERS
to ON:

SET KEEPFILTERS = ON
FILTER FILE VIDEOTRK
PERUNIT/F5 = TRANSTOT/QUANTITY;
NAME=UNITPR
WHERE PERUNIT GT 2
WHERE LASTNAME LE 'CRUZ'
END

The ? FILTER command shows that the filter named UNITPR was created but not activated
(activation is indicated by an asterisk in the SET column of the display:

? FILTER

SET FILE FILTER NAME DESCRIPTION
--- -------- ----------- ---------------------------------
 VIDEOTRK UNITPR

Next the filter is activated:

SET FILTER= UNITPR IN VIDEOTRK ON

The ? FILTER query shows that the filter is now activated:

? FILTER

SET FILE FILTER NAME DESCRIPTION
--- -------- ----------- ---------------------------------
* VIDEOTRK UNITPR

The following TABLE request is issued against the filtered data source:

TABLE FILE VIDEOTRK
SUM QUANTITY TRANSTOT BY LASTNAME
END

The output shows that the TABLE request retrieved only the data that satisfies the UNITPR
filter:

NUMBER OF RECORDS IN TABLE= 6 LINES= 3
ACCESS LIMITED BY FILTERS

PAUSE.. PLEASE ISSUE CARRIAGE RETURN WHEN READY

LASTNAME QUANTITY TRANSTOT
-------- -------- --------
CHANG 3 31.00
COLE 2 18.98
CRUZ 2 16.00

202 Information Builders

Assigning Screening Conditions to a File

Now, the VIDEOTRK data source is joined to the MOVIES data source. The ? FILTER query
shows that the join did not clear the UNITPR filter:

JOIN MOVIECODE IN VIDEOTRK TO ALL MOVIECODE IN MOVIES AS J1

The ? FILTER command shows that the UNITPR filter still exists and is still activated:

? FILTER

SET FILE FILTER NAME DESCRIPTION
--- -------- ----------- ---------------------------------
* VIDEOTRK UNITPR

Next a new filter, YEARS1, is created and activated for the join between VIDEOTRK and
MOVIES:

FILTER FILE VIDEOTRK
YEARS/I5 = (EXPDATE - TRANSDATE)/365;
NAME=YEARS1
WHERE YEARS GT 1
END
SET FILTER= YEARS1 IN VIDEOTRK ON

The ? FILTER query shows that both the UNITPR and YEARS1 filters exist and are activated:

? FILTER

SET FILE FILTER NAME DESCRIPTION
--- -------- ----------- ---------------------------------
* VIDEOTRK UNITPR
* VIDEOTRK YEARS1

Now, J1 is cleared. The output of the ? FILTER command shows that the YEARS1 filter that
was created after the JOIN command was issued no longer exists. The UNITPR filter created
prior to the JOIN command still exists with its original status:

JOIN CLEAR J1
? FILTER

SET FILE FILTER NAME DESCRIPTION
--- -------- ----------- ---------------------------------
* VIDEOTRK UNITPR

Creating Reports 203

5. Selecting Records for Your Report

VSAM Record Selection Efficiencies

In this section:

Reporting From Files With Alternate Indexes

The most efficient way to retrieve selected records from a VSAM KSDS data source is by
applying an IF screening test against the primary key. This results in a direct reading of the
data using the data source's index. Only those records that you request are retrieved from
the file. The alternative method of retrieval, the sequential read, forces the data adapter to
retrieve all the records into storage.

Selection criteria that are based on the entire primary key, or on a subset of the primary
key, cause direct reads using the index. A partial key is any contiguous part of the primary
key beginning with the first byte.

IF selection tests performed against virtual fields can take advantage of these efficiencies
as well, if the full or partial key is embedded in the virtual field.

The EQ and IS relations realize the greatest performance improvement over sequential reads.
When testing on a partial key, equality logic is used to retrieve only the first segment instance
of the screening value. To retrieve subsequent instances, NEXT logic is used.

Screening relations GE, FROM, FROM-TO, GT, EXCEEDS, IS-MORE-THAN, and NOT-FROM-TO
all obtain some benefit from direct reads. The following example uses the index to find the
record containing primary key value 66:

IF keyfield GE 66

It then continues to retrieve records by sequential processing, because VSAM stores records
in ascending key sequence. The direct read is not attempted when the IF screening conditions
NE, IS-NOT, CONTAINS, OMITS, LT, IS-LESS-THAN, LE, and NOT-FROM are used in the report
request.

Reporting From Files With Alternate Indexes
Similar performance improvement is available for ESDS and KSDS files that use alternate
indexes. An alternate index provides access to records in a key sequenced data set based
on a key other than the primary key.

All benefits and limitations inherent with screening on the primary or partial key are applicable
to screening on the alternate index or partial alternate index.

Note: It is not necessary to take an explicit indexed view to use the index.

204 Information Builders

VSAM Record Selection Efficiencies

FOCUS

Creating Temporary Fields6
Topics:

When you create a report, you are not
restricted to the fields that exist in your
data source. If you can generate the
information you want from the existing
data, you can create a temporary field to
evaluate and display it. A temporary field
takes up no storage space in the data
source. It is created only when needed.

What Is a Temporary Field?

Defining a Virtual Field

Creating a Calculated Value

Assigning Column Reference Numbers

Calculating Trends and Predicting
Values With FORECAST

Calculating Trends and Predicting
Values With Multivariate REGRESS

Using Text Fields in DEFINE and
COMPUTE

Creating Temporary Fields Independent
of a Master File

Creating Reports 205

What Is a Temporary Field?

Reference:

Types of Temporary Fields

Evaluation of Temporary Fields

Selecting a Temporary Field

A temporary field is a field whose value is not stored in the data source, but can be calculated
from the data that is there, or assigned an absolute value. A temporary field takes up no
storage space in the data source, and is created only when needed.

When you create a temporary field, you determine its value by writing an expression. You
can combine fields, constants, and operators in an expression to produce a single value.
For example, if your data contains salary and deduction amounts, you can calculate the ratio
of deductions to salaries using the following expression:

deduction / salary

You can specify the expression yourself, or you can use one of the many supplied functions
that perform specific calculations or manipulations. In addition, you can use expressions
and functions as building blocks for more complex expressions, as well as use one temporary
field to evaluate another.

Types of Temporary FieldsReference:

You can use two types of temporary fields (a virtual field and a calculated value), which differ
in how they are evaluated:

A virtual field (DEFINE) is evaluated as each record that meets the selection criteria is
retrieved from the data source. The result of the expression is treated as though it were a
real field stored in the data source. A virtual field is in effect until it is cleared.

A calculated value (COMPUTE) is evaluated after all the data that meets the selection criteria
is retrieved, sorted, and summed. Therefore, the calculation is performed using the
aggregated values of the fields.

206 Information Builders

What Is a Temporary Field?

Evaluation of Temporary FieldsReference:

The following illustration shows how a request processes, and when each type of temporary
field is evaluated:

Creating Reports 207

6. Creating Temporary Fields

Distinguishing Between Virtual Fields and Calculated ValuesExample:

In the following example, both the DRATIO field (virtual field) and the CRATIO (calculated
value) use the same expression DELIVER_AMT/OPENING_AMT, but do not return the same
result. The value for CRATIO is calculated after all records have been selected, sorted, and
aggregated. The virtual field DRATIO is calculated for each retrieved record.

DEFINE FILE SALES
DRATIO = DELIVER_AMT/OPENING_AMT;
END
TABLE FILE SALES
SUM DELIVER_AMT AND OPENING_AMT AND DRATIO
COMPUTE CRATIO = DELIVER_AMT/OPENING_AMT;
END

The output is:

DELIVER_AMT OPENING_AMT DRATIO CRATIO
----------- ----------- ------ ------
 760 724 28.41 1.05

Selecting a Temporary FieldReference:

The following is to help you choose the kind of temporary field you need.

Choose a virtual field when you want to:

Use the temporary field to select data for your report. You cannot use a calculated value,
since it is evaluated after data selection takes place.

Use the temporary field to sort on data values. A calculated value is evaluated after the
data is sorted. With the BY TOTAL phrase, you can sort on this type of field.

Choose a calculated value when you want to:

Evaluate the temporary field using total values or prefix operators (which operate on total
values). You cannot use a virtual field, since it is evaluated before any totaling takes
place.

Evaluate the temporary field using fields from different paths in the data structure. You
cannot use a virtual field, since it is evaluated before the relationship between data in
the different paths is established.

208 Information Builders

What Is a Temporary Field?

Defining a Virtual Field

In this section:

Defining Multiple Virtual Fields

Displaying Virtual Fields

Clearing a Virtual Field

Establishing a Segment Location for a Virtual Field

Defining Virtual Fields Using a Multi-Path Data Source

Increasing the Speed of Calculations in Virtual Fields

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN

Applying Dynamically Formatted Virtual Fields to Report Columns

How to:

Create a Virtual Field

Reference:

Usage Notes for Creating Virtual Fields

A virtual field can be used in a request as though it is a real data source field. The calculation
that determines the value of a virtual field is performed on each retrieved record that passes
any screening conditions on real fields. The result of the expression is treated as though it
were a real field stored in the data source.

You can define a virtual field in the following ways:

In a Master File. These virtual fields are available whenever the data source is used for
reporting. These fields cannot be cleared by JOIN or DEFINE FILE commands.

For more information, see the Describing Data manual.

In a procedure. . A virtual field created in a procedure lasts either for the session or
until it is cleared by a:

DEFINE FILE filename CLEAR command.

Subsequent DEFINE command without the ADD phrase against the same data source.

JOIN command.

Tip: If your environment supports the KEEPDEFINES parameter, you can set KEEPDEFINES
to ON to protect virtual fields from being cleared by a subsequent JOIN command.

Creating Reports 209

6. Creating Temporary Fields

Usage Notes for Creating Virtual FieldsReference:

If you do not use the KEEPDEFINES parameter, when a JOIN is issued, all pre-existing
virtual fields for that data source are cleared except those defined in the Master File.

To join structures using a virtual field with the source, make sure the DEFINE follows the
JOIN command. Otherwise, the JOIN command clears the temporary field. For an
explanation of reporting on joined data sources, see Joining Data Sources on page 831.

If no field in the expression is in the Master File or has been defined, use the WITH
command to identify the logical home of the defined calculation. See Establishing a
Segment Location for a Virtual Field on page 217.

WITH can be used to move the logical home for the virtual field to a segment lower than
that to which it would otherwise be assigned (for example, to count instances in a lower
segment).

You may define fields simultaneously (in addition to fields defined in the Master File) for
as many data sources as desired. The total length of all virtual fields and real fields
cannot exceed 32,000 characters.

When you specify virtual fields in a request, they count toward the display field limit. For
details on determining the maximum number of display fields that can be used in a
request, see Displaying Report Data on page 45.

Virtual fields are only available when the data source is used for reporting. Virtual fields
cannot be used with MODIFY.

A DEFINE command may not contain qualified field names on the left-hand side of the
expression. If the same field name exists in more than one segment, and that field must
be redefined or recomputed, use the REDEFINES command.

Using a self-referencing DEFINE such as x=x+1 disables AUTOPATH (see the Developing
Applications manual).

Field names used in the expression that defines the virtual field cannot be enclosed in
single or double quotation marks. Any character string enclosed in quotation marks is
treated as a literal string, not a field reference.

A DEFINE FILE command overwrites a DEFINE in the Master File with same name as long
as you do not redefine the format (which is not allowed).

210 Information Builders

Defining a Virtual Field

How to Create a Virtual FieldSyntax:

Before you begin a report request, include

DEFINE FILE filename[.view_fieldname] [CLEAR|ADD]
fieldname[/format]=expression;
fieldname[/format][WITH realfield]=expression;
fieldname[/format] REDEFINES qualifier.fieldname=expression;
.
.
.
END

where:

filename

Is the name of the data source for which you are defining the virtual field.

If the report request specifies an alternate view, use filename in conjunction with
view_fieldname.

All fields used to define the virtual field must lie on a single path in the data source. If
they do not, you can use an alternate view, which requires alternate view DEFINE
commands. For an alternate view, virtual fields cannot have qualified field names or field
names that exceed the 12-character limit. For information on alternate views, see Rotating
a Data Structure for Enhanced Retrieval on page 904.

The DEFINE FILE command line must be on a separate line from its virtual field definitions.

view_fieldname

Is the field on which an alternate view is based in the corresponding request. You may
need to use an alternate view if the fields used do not lie on a single path in the normal
view.

CLEAR

Clears previously defined virtual fields associated with the specified data source. CLEAR
is the default value.

ADD

Enables you to specify additional virtual fields for a data source without releasing any
existing virtual fields. Omitting ADD produces the same results as the CLEAR option.

Creating Reports 211

6. Creating Temporary Fields

fieldname

Is a name of up to 66 characters. Indexed field names must be less than or equal to
12 characters. It can be the name of a new virtual field that you are defining, or an
existing field declared in the Master File, which you want to redefine.

The name can include any combination of letters, digits, and underscores (_), and should
begin with a letter.

Do not use field names of the type Cn, En, or Xn (where n is any sequence of one or
two digits), because they are reserved for other uses.

format

Is the format of the field. All formats except text fields (TX) are allowed. The default value
is D12.2. For information on field formats, see the Describing Data manual.

WITH realfield

Associates a virtual field with a data source segment containing a real field. For more
information, see Usage Notes for Creating Virtual Fields on page 210.

REDEFINES qualifier.fieldname

Enables you to redefine or recompute a field whose name exists in more than one
segment. If you change the format of the field when redefining it, the length in the new
format must be the same as or shorter than the original. In addition, conversion between
alphanumeric and numeric data types is not supported.

expression

Can be an arithmetic or logical expression or function, evaluated to establish the value
of fieldname (see Using Expressions on page 323). You must end each expression with
a semicolon except for the last one, where the semicolon is optional.

Fields in the expression can be real data fields, data fields in data sources that are
cross-referenced or joined, or previously defined virtual fields. For related information,
see Usage Notes for Creating Virtual Fields on page 210.

END

Is required to end the DEFINE FILE command. END must be on its own line in the
procedure.

212 Information Builders

Defining a Virtual Field

Defining a Virtual FieldExample:

In the following request, the value of RATIO is calculated by dividing the value of DELIVER_AMT
by OPENING_AMT. The DEFINE command creates RATIO as a virtual field, which is used in
the request as though it were a real field in the data source.

DEFINE FILE SALES
RATIO = DELIVER_AMT/OPENING_AMT;
END

TABLE FILE SALES
PRINT DELIVER_AMT AND OPENING_AMT AND RATIO
WHERE DELIVER_AMT GT 50
END

The output is:

DELIVER_AMT OPENING_AMT RATIO
----------- ----------- -----
 80 65 1.23
 100 100 1.00
 80 90 .89

Redefining a FieldExample:

The following request redefines the salary field in the EMPDATA data source to print asterisks
for job titles that contain the word EXECUTIVE:

DEFINE FILE EMPDATA
SALARY REDEFINES EMPDATA.SALARY =
 IF TITLE CONTAINS 'EXECUTIVE' THEN 999999999999 ELSE
 EMPDATA.SALARY;
END
TABLE FILE EMPDATA
SUM SALARY BY TITLE
WHERE TITLE CONTAINS 'MANAGER' OR 'MARKETING' OR 'SALES'
ON TABLE SET PAGE OFF
END

Creating Reports 213

6. Creating Temporary Fields

The output is:

TITLE SALARY
----- ------
EXEC MANAGER $54,100.00
EXECUTIVE MANAGER ***************
MANAGER $270,500.00
MARKETING DIRECTOR $176,800.00
MARKETING EXECUTIVE ***************
MARKETING SUPERVISOR $50,500.00
SALES EXECUTIVE ***************
SALES MANAGER $70,000.00
SALES SPECIALIST $82,000.00
SENIOR SALES EXEC. $43,400.00

Redefining a Field That Has the Same Name in Multiple SegmentsExample:

The following request joins the EMPDATA data source to itself. This creates a two-segment
structure in which the names are the same in both segments. The request then redefines
the salary field in the top segment (tag name ORIG) so that all names starting with the letter
L are replaced by asterisks, and redefines the salary field in the child segment (tag name
NEW) so that all names starting with the letter M are replace by asterisks:

JOIN PIN IN EMPDATA TAG ORIG TO PIN IN EMPDATA TAG NEW AS AJ
DEFINE FILE EMPDATA
SALARY/D12.2M REDEFINES ORIG.SALARY = IF LASTNAME LIKE 'L%' THEN
 999999999999 ELSE ORIG.SALARY;
SALARY/D12.2M REDEFINES NEW.SALARY = IF LASTNAME LIKE 'M%' THEN
 999999999999 ELSE NEW.SALARY * 1.2;
END
TABLE FILE EMPDATA
PRINT ORIG.SALARY AS 'ORIGINAL' NEW.SALARY AS 'NEW'
BY LASTNAME
WHERE LASTNAME FROM 'HIRSCHMAN' TO 'OLSON'
ON TABLE SET PAGE NOPAGE
END

214 Information Builders

Defining a Virtual Field

The output is:

LASTNAME ORIGINAL NEW
-------- -------- ---
HIRSCHMAN $62,500.00 $75,000.00
KASHMAN $33,300.00 $39,960.00
LASTRA *************** $138,000.00
LEWIS *************** $60,600.00
LIEBER *************** $62,400.00
LOPEZ *************** $31,680.00
MARTIN $49,000.00 ***************
MEDINA $39,000.00 ***************
MORAN $30,800.00 ***************
NOZAWA $80,500.00 $96,600.00
OLSON $30,500.00 $36,600.00

Defining Multiple Virtual Fields

How to:

Add a Virtual Field to Existing Virtual Fields

You may wish to have more than one set of virtual fields for the same data source, and to
use some or all of the virtual fields in the request. The ADD option enables you to specify
additional virtual fields without clearing existing ones. If you omit the ADD option, previously
defined virtual fields in that data source are cleared.

If you want to clear a virtual field for a particular data source, use the CLEAR option.

How to Add a Virtual Field to Existing Virtual FieldsSyntax:

DEFINE FILE filename ADD

where:

filename

Is the data source.

Creating Reports 215

6. Creating Temporary Fields

Adding Virtual FieldsExample:

The following annotated example illustrates the use of the ADD and CLEAR options for virtual
fields:

1. DEFINE FILE CAR
 ETYPE/A2=DECODE STANDARD (OHV O OHC O ELSE L);
 END
2. DEFINE FILE CAR ADD
 TAX/D8.2=IF MPG LT 15 THEN .06*RCOST
 ELSE .04*RCOST;
 FCOST = RCOST+TAX;
 END

1. The first DEFINE command creates the TYPE virtual field for the CAR data source. For
information about the DECODE function, see the Using Functions manual.

2. Two or more virtual fields, TAX and FCOST, are created for the CAR data source. The ADD
option allows you to reference ETYPE, TAX, and FCOST in future requests.

Displaying Virtual Fields

How to:

Display Virtual Fields

You can display all virtual fields with the ? DEFINE command.

How to Display Virtual FieldsSyntax:

? DEFINE

For more information, see the Developing Applications manual.

Clearing a Virtual Field
The following can clear a virtual field created in a procedure:

A DEFINE FILE filename CLEAR command.

A subsequent DEFINE command (without the ADD option), against the same data source.

A join. When a join is created for a data source, all pre-existing virtual fields for that data
source are cleared except those defined in the Master File. This may affect virtual fields
used in an expression.

A change in the value of the FIELDNAME SET parameter.

216 Information Builders

Defining a Virtual Field

Unlike fields created in a procedure, virtual fields in the Master File are not cleared in the
above ways.

Clearing Virtual FieldsExample:

The following annotated example illustrates the use of the CLEAR options for virtual fields:

1. DEFINE FILE CAR
 ETYPE/A2=DECODE STANDARD (OHV O OHC O ELSE L);
 END
2. DEFINE FILE CAR CLEAR
 COST = RCOST-DCOST;
 END

1. The first DEFINE command creates the TYPE virtual field for the CAR data source. For
information about the DECODE function, see the Using Functions manual.

2. The CLEAR option clears the previously defined virtual fields, and only the COST virtual
field in the last DEFINE is available for further requests.

Establishing a Segment Location for a Virtual Field
Virtual fields have a logical location in the data source structure, just like permanent data
source fields. The logical home of a virtual field is on the lowest segment that has to be
accessed in order to evaluate the expression, and determines the time of execution for that
field. Consider the following data source structure and DEFINE command:

DEFINE RATIO = DELIVER_AMT/RETAIL_PRICE ;

The expression for RATIO includes at least one real data source field. As far as report
capabilities are concerned, the field RATIO is just like a real field in the Master File, and is
located in the lowest segment.

Creating Reports 217

6. Creating Temporary Fields

In some applications, you can have a virtual field evaluated by an expression that contains
no real data source fields. Such an expression might refer only to temporary fields or literals.
For example,

NCOUNT/I5 = NCOUNT+1;

or

DATE/YMD = '19990101';

Since neither expression contains a data source field (NCOUNT and the literal do not exist
in the Master File), their logical positions in the data source cannot be determined. You have
to specify in which segment you want the expression to be placed. To associate a virtual
field with a specific segment, use the WITH phrase. The field name following WITH may be
any real field in the Master File.

For FOCUS data sources, you may be able to increase the retrieval speed with an external
index on the virtual field. In this case, you can associate the index with a target segment
outside of the segment containing the virtual field. See the Developing Applications manual
for more information on external indexes.

Establishing a Segment LocationExample:

The field NCOUNT is placed in the same segment as the UNITS field. NCOUNT is calculated
each time a new segment instance is retrieved.

DEFINE FILE GGSALES
NCOUNT/I5 WITH UNITS = NCOUNT+1;
END

Defining Virtual Fields Using a Multi-Path Data Source
Calculations of a virtual field may include fields from all segments of a data source, but they
must lie in a unique top-to-bottom path. Different virtual fields may, of course, lie along
different paths. For example, consider the following data source structure:

This data source structure does not permit you to write the following expression:

NEWAMT = SALARY+GROSS;

218 Information Builders

Defining a Virtual Field

The expression is invalid because the structure implies that there can be several SALARY
segments for a given EMPLOYEE, and it is not clear which SALARY to associate with which
GROSS.

To accomplish such an operation, you can use the alternate view option explained in Improving
Report Processing on page 903.

Increasing the Speed of Calculations in Virtual Fields
Virtual fields can be compiled into machine code in order to increase the speed of
calculations. For more information, see Chapter 16, Improving Report Processing.

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN

How to:

Protect Virtual Fields From Being Overwritten

Occasionally, new code needs to be added to an existing application. When adding code,
there is always the possibility of over-writing existing virtual fields by reusing their names
inadvertently.

The DEFINE FILE SAVE command forms a new context for virtual fields. Each new context
creates a new layer or command environment. When you first enter the new environment,
all of the virtual fields defined in the previous layer are available in the new layer. Overwriting
or clearing a virtual field definition affects only the current layer. You can return to the default
context with the DEFINE FILE RETURN command, and the virtual field definitions remain
intact.

Therefore, all the virtual fields that are created in the new application can be removed before
returning to the calling application, without affecting existing virtual fields in that application.

For an example of DEFINE FILE SAVE and DEFINE FILE RETURN, see Joining Data Sources
on page 831.

Note: A JOIN command can be issued after a DEFINE FILE SAVE command. However, in
order to clear the join context, you must issue a JOIN CLEAR command if the join is still in
effect. If only virtual fields and DEFINE FILE ADD were issued after a DEFINE FILE SAVE
command, you can clear them by issuing a DEFINE FILE RETURN command.

Creating Reports 219

6. Creating Temporary Fields

How to Protect Virtual Fields From Being OverwrittenSyntax:

DEFINE FILE filename SAVE
fld1/format1=expression1;
fld2/format2=expression2 ;
END
TABLE FILE filename ...
MODIFY FILE filename ...
DEFINE FILE filename RETURN
END

where:

SAVE

Creates a new context for virtual fields.

filename

Is the name of the Master File that gets a new context and has the subsequent virtual
fields applied before the DEFINE FILE RETURN command is issued.

RETURN

Clears the current context if it was created by DEFINE FILE SAVE, and restores the
previous context.

Applying Dynamically Formatted Virtual Fields to Report Columns

How to:

Define and Apply a Format Field

Reference:

Usage Notes for Field-Based Reformatting

Dynamic formatting enables you to apply different formats to specific data in a column by
using a temporary field that contains dynamic data settings.

Before you can format a report column using the dynamic format, you must create the report,
then apply the temporary field to a column in the report. For example, you can create a
temporary field that contains different decimal currency formats for countries like Japan
(which uses no decimal places) and England (which uses 2 decimal places). These currency
formats are considered dynamic formats. You can then apply the temporary field containing
the dynamic formatting to a Sales column. In a report, the Sales column reflects the different
currency formats for each country.

220 Information Builders

Defining a Virtual Field

The field that contains the format specifications can be:

A real field in the data source.

A temporary field created with a DEFINE command.

A DEFINE in the Master File.

A COMPUTE command. If the field is created with a COMPUTE command, the command
must appear in the request prior to using the calculated field for reformatting.

The field that contains the formats must be alphanumeric, and at least eight characters in
length. Only the first eight characters are used for formatting.

The field-based format may specify a length longer than the length of the original field.
However, if the new length is more than one-third larger than the original length, the report
column width may not be large enough to hold the value (indicated by asterisks in the field).

You can apply a field-based format to any type of field. However, the new format must be
compatible with the original format:

A numeric field can be reformatted to any other numeric format with any edit format
options.

An alphanumeric field can be reformatted to a different length.

Any date field can be reformatted to any other date format type.

Any date-time field can be reformatted to any other date-time format.

If the field-based format is invalid or specifies an impermissible type of conversion, the field
displays with plus signs (++++) on the report output.

Creating Reports 221

6. Creating Temporary Fields

How to Define and Apply a Format FieldSyntax:

With a DEFINE command:

DEFINE FILE filename
format_field/A8 = expression;
END

In a Master File:

DEFINE format_field/A8 = expression; $

In a request:

COMPUTE format_field/A8 = expression;

where:

format_field

Is the name of the field that contains the format for each row.

expression

Is the expression that assigns the format values to the format field.

After the format field is defined, you can apply it in a report request:

TABLE FILE filename
displayfieldname/format_field[/just]
END

where:

display

Is any valid display command.

fieldname

Is a field in the request to be reformatted.

format_field

Is the name of the field that contains the formats. If the name of the format field is the
same as an explicit format, the explicit format is used. For example, a field named I8
cannot be used for field-based reformatting, because it is interpreted as the explicit
format I8.

just

Is a justification option: L, R, or C. The justification option can be placed before or after
the format field, separated from the format by a slash.

222 Information Builders

Defining a Virtual Field

Creating Dynamically Formatted FieldsExample:

The following request formats the SALES field according to the value of the COUNTRY field:

DEFINE FILE CAR
MYFORMAT/A8=DECODE COUNTRY ('ENGLAND' 'P15.3C' 'JAPAN' 'P15.0' ELSE
'P15.2M');
END

TABLE FILE CAR
SUM SALES/MYFORMAT BY COUNTRY
END

The output is:

COUNTRY SALES
------- -----
ENGLAND 12,000.000
FRANCE $.00
ITALY $30,200.00
JAPAN 78030.
W GERMANY $88,190.00

Usage Notes for Field-Based ReformattingReference:

Field-based reformatting is supported for TABLE and TABLEF. It works with StyleSheets,
joins, and any type of data source.

Field-based reformatting is not supported for MODIFY, Maintain, MATCH, GRAPH, RECAP,
FOOTING, HEADING, or text fields.

Although you can use a DEFINE or COMPUTE command to create the format field, you
cannot apply a field-based format to a calculated or virtual field.

Field-based reformatting cannot be used on a BY sort field. It does work with an ACROSS
field.

If a report column is produced using field-based reformatting, the format used for a total
or subtotal of the column is taken from the previous detail line.

Explicit reformatting creates two display fields internally for each field that is reformatted.
Field-based reformatting creates three display fields.

Field-based reformatting works for alphanumeric fields in a HOLD file, although three
fields are stored in the file for each field that is reformatted. To prevent the extra fields
from being propagated to the HOLD file, specify SET HOLDLIST=PRINTONLY.

If the number of decimal places varies between rows, the decimal points are not aligned
in the report output.

Creating Reports 223

6. Creating Temporary Fields

Creating a Calculated Value

In this section:

Using Positional Column Referencing With Calculated Values

Using ACROSS With Calculated Values

Sorting Calculated Values

Screening on Calculated Values

How to:

Create a Calculated Value

Create a Calculated Value Without a Calculation

Reference:

Usage Notes for Calculated Field Values

A calculated value is a temporary field that is evaluated after all the data that meets the
selection criteria is retrieved, sorted, and summed. Calculated values are available only for
the specified report request.

You specify the COMPUTE command in the body of the report request, following the display
command and optionally introduced by AND. You can compute more than one field with a
single COMPUTE command.

Usage Notes for Calculated Field ValuesReference:

The following apply to the use of calculated values:

If you specify any optional COMPUTE phrases (such as, AS, IN, or NORPINT), and you
compute additional fields following these phrases, you must repeat the commands
COMPUTE or AND COMPUTE before specifying the additional fields.

You can rename and justify column totals and row totals. For information, see the
examples in Including Totals and Subtotals on page 269.

Expressions in a COMPUTE command can include fields with prefix operators (see
Manipulating Display Fields With Prefix Operators on page 60). For more information on
valid expressions, see Using Expressions on page 323.

Fields referred to in a COMPUTE command are counted toward the display field limit, and
appear in the internal matrix. For details on determining the maximum number of display
fields that can be used in a request, see Displaying Report Data on page 45.

224 Information Builders

Creating a Calculated Value

Field names used in the expression that defines the calculated field cannot be enclosed
in single or double quotation marks. Any character string enclosed in quotation marks is
treated as a literal string, not a field reference.

When using a COMPUTE with an ACROSS COLUMNS phrase, the COLUMNS should be
specified last:

ACROSS acrossfield [AND] COMPUTE compute_expression; COLUMNS values

How to Create a Calculated ValueSyntax:

COMPUTE fld [/format]= expression;[AS 'title'] [NOPRINT] [IN [+n]]

where:

fld

Is the name of the calculated value.

The name can be up to 66 characters long and can include any combination of letters,
digits, and underscores (_). It should begin with a letter. Other characters are not
recommended, and may cause problems in some operating environments or when
resolving expressions.

Do not use field names of the type Cn, En, and Xn (where n is any sequence of one or
two digits), because they are reserved for other uses.

format

Is the format of the field. All formats except text fields (TX) are allowed. The default is
D12.2. For information on formats, see the Describing Data manual.

expression

Can be an arithmetic and/or logical expression or function (see Using Expressions on
page 323). Each field used in the expression must be part of the request. Each expression
must end with a semicolon.

NOPRINT

Suppresses printing of the field. .

AS 'title'

Changes the name of the calculated value. F

IN [+n]

Specifies the location of the column.

Creating Reports 225

6. Creating Temporary Fields

How to Create a Calculated Value Without a CalculationSyntax:

COMPUTE fld [/format]= ;

where:

fld

Is the name of the calculated value.

The name can be up to 66 characters long and can include any combination of letters,
digits, and underscores (_). It should begin with a letter. Other characters are not
recommended, and may cause problems in some operating environments or when
resolving expressions.

Do not use field names of the type Cn, En, and Xn (where n is any sequence of one or
two digits), because they are reserved for other uses.

format

Is the format of the field. All formats except text fields (TX) are allowed. The default is
D12.2. For information on formats, see the Describing Data manual.

Calculating a Field ValueExample:

In the following example, the COMPUTE command creates a temporary field REVENUE based
on the product of UNIT_SOLD and RETAIL_PRICE, and displays this information for New York
City. The format D12.2M indicates the field format for REVENUE and the AS command
changes the default column headings for UNIT_SOLD and RETAIL_PRICE. REVENUE is only
available for this report request.

TABLE FILE SALES
HEADING CENTER
"NEW YORK PROFIT REPORT"
" "
SUM UNIT_SOLD AS 'UNITS,SOLD' RETAIL_PRICE AS 'RETAIL,PRICE'
COMPUTE REVENUE/D12.2M = UNIT_SOLD * RETAIL_PRICE;
BY PROD_CODE AS 'PROD,CODE'
WHERE CITY EQ 'NEW YORK'
END

226 Information Builders

Creating a Calculated Value

The output is:

 NEW YORK PROFIT REPORT

PROD UNITS RETAIL
CODE SOLD PRICE REVENUE
---- ----- ------ -------
B10 30 $.85 $25.50
B17 20 $1.89 $37.80
B20 15 $1.99 $29.85
C13 15 $1.99 $29.85
C14 18 $2.05 $36.90
C17 12 $2.09 $25.08
D12 20 $2.09 $41.80
E1 30 $.89 $26.70
E2 33 $.99 $32.67
E3 35 $1.09 $38.15

Using Positional Column Referencing With Calculated Values
In a COMPUTE command, it is sometimes convenient to refer to a field by its report column
position rather than its name. This option is especially useful when the same field is specified
for several report columns.

Column referencing becomes essential when you are using the same field name in a variety
of ways. The columns produced by display commands (whether displayed or not) can be
referred to as C1 for the first column, C2 for the second column, and so forth. The BY field
columns are not counted.

For additional information about column reference numbers, see Assigning Column Reference
Numbers on page 229.

Using Positional Column ReferencingExample:

The following example demonstrates positional field references in a COMPUTE command:

TABLE FILE CAR
SUM AVE.DEALER_COST
SUM AVE.DEALER_COST AND COMPUTE RATIO=C1/C2;
BY COUNTRY
END

The columns produced by display commands can be referred to as C1 for the first column
(AVE.DEALER_COST), C2 for the second column (AVE.DEALER_COST BY COUNTRY), and so
forth. The BY field columns are not counted.

Creating Reports 227

6. Creating Temporary Fields

The output is:

AVE AVE
DEALER_COST COUNTRY DEALER_COST RATIO
----------- ------- ----------- -----
 7,989 ENGLAND 9,463 .84
 FRANCE 4,631 1.73
 ITALY 10,309 .77
 JAPAN 2,756 2.90
 W GERMANY 7,795 1.02

Using ACROSS With Calculated Values
If the COMPUTE command is issued immediately following an ACROSS phrase, only a recap
type of the calculation is performed once for all columns. COMPUTE is used as part of a
display command, so a new column is calculated for each set of values.

Using COMPUTE as Part of a Display CommandExample:

TABLE FILE SALES
SUM UNIT_SOLD
COMPUTE NEWVAL = UNIT_SOLD * RETAIL_PRICE;
ACROSS CITY
END

The first page of output is:

CITY
NEW YORK NEWARK STAMFORD UNIONDALE
UNIT_SOLD NEWVAL UNIT_SOLD NEWVAL UNIT_SOLD NEWVAL UNIT_SOLD NEWVAL
--
 162 1,764.18 42 104.16 376 4,805.28 65 297.70

Using ACROSS With Calculated ValuesExample:

In the following COMPUTE command, C1, C2, C3, C4, C5, and C6 are positional column
references, and the COMPUTE command follows the ACROSS phrase. The COMPUTE is
performed once for the report, and the results are displayed to the right of all sort groups.

TABLE FILE SALES
SUM UNIT_SOLD AND RETURNS
WHERE DATE GE '010' AND DATE LE '1031'
ACROSS DATE
COMPUTE
TOT_UNITS/D5=C1 + C3 + C5;
TOT_RETURNS = C2 + C4 + C6;
END

228 Information Builders

Creating a Calculated Value

The output is:

DATE
10/17 10/18 10/19 TOT_UNITS TOT_RETURNS
UNIT_SOLD RETURNS UNIT_SOLD RETURNS UNIT_SOLD RETURNS

 162 15 78 2 29 1 269 18.00

Sorting Calculated Values
You can sort a report by a virtual field or a calculated value. To sort by a calculated value,
you must use the BY TOTAL phrase in your request. For details, see Sorting and Aggregating
Report Columns on page 135.

Screening on Calculated Values
You can screen on values produced by COMPUTE commands by using the WHERE TOTAL
test, as described in Selecting Records for Your Report on page 157.

Assigning Column Reference Numbers

In this section:

Using Column Notation in a Report Request

How to:

Control the Creation of Column Reference Numbers

Column notation assigns a sequential column number to each column in the internal matrix
created for a report request. If you want to control the creation of column reference numbers
for the columns that are used in your report, use the CNOTATION column notation command.

Because column numbers refer to columns in the internal matrix, they are assigned after
retrieval and aggregation of data are completed. Columns created and displayed in a report
are stored in the internal matrix, and columns that are not displayed in a report may also
be generated and stored in the internal matrix. Columns stored in the internal matrix include
calculated values, reformatted field values, BY fields, fields with the NOPRINT option, and
certain RECAP calculations such as FORECAST and REGRESS. Every other column in the
internal matrix is assigned a column number by default which means you have to account
for all internally generated columns if you want to refer to the appropriate column value in
your request.

You can change the default assignment of column reference numbers by using the SET
CNOTATION command which can assign column numbers only to columns that display in
the report output or to all fields referenced in the report request. You can use column notation
in COMPUTE and RECAP commands to refer to these columns in your request.

Creating Reports 229

6. Creating Temporary Fields

How to Control the Creation of Column Reference NumbersSyntax:

SET CNOTATION={ALL|PRINTONLY|EXPLICIT}

where:

ALL

Assigns column reference numbers to every column in the internal matrix. ALL is the
default value.

PRINTONLY

Assigns column reference numbers only to columns that display in the report output.

EXPLICIT

Assigns column reference numbers to all fields referenced in the request, whether
displayed or not.

Using Column Notation in a Report Request

Reference:

Usage Notes for Column Numbers

To create a column reference in a request, you can:

Preface the column number with a C in a non-FML request.

Use the column number as an index in conjunction with a row label in an FML request.
With this type of notation, you can specify a specific column, a relative column number,
or a sequence or series of columns.

Refer to a particular cell in an FML request using the notation E(r,c), where r is a row
number and c is a column number.

Using Column Notation in a Non-FML Request With CNOTATION=ALLExample:

In the following request with CNOTATION=ALL, the product of C1 and C2 does not calculate
TRANSTOT times QUANTITY because the reformatting generates additional columns.

SET CNOTATION = ALL

TABLE FILE VIDEOTRK
SUM TRANSTOT/D12.2 QUANTITY/D12.2
AND COMPUTE
PRODUCT = C1 * C2;
BY TRANSDATE
END

230 Information Builders

Assigning Column Reference Numbers

The output is:

TRANSDATE TRANSTOT QUANTITY PRODUCT
--------- -------- -------- -------
 91/06/17 57.03 12.00 3,252.42
 91/06/18 21.25 2.00 451.56
 91/06/19 38.17 5.00 1,456.95
 91/06/20 14.23 3.00 202.49
 91/06/21 44.72 7.00 1,999.88
 91/06/24 126.28 12.00 15,946.63
 91/06/25 47.74 8.00 2,279.11
 91/06/26 40.97 2.00 1,678.54
 91/06/27 60.24 9.00 3,628.85
 91/06/28 31.00 3.00 961.00

BY fields do not get a column reference, so the first column reference is for TRANSTOT with
its original format, then the reformatted version. Next is QUANTITY with its original format
and then the reformatted version. Last is the calculated value, PRODUCT.

Using Column Notation in a Non-FML Request With CNOTATION=PRINTONLYExample:

Setting CNOTATION=PRINTONLY assigns column references to the output columns only. In
this case, the product of C1 and C2 does calculate TRANSTOT times QUANTITY.

SET CNOTATION = PRINTONLY

TABLE FILE VIDEOTRK
SUM TRANSTOT/D12.2 QUANTITY/D12.2
AND COMPUTE
PRODUCT = C1 * C2;
BY TRANSDATE
END

The output is:

TRANSDATE TRANSTOT QUANTITY PRODUCT
--------- -------- -------- -------
 91/06/17 57.03 12.00 684.36
 91/06/18 21.25 2.00 42.50
 91/06/19 38.17 5.00 190.85
 91/06/20 14.23 3.00 42.69
 91/06/21 44.72 7.00 313.04
 91/06/24 126.28 12.00 1,515.36
 91/06/25 47.74 8.00 381.92
 91/06/26 40.97 2.00 81.94
 91/06/27 60.24 9.00 542.16
 91/06/28 31.00 3.00 93.00

Creating Reports 231

6. Creating Temporary Fields

Using CNOTATION=PRINTONLY With Column Numbers in an FML RequestExample:

In the following request, the reformatting of fields generates additional columns in the internal
matrix. In the second RECAP expression, note that because of the CNOTATION setting:

TOTCASH(1) refers to total cash in displayed column 1.

TOTCASH(2) refers to total cash in displayed column 2.

The resulting calculation is displayed in column 2 of the row labeled CASH GROWTH(%).

The RECAP value is only calculated for the column specified.

SET CNOTATION=PRINTONLY
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END
TABLE FILE LEDGER
SUM CUR_YR/F9.2 AS 'CURRENT,YEAR'
LAST_YR/F9.2 AS 'LAST,YEAR'

FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH/F9.2C= R1 + R2 + R3; AS 'TOTAL CASH' OVER
" " OVER
RECAP GROCASH(2)/F9.2C=100*TOTCASH(1)/TOTCASH(2) - 100;
AS 'CASH GROWTH(%)'
END

The output is:

 CURRENT LAST
 YEAR YEAR
 ------- ----
CASH ON HAND 8784.00 7214.00
DEMAND DEPOSITS 4494.00 3482.00
TIME DEPOSITS 7961.00 6499.00
 --------- ---------
TOTAL CASH 21,239.00 17,195.00

CASH GROWTH(%) 23.52

232 Information Builders

Assigning Column Reference Numbers

Using CNOTATION=PRINTONLY to RECAP Over Contiguous Columns in an FML
Request

Example:

In this example, the RECAP calculation for ATOT occurs only for displayed columns 2 and 3,
as specified in the request. No calculation is performed for displayed column 1.

SET CNOTATION=PRINTONLY
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END
TABLE FILE LEDGER
SUM NEXT_YR/F9.2 CUR_YR/F9.2 LAST_YR/F9.2
FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
RECAP ATOT(2,3)/I5C = R1 + R2 + R3;
AS 'ASSETS ACTUAL'
END

The output is:

 NEXT_YR CUR_YR LAST_YR
 ------- ------ -------
CASH 25991.00 21239.00 17195.00
ACCOUNTS RECEIVABLE 21941.00 18829.00 15954.00
INVENTORY 31522.00 27307.00 23329.00
 --------- --------- ---------
ASSETS ACTUAL 67,375 56,478

Using CNOTATION=PRINTONLY With Relative Column Addressing in an FML RequestExample:

This example computes the change in cash (CHGCASH) for displayed columns 1 and 2.

SET CNOTATION=PRINTONLY
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END
TABLE FILE LEDGER
SUM NEXT_YR/F9.2 CUR_YR/F9.2 LAST_YR/F9.2
FOR ACCOUNT
10$$ AS 'TOTAL CASH' LABEL TOTCASH OVER
" " OVER
RECAP CHGCASH(1,2)/I5SC = TOTCASH(*) - TOTCASH(*+1); AS 'CHANGE IN CASH'
END

Creating Reports 233

6. Creating Temporary Fields

The output is:

 NEXT_YR CUR_YR LAST_YR
 ------- ------ -------
TOTAL CASH 25991.00 21239.00 17195.00

CHANGE IN CASH 4,752 4,044

Using CNOTATION=PRINTONLY With Cell Notation in an FML RequestExample:

In this request, two RECAP expressions derive VARIANCEs (EVAR and WVAR) by subtracting
values in four displayed columns (1, 2, 3, 4) in row three (PROFIT); these values are identified
using cell notation (r,c).

SET CNOTATION=PRINTONLY
TABLE FILE REGION
SUM E_ACTUAL/F9.2 E_BUDGET/F9.2 W_ACTUAL/F9.2 W_BUDGET/F9.2
FOR ACCOUNT
3000 AS 'SALES' OVER
3100 AS 'COST' OVER
BAR OVER
RECAP PROFIT/I5C = R1 - R2; OVER
" " OVER
RECAP EVAR(1)/I5C = E(3,1) - E(3,2);
AS 'EAST VARIANCE' OVER
RECAP WVAR(3)/I5C = E(3,3) - E(3,4);
AS 'WEST VARIANCE'
END

The output is:

 E_ACTUAL E_BUDGET W_ACTUAL W_BUDGET
 -------- -------- -------- --------
SALES 6000.00 4934.00 7222.00 7056.00
COST 4650.00 3760.00 5697.00 5410.00
 --------- --------- --------- ---------
PROFIT 1,350 1,174 1,525 1,646

EAST VARIANCE 176
WEST VARIANCE -121

234 Information Builders

Assigning Column Reference Numbers

Using NOPRINT, Field Reformatting, and COMPUTE With Column NotationExample:

The following request has a field that is not printed, several reformatted fields and three
calculated values. With SET CNOTATION=PRINTONLY, the column references result in correct
output.

SET CNOTATION = PRINTONLY
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END
TABLE FILE LEDGER
SUM NEXT_YR NOPRINT CUR_YR
COMPUTE AMT2/D6 = AMOUNT *2;
LAST_YR/D5 AMOUNT NEXT_YR
COMPUTE AMT3/D6 = AMOUNT*3;
COMPUTE AMT4/D6 = AMOUNT*4;
FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCTS. REC.' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
RECAP ATOT/I8C = R1 + R2 + R3; AS 'TOTAL' OVER
RECAP DIFF(2,10,2)/D8 = ATOT(*) - ATOT(*-1);
END

The output is:

 CUR_YR AMT2 LAST_YR AMOUNT NEXT_YR AMT3 AMT4
 ------ ---- ------- ------ ------- ---- ----
CASH 21,239 42,478 17,195 21,239 25,991 63,717 84,956
ACCTS. REC. 18,829 37,658 15,954 18,829 21,941 56,487 75,316
INVENTORY 27,307 54,614 23,329 27,307 31,522 81,921 109,228
 ------ ------- ------ ------ ------ ------- -------
TOTAL 67,375 134,750 56,478 67,375 79,454 202,125 269,500
DIFF 67,375 10,897 122,671

Using Column Notation With NOPRINT in a non-FML RequestExample:

The following request, sums TRANSTOT, QUANTITY, and TRANSCODE by TRANSDATE.
TRANSTOT has the NOPRINT option, so it is not displayed on the report output. The request
also calculates the following fields using COMPUTE commands:

TTOT2, which has the same value as TRANSTOT and displays on the report output.

UNIT_COST1, which is calculated by dividing column1 by column2.

Creating Reports 235

6. Creating Temporary Fields

UNIT_COST2, which is calculated by dividing column1 by QUANTITY.

SET CNOTATION = ALL
TABLE FILE VIDEOTRK
SUM TRANSTOT/D7.2 NOPRINT QUANTITY/D7.2 TRANSCODE
 COMPUTE TTOT2/D7.2 = C1;
 COMPUTE UNIT_COST1/D7.2 = C1/C2;
 COMPUTE UNIT_COST2/D7.2 = C1/QUANTITY;
BY TRANSDATE
END

With this request, only CNOTATION=EXPLICIT produces the correct output. The following
discussion illustrates why the EXPLICIT setting is needed.

With CNOTATION=ALL, all fields in the internal matrix are assigned column numbers. In
particular, the request creates the following column references:

C1 is TRANSTOT with its original format.

C2 is TRANSTOT with format D7.2.

C3 is QUANTITY with its original format.

C4 is QUANTITY with format D7.2.

C5 is TRANSCODE.

UNIT_COST1 is C1/C2. These column numbers have both been assigned to TRANSTOT, so
UNIT_COST1 always equals 1. UNIT_COST2 is C1 (TRANSTOT) divided by QUANTITY. The
output is:

TRANSDATE QUANTITY TRANSCODE TTOT2 UNIT_COST1 UNIT_COST2
--------- -------- --------- ----- ---------- ----------
 91/06/17 12.00 10 57.03 1.00 4.75
 91/06/18 2.00 2 21.25 1.00 10.63
 91/06/19 5.00 4 38.17 1.00 7.63
 91/06/20 3.00 3 14.23 1.00 4.74
 91/06/21 7.00 6 44.72 1.00 6.39
 91/06/24 12.00 9 126.28 1.00 10.52
 91/06/25 8.00 7 47.74 1.00 5.97
 91/06/26 2.00 2 40.97 1.00 20.48
 91/06/27 9.00 7 60.24 1.00 6.69
 91/06/28 3.00 3 31.00 1.00 10.33

With CNOTATION = PRINTONLY, the field TRANSTOT, which has the NOPRINT option, is not
assigned any column numbers. QUANTITY with its original format is not assigned a column
number because it is not displayed on the report output. The reformatted QUANTITY field is
displayed and is assigned a column number. Therefore, the request creates the following
column references:

C1 is QUANTITY with format D7.2.

C2 is TRANSCODE.

236 Information Builders

Assigning Column Reference Numbers

UNIT_COST1 is C1/C2, QUANTITY/TRANSCODE. UNIT_COST2 is C1 (QUANTITY) divided by
QUANTITY. Therefore, UNIT_COST2 always equals 1. The output is:

TRANSDATE QUANTITY TRANSCODE TTOT2 UNIT_COST1 UNIT_COST2
--------- -------- --------- ----- ---------- ----------
 91/06/17 12.00 10 12.00 1.20 1.00
 91/06/18 2.00 2 2.00 1.00 1.00
 91/06/19 5.00 4 5.00 1.25 1.00
 91/06/20 3.00 3 3.00 1.00 1.00
 91/06/21 7.00 6 7.00 1.17 1.00
 91/06/24 12.00 9 12.00 1.33 1.00
 91/06/25 8.00 7 8.00 1.14 1.00
 91/06/26 2.00 2 2.00 1.00 1.00
 91/06/27 9.00 7 9.00 1.29 1.00
 91/06/28 3.00 3 3.00 1.00 1.00

With CNOTATION = EXPLICIT, the reformatted TRANSTOT field is explicitly referenced in the
request, so it is assigned a column number even though it is not displayed. However, the
TRANSTOT field with its original format is not assigned a column number. The QUANTITY
field with its original format is not assigned a column number because it is not explicitly
referenced in the request. The reformatted QUANTITY field is assigned a column number.
Therefore, the request creates the following column references:

C1 is TRANSTOT with format D7.2.

C2 is QUANTITY with format D7.2.

C3 is TRANSCODE.

UNIT_COST1 is C1/C2, TRANSTOT/QUANTITY. UNIT_COST2 is C1 (TRANSTOT) divided by
QUANTITY. Therefore, UNIT_COST2 always equals UNIT_COST1. The output is:

TRANSDATE QUANTITY TRANSCODE TTOT2 UNIT_COST1 UNIT_COST2
--------- -------- --------- ----- ---------- ----------
 91/06/17 12.00 10 57.03 4.75 4.75
 91/06/18 2.00 2 21.25 10.63 10.63
 91/06/19 5.00 4 38.17 7.63 7.63
 91/06/20 3.00 3 14.23 4.74 4.74
 91/06/21 7.00 6 44.72 6.39 6.39
 91/06/24 12.00 9 126.28 10.52 10.52
 91/06/25 8.00 7 47.74 5.97 5.97
 91/06/26 2.00 2 40.97 20.48 20.48
 91/06/27 9.00 7 60.24 6.69 6.69
 91/06/28 3.00 3 31.00 10.33 10.33

Creating Reports 237

6. Creating Temporary Fields

Using Cell Notation in an FML RequestExample:

In the following request, CUR_YR has the NOPRINT option. The CHGCASH RECAP expression
is supposed to subtract CUR_YR from LAST_YR and NEXT_YR.

SET CNOTATION = ALL
DEFINE FILE LEDGER
CUR_YR/I7C = AMOUNT;
LAST_YR/I5C = .87*CUR_YR - 142;
NEXT_YR/I5C = 1.13*CUR_YR + 222;
END
TABLE FILE LEDGER
SUM CUR_YR/I5C NOPRINT LAST_YR NEXT_YR
FOR ACCOUNT
10$$ AS 'TOTAL CASH ' LABEL TOTCASH OVER
" " OVER
RECAP CHGCASH(1,3)/I5SC=(TOTCASH(*) - TOTCASH(1));
 AS 'CHANGE FROM CURRENT'
END

When CNOTATION = ALL, C1 refers to the CUR_YR field with its original format, C2 refers to
the reformatted value, C3 is LAST_YR, and C4 is NEXT_YR. Since there is an extra column
and the RECAP only refers to columns 1 and 3, the calculation for NEXT_YR - CUR_YR is not
performed. The output is:

 LAST_YR NEXT_YR
 ------- -------
TOTAL CASH 17,195 25,991

CHANGE FROM CURRENT -4,044

When CNOTATION = PRINTONLY, the CUR_YR field is not assigned any column number, so
there is no column 3. Therefore, no calculations are performed. The output is:

 LAST_YR NEXT_YR
 ------- -------
TOTAL CASH 17,195 25,991

CHANGE FROM CURRENT

When CNOTATION = EXPLICIT, the reformatted version of the CUR_YR field is C1 because
it is referenced in the request even though it is not displayed. Both calculations are performed
correctly. The output is:

 LAST_YR NEXT_YR
 ------- -------
TOTAL CASH 17,195 25,991

CHANGE FROM CURRENT -4,044 4,752

Usage Notes for Column NumbersReference:

BY fields are not assigned column numbers.

238 Information Builders

Assigning Column Reference Numbers

ACROSS columns are assigned column numbers.

Calculated fields are assigned column numbers.

Column numbers outside the range of the columns created in the request are allowed
under the following circumstances (and are treated as containing the value zero):

When specified in a COMPUTE command issued after an ACROSS phrase.

In a cell reference in an FML RECAP command.

In those cases, it is not possible to know in advance how many columns will be generated
by the syntax. Using a column number outside of the range in any other context generates
the following message:

(FOC258) FIELDNAME OR COMPUTATIONAL ELEMENT NOT RECOGNIZED: column

Calculating Trends and Predicting Values With FORECAST

In this section:

FORECAST Processing

Using a Simple Moving Average

Using Single Exponential Smoothing

Using Double Exponential Smoothing

Using Triple Exponential Smoothing

Using a Linear Regression Equation

FORECAST Reporting Techniques

You can calculate trends in numeric data and predict values beyond the range of those
stored in the data source by using the FORECAST feature. FORECAST can be used in a report
or graph request.

The calculations you can make to identify trends and forecast values are:

Simple moving average (MOVAVE) calculates a series of arithmetic means using a
specified number of values from a field. For details, see Using a Simple Moving Average
on page 245.

Exponential moving average calculates a weighted average between the previously
calculated value of the average and the next data point. There are three methods for
using an exponential moving average:

Creating Reports 239

6. Creating Temporary Fields

Single exponential smoothing (EXPAVE) calculates an average that allows you
to choose weights to apply to newer and older values. For details, see Using Single
Exponential Smoothing on page 248.

Double exponential smoothing (DOUBLEXP) accounts for the tendency of data
to either increase or decrease over time without repeating. For details, see Using
Double Exponential Smoothing on page 251.

Triple exponential smoothing (SEASONAL) accounts for the tendency of data to
repeat itself in intervals over time. For details, see Using Triple Exponential Smoothing
on page 252.

Linear regression analysis (REGRESS) derives the coefficients of a straight line that
best fits the data points and uses this linear equation to estimate values. For details,
see Usage Notes for Creating Virtual Fields on page 210.

When predicting values in addition to calculating trends, FORECAST continues the same
calculations beyond the data points by using the generated trend values as new data points.
For the linear regression technique, the calculated regression equation is used to derive
trend and predicted values.

FORECAST performs the calculations based on the data provided, but decisions about their
use and reliability are the responsibility of the user. Therefore, FORECAST predictions are
not always reliable, and many factors determine how accurate a prediction will be.

You can conditionally format forecasted values. For details, see For details, see Styling
Reports on page 491.

240 Information Builders

Calculating Trends and Predicting Values With FORECAST

FORECAST Processing

How to:

Calculate Trends and Predict Values

Reference:

Usage Notes for FORECAST

FORECAST Limits

You invoke FORECAST processing by including FORECAST in a RECAP command. In this
command, you specify the parameters needed for generating estimated values, including
the field to use in the calculations, the type of calculation to use, and the number of
predictions to generate. The RECAP field that contains the result of FORECAST can be a new
field (non-recursive) or the same field used in the FORECAST calculations (recursive):

In a recursive FORECAST, the RECAP field that contains the results is also the field used
to generate the FORECAST calculations. In this case, the original field is not printed
even if it was referenced in the display command, and the RECAP column contains the
original field values followed by the number of predicted values specified in the FORECAST
syntax. No trend values display in the report. However, the original column is stored in
an output file unless you set HOLDLIST to PRINTONLY.

In a non-recursive FORECAST, a new field contains the results of FORECAST calculations.
The new field is displayed in the report along with the original field when it is referenced
in the display command. The new field contains trend values and forecast values when
specified.

FORECAST operates on the last ACROSS field in the request. If the request does not contain
an ACROSS field, it operates on the last BY field. The FORECAST calculations start over
when the highest-level sort field changes its value. In a request with multiple display
commands, FORECAST operates on the last ACROSS field (or if there are no ACROSS fields,
the last BY field) of the last display command. When using an ACROSS field with FORECAST,
the display command must be SUM or COUNT.

Note: Although you pass parameters to FORECAST using an argument list in parentheses,
FORECAST is not a function. It can coexist with a function of the same name, as long as the
function is not specified in a RECAP command.

How to Calculate Trends and Predict ValuesSyntax:

MOVAVE calculation

ON sortfield RECAP result_field[/fmt] = FORECAST(infield, interval,
npredict, 'MOVAVE',npoint1)sendstyle

Creating Reports 241

6. Creating Temporary Fields

EXPAVE calculation

ON sortfield RECAP result_field[/fmt] = FORECAST(infield, interval,
npredict, 'EXPAVE',npoint1);

DOUBLEXP calculation

ON sortfield RECAP fld1[/fmt] = FORECAST(infield,
interval, npredict, 'DOUBLEXP',npoint1, npoint2);

SEASONAL calculation

ON sortfield RECAP fld1[/fmt] = FORECAST(infield,
interval, npredict, 'SEASONAL', nperiod, npoint1, npoint2, npoint3);

REGRESS calculation

ON sortfield RECAP result_field[/fmt] = FORECAST(infield, interval,
npredict, 'REGRESS');

where:

sortfield

Is the last ACROSS field in the request. This field must be in numeric or date format. If
the request does not contain an ACROSS field, FORECAST works on the last BY field.

result_field

Is the field containing the result of FORECAST. It can be a new field, or the same as
infield. This must be a numeric field; either a real field, a virtual field, or a calculated
field.

Note: The word FORECAST and the opening parenthesis must be on the same line as
the syntax sortfield=.

fmt

Is the display format for result_field. The default format is D12.2. If result_field was
previously reformatted using a DEFINE or COMPUTE command, the format specified in
the RECAP command is respected.

infield

Is any numeric field. It can be the same field as result_field, or a different field. It cannot
be a date-time field or a numeric field with date display options.

242 Information Builders

Calculating Trends and Predicting Values With FORECAST

interval

Is the increment to add to each sortfield value (after the last data point) to create the
next value. This must be a positive integer. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sortfield values is converted
to the same format as sortfield.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of 2 is
interpreted as meaning two days; if the format is YM, the 2 is interpreted as meaning
two months.

npredict

Is the number of predictions for FORECAST to calculate. It must be an integer greater
than or equal to zero. Zero indicates that you do not want predictions, and is only
supported with a non-recursive FORECAST. For the SEASONAL method, npredict is the
number of periods to calculate. The number of points generated is:

nperiod * npredict

nperiod

For the SEASONAL method, is a positive whole number that specifies the number of
data points in a period.

npoint1

Is the number of values to average for the MOVAVE method. For EXPAVE, DOUBLEXP,
and SEASONAL, this number is used to calculate the weights for each component in the
average. This value must be a positive whole number. The weight, k, is calculated by
the following formula:

k=2/(1+npoint1)

npoint2

For DOUBLEXP and SEASONAL, this positive whole number is used to calculate the
weights for each term in the trend. The weight, g, is calculated by the following formula:

g=2/(1+npoint2)

npoint3

For SEASONAL, this positive whole number is used to calculate the weights for each
term in the seasonal adjustment. The weight, p, is calculated by the following formula:

p=2/(1+npoint3)

Usage Notes for FORECASTReference:

The sort field used for FORECAST must be in a numeric or date format.

Creating Reports 243

6. Creating Temporary Fields

When using simple moving average and exponential moving average methods, data values
should be spaced evenly in order to get meaningful results.

When using a RECAP command with FORECAST, the command can contain only the
FORECAST syntax. FORECAST does not recognize any syntax after the closing semicolon
(;). To specify options such as AS or IN:

In a non-recursive FORECAST request, use an empty COMPUTE command prior to the
RECAP.

In a recursive FORECAST request, specify the options when the field is first referenced
in the report request.

The use of column notation is not supported in a request that includes FORECAST. The
process of generating the FORECAST values creates extra columns that are not printed
in the report output. The number and placement of these additional columns varies
depending on the specific request.

A request can contain up to seven non-FORECAST RECAP commands and up to seven
additional FORECAST RECAP commands.

The left side of a RECAP command used for FORECAST supports the CURR attribute for
creating a currency-denominated field.

Recursive and non-recursive REGRESS are not supported in the same request when the
display command is SUM, ADD, or WRITE.

Missing values are not supported with REGRESS.

If you use the ESTRECORDS parameter to enable the external sort to estimate better the
amount of sort work space needed, you must take into account that FORECAST with
predictions creates additional records in the output.

In a styled report, you can assign specific attributes to values predicted by FORECAST
with the StyleSheet attribute WHEN=FORECAST. For example, to make the predicted
values display with the color red, use the following syntax in the TABLE request:

ON TABLE SET STYLE
*TYPE=DATA,COLUMN=MYFORECASTSORTFIELD,WHEN=FORECAST,COLOR=RED,
$ENDSTYLE

FORECAST LimitsReference:

The following are not supported with a RECAP command that uses FORECAST:

BY TOTAL command.

MORE, MATCH, FOR, and OVER phrases.

244 Information Builders

Calculating Trends and Predicting Values With FORECAST

SUMMARIZE and RECOMPUTE are not supported for the same sort field used for
FORECAST.

MISSING attribute.

Using a Simple Moving Average
A simple moving average is a series of arithmetic means calculated with a specified number
of values from a field. Each new mean in the series is calculated by dropping the first value
used in the prior calculation, and adding the next data value to the calculation.

Simple moving averages are sometimes used to analyze trends in stock prices over time.
In this scenario, the average is calculated using a specified number of periods of stock
prices. A disadvantage to this indicator is that because it drops the oldest values from the
calculation as it moves on, it loses its memory over time. Also, mean values are distorted
by extreme highs and lows, since this method gives equal weight to each point.

Predicted values beyond the range of the data values are calculated using a moving average
that treats the calculated trend values as new data points.

The first complete moving average occurs at the nth data point because the calculation
requires n values. This is called the lag. The moving average values for the lag rows are
calculated as follows: the first value in the moving average column is equal to the first data
value, the second value in the moving average column is the average of the first two data
values, and so on until the nth row, at which point there are enough values to calculate the
moving average with the number of values specified.

Calculating a New Simple Moving Average ColumnExample:

This request defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of the retrieved
data.

DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
 ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,'MOVAVE',3);
END

Creating Reports 245

6. Creating Temporary Fields

The output is:

Category PERIOD Unit Sales Dollar Sales EXPAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 753,404.8
 4 57050 691274 722,339.4
 5 59229 720444 721,391.7
 6 58466 742457 731,924.3
 7 60771 747253 739,588.7
 8 54633 655896 697,742.3
 9 57829 730317 714,029.7
 10 57012 724412 719,220.8
 11 51110 620264 669,742.4
 12 58981 762328 716,035.2
 13 0 0 739,181.6
 14 0 0 750,754.8
 15 0 0 756,541.4
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 664,351.0
 4 58026 718514 691,432.5
 5 53289 660740 676,086.3
 6 58742 734705 705,395.6
 7 60127 760586 732,990.8
 8 55622 695235 714,112.9
 9 55787 683140 698,626.5
 10 57340 713768 706,197.2
 11 57459 710138 708,167.6
 12 57290 705315 706,741.3
 13 0 0 706,028.2
 14 0 0 705,671.6
 15 0 0 705,493.3

In the report, the number of values to use in the average is 3 and there are no UNITS or
DOLLARS values for the generated PERIOD values.

Each average (MOVAVE value) is computed using DOLLARS values where they exist. The
calculation of the moving average begins in the following way:

The first MOVAVE value (801,123.0) is equal to the first DOLLARS value.

The second MOVAVE value (741,731.5) is the mean of DOLLARS values one and two:
(801,123 + 682,340) /2.

The third MOVAVE value (749,513.7) is the mean of DOLLARS values one through three:
(801,123 + 682,340 + 765,078) / 3.

The fourth MOVAVE value (712,897.3) is the mean of DOLLARS values two through four:
(682,340 + 765,078 + 691,274) /3.

246 Information Builders

Calculating Trends and Predicting Values With FORECAST

For predicted values beyond the supplied values, the calculated MOVAVE values are used
as new data points to continue the moving average. The predicted MOVAVE values (starting
with 694,975.6 for PERIOD 13) are calculated using the previous MOVAVE values as new
data points. For example, the first predicted value (694,975.6) is the average of the data
points from periods 11 and 12 (620,264 and 762,328) and the moving average for period
12 (702,334.7). The calculation is: 694,975 = (620,264 + 762,328 + 702,334.7)/3.

Using an Existing Field as a Simple Moving Average ColumnExample:

This request defines an integer value named PERIOD to use as the independent variable for
the moving average. It predicts three periods of values beyond the range of the retrieved
data. It uses the same name for the RECAP field as the first argument in the FORECAST
parameter list. The trend values do not display in the report. The actual data values for
DOLLARS are followed by the predicted values in the report column.

DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
 ON PERIOD RECAP DOLLARS/D10.1 = FORECAST(DOLLARS,1,3,'MOVAVE',3);
END

Creating Reports 247

6. Creating Temporary Fields

The output is:

Category PERIOD Unit Sales DOLLARS
-------- ------ ---------- -------
Coffee 1 61666 801,123.0
 2 54870 682,340.0
 3 61608 765,078.0
 4 57050 691,274.0
 5 59229 720,444.0
 6 58466 742,457.0
 7 60771 747,253.0
 8 54633 655,896.0
 9 57829 730,317.0
 10 57012 724,412.0
 11 51110 620,264.0
 12 58981 762,328.0
 13 0 694,975.6
 14 0 719,879.4
 15 0 705,729.9
Food 1 54394 672,727.0
 2 54894 699,073.0
 3 52713 642,802.0
 4 58026 718,514.0
 5 53289 660,740.0
 6 58742 734,705.0
 7 60127 760,586.0
 8 55622 695,235.0
 9 55787 683,140.0
 10 57340 713,768.0
 11 57459 710,138.0
 12 57290 705,315.0
 13 0 708,397.8
 14 0 707,817.7
 15 0 708,651.9

Using Single Exponential Smoothing
The single exponential smoothing method calculates an average that allows you to choose
weights to apply to newer and older values.

The following formula determines the weight given to the newest value.

k = 2 / (1+n)

where:

k

Is the newest value.

n

Is an integer greater than one. Increasing n increases the weight assigned to the earlier
observations (or data instances), as compared to the later ones.

248 Information Builders

Calculating Trends and Predicting Values With FORECAST

The next calculation of the exponential moving average (EMA) value is derived by the following
formula:

EMA = (EMA * (1-k)) + (datavalue * k)

This means that the newest value from the data source is multiplied by the factor k and the
current moving average is multiplied by the factor (1-k). These quantities are then summed
to generate the new EMA.

Note: When the data values are exhausted, the last data value in the sort group is used as
the next data value.

Calculating a Single Exponential Smoothing ColumnExample:

The following defines an integer value named PERIOD to use as the independent variable
for the moving average. It predicts three periods of values beyond the range of retrieved
data.

DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
 ON PERIOD RECAP EXPAVE/D10.1= FORECAST(DOLLARS,1,3,'EXPAVE',3);
END

Creating Reports 249

6. Creating Temporary Fields

The output is:

Category PERIOD Unit Sales Dollar Sales EXPAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 753,404.8
 4 57050 691274 722,339.4
 5 59229 720444 721,391.7
 6 58466 742457 731,924.3
 7 60771 747253 739,588.7
 8 54633 655896 697,742.3
 9 57829 730317 714,029.7
 10 57012 724412 719,220.8
 11 51110 620264 669,742.4
 12 58981 762328 716,035.2
 13 0 0 739,181.6
 14 0 0 750,754.8
 15 0 0 756,541.4
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 664,351.0
 4 58026 718514 691,432.5
 5 53289 660740 676,086.3
 6 58742 734705 705,395.6
 7 60127 760586 732,990.8
 8 55622 695235 714,112.9
 9 55787 683140 698,626.5
 10 57340 713768 706,197.2
 11 57459 710138 708,167.6
 12 57290 705315 706,741.3
 13 0 0 706,028.2
 14 0 0 705,671.6
 15 0 0 705,493.3

In the report, three predicted values of EXPAVE are calculated within each value of CATEGORY.
For values outside the range of the data, new PERIOD values are generated by adding the
interval value (1) to the prior PERIOD value.

Each average (EXPAVE value) is computed using DOLLARS values where they exist. The
calculation of the moving average begins in the following way:

The first EXPAVE value (801,123.0) is the same as the first DOLLARS value.

The second EXPAVE value (741,731.5) is calculated as follows. Note that because of
rounding and the number of decimal places used, the value derived in this sample
calculation varies slightly from the one displayed in the report output:

n=3 (number used to calculate weights)

k = 2/(1+n) = 2/4 = 0.5

EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (801123*0.5) + (682340*0.50)
 = 400561.5 + 341170 = 741731.5

250 Information Builders

Calculating Trends and Predicting Values With FORECAST

The third EXPAVE value (753,404.8) is calculated as follows:

EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (741731.5*0.5)+(765078*0.50)
 = 370865.75 + 382539 = 753404.75

For predicted values beyond those supplied, the last EXPAVE value is used as the new data
point in the exponential smoothing calculation. The predicted EXPAVE values (starting with
706,741.6) are calculated using the previous average and the new data point. Because the
previous average is also used as the new data point, the predicted values are always equal
to the last trend value. For example, the previous average for period 13 is 706,741.6, and
this is also used as the next data point. Therefore, the average is calculated as follows:
(706,741.6 * 0.5) + (706,741.6 * 0.5) = 706,741.6

EXPAVE = (EXPAVE * (1-k)) + (new-DOLLARS * k) = (706741.6*0.5) +
 (706741.6*0.50) = 353370.8 + 353370.8 = 706741.6

Using Double Exponential Smoothing
Double exponential smoothing produces an exponential moving average that takes into
account the tendency of data to either increase or decrease over time without repeating.
This is accomplished by using two equations with two constants:

The first equation accounts for the current time period and is a weighted average of the
current data value and the prior average, with an added component (b) that represents
the trend for the previous period. The weight constant is k:

DOUBLEXP(t) = k * datavalue(t) + (1-k) * ((DOUBLEXP(t-1) + b(t-1))

The second equation is the calculated trend value, and is a weighted average of the
difference between the current and previous average and the trend for the previous time
period. b(t) represents the average trend. The weight constant is g:

b(t) = g * (DOUBLEXP(t)-DOUBLEXP(t-1)) + (1 - g) * (b(t-1))

These two equations are solved to derive the smoothed average. The first smoothed average
is set to the first data value. The first trend component is set to zero. For choosing the two
constants, the best results are usually obtained by minimizing the mean-squared error (MSE)
between the data values and the calculated averages. You may need to use nonlinear
optimization techniques to find the optimal constants.

The equation used for forecasting beyond the data points with double exponential smoothing
is

forecast(t+m) = DOUBLEXP(t) + m * b(t)

where:

m

Is the number of time periods ahead for the forecast.

Creating Reports 251

6. Creating Temporary Fields

Calculating a Double Exponential Smoothing ColumnExample:

The following sums the ACTUAL_YTD field of the CENTSTMT data source by period, and
calculates a single exponential and double exponential moving average.

TABLE FILE CENTSTMT
SUM ACTUAL_YTD
 BY PERIOD
 ON PERIOD RECAP EXP/D15.1 = FORECAST(ACTUAL_YTD,1,0,'EXPAVE',3);
 ON PERIOD RECAP DOUBLEXP/D15.1 = FORECAST(ACTUAL_YTD,1,0,
 'DOUBLEXP',3,3);
WHERE GL_ACCOUNT LIKE '3%%%'
END

The output is:

 YTD
PERIOD Actual EXP DOUBLEXP
------ ------ --- --------
2002/01 12,957,681. 12,957,681.0 12,957,681.0
2002/02 25,441,971. 19,199,826.0 22,439,246.3
2002/03 39,164,321. 29,182,073.5 34,791,885.1
2002/04 52,733,326. 40,957,699.8 48,845,816.0
2002/05 66,765,920. 53,861,809.9 63,860,955.9
2002/06 80,952,492. 67,407,150.9 79,188,052.9

Using Triple Exponential Smoothing
Triple exponential smoothing produces an exponential moving average that takes into account
the tendency of data to repeat itself in intervals over time. For example, sales data that is
growing and in which 25% of sales always occur during December contains both trend and
seasonality. Triple exponential smoothing takes both the trend and seasonality into account
by using three equations with three constants.

For triple exponential smoothing you, need to know the number of data points in each time
period (designated as L in the following equations). To account for the seasonality, a seasonal
index is calculated. The data is divided by the prior season's index and then used in
calculating the smoothed average.

The first equation accounts for the current time period, and is a weighted average of the
current data value divided by the seasonal factor and the prior average adjusted for the
trend for the previous period. The weight constant is k:

SEASONAL(t) = k * (datavalue(t)/I(t-L)) + (1-k) * (SEASONAL(t-1) +
b(t-1))

252 Information Builders

Calculating Trends and Predicting Values With FORECAST

The second equation is the calculated trend value, and is a weighted average of the
difference between the current and previous average and the trend for the previous time
period. b(t) represents the average trend. The weight constant is g:

b(t) = g * (SEASONAL(t)-SEASONAL(t-1)) + (1-g) * (b(t-1))

The third equation is the calculated seasonal index, and is a weighted average of the
current data value divided by the current average and the seasonal index for the previous
season. I(t) represents the average seasonal coefficient. The weight constant is p:

I(t) = p * (datavalue(t)/SEASONAL(t)) + (1 - p) * I(t-L)

These equations are solved to derive the triple smoothed average. The first smoothed average
is set to the first data value. Initial values for the seasonality factors are calculated based
on the maximum number of full periods of data in the data source, while the initial trend is
calculated based on two periods of data. These values are calculated with the following
steps:

1. The initial trend factor is calculated by the following formula:

b(0) = (1/L) ((y(L+1)-y(1))/L + (y(L+2)-y(2))/L + ... + (y(2L) -
y(L))/L)

2. The calculation of the initial seasonality factor is based on the average of the data values
within each period, A(j) (1<=j<=N):

A(j) = (y((j-1)L+1) + y((j-1)L+2) + ... + y(jL)) / L

3. Then, the initial periodicity factor is given by the following formula, where N is the number
of full periods available in the data, L is the number of points per period and n is a point
within the period (1<= n <= L):

I(n) = (y(n)/A(1) + y(L+n)/A(2) + ... + y((N-1)L+n)/A(N)) / N

The three constants must be chosen carefully. The best results are usually obtained by
choosing the constants to minimize the mean-squared error (MSE) between the data values
and the calculated averages. Varying the values of npoint1 and npoint2 affect the results,
and some values may produce a better approximation. To search for a better approximation,
you may want to find values that minimize the MSE.

The equation used to forecast beyond the last data point with triple exponential smoothing
is:

forecast(t+m) = (SEASONAL(t) + m * b(t)) / I(t-L+MOD(m/L))

where:

m

Is the number of periods ahead for the forecast.

Creating Reports 253

6. Creating Temporary Fields

Calculating a Triple Exponential Smoothing ColumnExample:

In the following, the data has seasonality but no trend. Therefore, npoint2 is set high (1000)
to make the trend factor negligible in the calculation:

SET HISTOGRAM = OFF
TABLE FILE VIDEOTRK
SUM TRANSTOT
BY TRANSDATE
ON TRANSDATE RECAP SEASONAL/D10.1 = FORECAST(TRANSTOT,1,3,'SEASONAL',
 3,3,1000,1);
WHERE TRANSDATE NE '19910617'
END

In the output, npredict is 3. Therefore, three periods (nine points, nperiod * npredict) are
generated.

TRANSDATE TRANSTOT SEASONAL
--------- -------- --------
 91/06/18 21.25 21.3
 91/06/19 38.17 31.0
 91/06/20 14.23 34.6
 91/06/21 44.72 53.2
 91/06/24 126.28 75.3
 91/06/25 47.74 82.7
 91/06/26 40.97 73.7
 91/06/27 60.24 62.9
 91/06/28 31.00 66.3
 91/06/29 45.7
 91/06/30 94.1
 91/07/01 53.4
 91/07/02 72.3
 91/07/03 140.0
 91/07/04 75.8
 91/07/05 98.9
 91/07/06 185.8
 91/07/07 98.2

Using a Linear Regression Equation
The Linear Regression Equation estimates values by assuming that the dependent variable
(the new calculated values) and the independent variable (the sort field values) are related
by a function that represents a straight line:

y = mx + b

where:

y

Is the dependent variable.

x

Is the independent variable.

254 Information Builders

Calculating Trends and Predicting Values With FORECAST

m

Is the slope of the line.

b

Is the y-intercept.

REGRESS uses a technique called Ordinary Least Squares to calculate values for m and b
that minimize the sum of the squared differences between the data and the resulting line.

The following formulas show how m and b are calculated.

where:

n

Is the number of data points.

y

Are the data values (dependent variables).

x

Are the sort field values (independent variables).

Trend values, as well as predicted values, are calculated using the regression line equation.

Calculating a New Linear Regression FieldExample:

TABLE FILE CAR
PRINT MPG
BY DEALER_COST
WHERE MPG NE 0.0
 ON DEALER_COST RECAP FORMPG=FORECAST(MPG,1000,3,'REGRESS');
END

Creating Reports 255

6. Creating Temporary Fields

The output is:

DEALER_COST MPG FORMPG
----------- --- ------
 2,886 27 25.51
 4,292 25 23.65
 4,631 21 23.20
 4,915 21 22.82
 5,063 23 22.63
 5,660 21 21.83
 21 21.83
 5,800 24 21.65
 6,000 24 21.38
 7,427 16 19.49
 8,300 18 18.33
 8,400 18 18.20
 10,000 18 16.08
 11,000 18 14.75
 11,194 9 14.50
 14,940 11 9.53
 15,940 0 8.21
 16,940 0 6.88
 17,940 0 5.55

Note:

Three predicted values of FORMPG are calculated. For values outside the range of the
data, new DEALER_COST values are generated by adding the interval value (1,000) to
the prior DEALER_COST value.

There are no MPG values for the generated DEALER_COST values.

Each FORMPG value is computed using a regression line, calculated using all of the
actual data values for MPG.

DEALER_COST is the independent variable (x) and MPG is the dependent variable (y).
The equation is used to calculate MPGFORECAST trend and predicted values.

In this case, the equation is approximately as follows:

FORMPG = (-0.001323 * DEALER_COST) + 29.32

The predicted values are (the values are not exactly as calculated by FORECAST because
of rounding, but they show the calculation process):

FORMPGCalculationDEALER_COST

8.23(-0.001323 * 15,940) + 29.3215,940

6.91(-0.001323 * 16,940) + 29.3216,940

5.59(-0.001323 * 17,940) + 29.3217,940

256 Information Builders

Calculating Trends and Predicting Values With FORECAST

FORECAST Reporting Techniques
You can use FORECAST multiple times in one request. However, all FORECAST requests
must specify the same sort field, interval, and number of predictions. The only things that
can change are the RECAP field, method, field used to calculate the FORECAST values, and
number of points to average. If you change any of the other parameters, the new parameters
are ignored.

If you want to move a FORECAST column in the report output, use an empty COMPUTE
command for the FORECAST field as a placeholder. The data type (I, F, P, D) must be the
same in the COMPUTE command and the RECAP command.

To make the report output easier to interpret, you can create a field that indicates whether
the FORECAST value in each row is a predicted value. To do this, define a virtual field whose
value is a constant other than zero. Rows in the report output that represent actual records
in the data source will appear with this constant. Rows that represent predicted values will
display zero. You can also propagate this field to a HOLD file.

Generating Multiple FORECAST Columns in a RequestExample:

This example calculates moving averages and exponential averages for both the DOLLARS
and BUDDOLLARS fields in the GGSALES data source. The sort field, interval, and number
of predictions are the same for all of the calculations.

DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM DOLLARS AS 'DOLLARS' BUDDOLLARS AS 'BUDGET'
 BY CATEGORY NOPRINT BY PERIOD AS 'PER'
 WHERE SYEAR EQ 97 AND CATEGORY EQ 'Coffee'
 ON PERIOD RECAP DOLMOVAVE/D10.1= FORECAST(DOLLARS,1,0,'MOVAVE',3);
 ON PERIOD RECAP DOLEXPAVE/D10.1= FORECAST(DOLLARS,1,0,'EXPAVE',4);
 ON PERIOD RECAP BUDMOVAVE/D10.1 = FORECAST(BUDDOLLARS,1,0,'MOVAVE',3);
 ON PERIOD RECAP BUDEXPAVE/D10.1 = FORECAST(BUDDOLLARS,1,0,'EXPAVE',4);
END

Creating Reports 257

6. Creating Temporary Fields

The output is:

PER DOLLARS BUDGET DOLMOVAVE DOLEXPAVE BUDMOVAVE BUDEXPAVE
--- ------- ------ --------- --------- --------- ---------
 1 801123 801375 801,123.0 801,123.0 801,375.0 801,375.0
 2 682340 725117 741,731.5 753,609.8 763,246.0 770,871.8
 3 765078 810367 749,513.7 758,197.1 778,953.0 786,669.9
 4 691274 717688 712,897.3 731,427.8 751,057.3 759,077.1
 5 720444 739999 725,598.7 727,034.3 756,018.0 751,445.9
 6 742457 742586 718,058.3 733,203.4 733,424.3 747,901.9
 7 747253 773136 736,718.0 738,823.2 751,907.0 757,995.6
 8 655896 685170 715,202.0 705,652.3 733,630.7 728,865.3
 9 730317 753760 711,155.3 715,518.2 737,355.3 738,823.2
 10 724412 709397 703,541.7 719,075.7 716,109.0 727,052.7
 11 620264 630452 691,664.3 679,551.0 697,869.7 688,412.4
 12 762328 718837 702,334.7 712,661.8 686,228.7 700,582.3

Moving the FORECAST ColumnExample:

The following example places the DOLLARS field after the MOVAVE field by using an empty
COMPUTE command as a placeholder for the MOVAVE field. Both the COMPUTE command
and the RECAP command specify formats for MOVAVE (of the same data type), but the format
of the RECAP command takes precedence.

DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS
COMPUTE MOVAVE/D10.2 = ;
DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY EQ 'Coffee'
 ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,'MOVAVE',3);
END

258 Information Builders

Calculating Trends and Predicting Values With FORECAST

The output is:

Category PERIOD Unit Sales MOVAVE Dollar Sales
-------- ------ ---------- ------ ------------
Coffee 1 61666 801,123.0 801123
 2 54870 741,731.5 682340
 3 61608 749,513.7 765078
 4 57050 712,897.3 691274
 5 59229 725,598.7 720444
 6 58466 718,058.3 742457
 7 60771 736,718.0 747253
 8 54633 715,202.0 655896
 9 57829 711,155.3 730317
 10 57012 703,541.7 724412
 11 51110 691,664.3 620264
 12 58981 702,334.7 762328
 13 0 694,975.6 0
 14 0 719,879.4 0
 15 0 705,729.9 0

Distinguishing Data Rows From Predicted RowsExample:

In the following example, the DATA_ROW virtual field has the value 1 for each row in the
data source. It has the value zero for the predicted rows. The PREDICT field is calculated
as YES for predicted rows, and NO for rows containing data.

DEFINE FILE CAR
DATA_ROW/I1 = 1;
END
TABLE FILE CAR
 PRINT DATA_ROW
COMPUTE PREDICT/A3 = IF DATA_ROW EQ 1 THEN 'NO' ELSE 'YES' ;
MPG
BY DEALER_COST
WHERE MPG GE 20
 ON DEALER_COST RECAP FORMPG/D12.2=FORECAST(MPG,1000,3,'REGRESS');
 ON DEALER_COST RECAP MPG =FORECAST(MPG,1000,3,'REGRESS');
END

The output is:

DEALER_COST DATA_ROW PREDICT MPG FORMPG
----------- -------- ------- --- ------
 2,886 1 NO 27.00 25.65
 4,292 1 NO 25.00 23.91
 4,631 1 NO 21.00 23.49
 4,915 1 NO 21.00 23.14
 5,063 1 NO 23.00 22.95
 5,660 1 NO 21.00 22.21
 1 NO 21.00 22.21
 5,800 1 NO 24.20 22.04
 6,000 1 NO 24.20 21.79
 7,000 0 YES 20.56 20.56
 8,000 0 YES 19.32 19.32
 9,000 0 YES 18.08 18.08

Creating Reports 259

6. Creating Temporary Fields

Calculating Trends and Predicting Values With Multivariate REGRESS

How to:

Create a Multivariate Linear Regression Column

Reference:

Usage Notes for REGRESS

The REGRESS method derives a linear equation that best fits a set of numeric data points,
and uses this equation to create a new column in the report output. The equation can be
based on one to three independent variables.

This method estimates values by assuming that the dependent variable (y, the new calculated
values) and the independent variables (x1, x2, x3) are related by the following linear equation:

y = a1*x1 [+ a2*x2 [+ a3*x3]] + b

When there is one independent variable, the equation represents a straight line. This produces
the same values as FORECAST using the REGRESS method. When there are two independent
variables, the equation represents a plane, and with three independent variables, it represents
a hyperplane. You should use this technique when you have reason to believe that the
dependent variable can be approximated by a linear combination of the independent variables.

REGRESS uses a technique called Ordinary Least Squares to calculate values for the
coefficients (a1, a2, a3, and b) that minimize the sum of the squared differences between
the data and the resulting line, plane, or hyperplane.

How to Create a Multivariate Linear Regression ColumnSyntax:

ON {sortfield} RECAP y[/fmt] = REGRESS(n, x1, [x2, [x3,]] z);

where:

sortfield

Is a field in the data source. It cannot be the same field as any of the parameters to
REGRESS. A new linear regression equation is derived each time the sort field value
changes.

y

Is the new numeric column calculated by applying the regression equation. You cannot
DEFINE or COMPUTE a field with this name.

fmt

Is the display format for y. If it is omitted, the default format is D12.2.

260 Information Builders

Calculating Trends and Predicting Values With Multivariate REGRESS

n

Is a whole number from 1 to 3 indicating the number of independent variables.

x1, x2, x3

Are the field names to be used as the independent variables. All of these variables must
be numeric and be independent of each other.

z

Is an existing numeric field that is assumed to be approximately linearly dependent on
the independent variables and is used to derive the regression equation.

Usage Notes for REGRESSReference:

The (By) sort field used with REGRESS must be in a numeric or date format.

REGRESS cannot operate on an ACROSS field.

If any of the independent variables are also sort fields, they cannot be referenced in the
request prior to the REGRESS sort field.

FORECAST and REGRESS cannot be used in the same request, and only one REGRESS
is supported in a request. Non-REGRESS RECAP commands are supported.

The RECAP command used with REGRESS can contain only the REGRESS syntax. REGRESS
does not recognize any syntax after the closing semicolon (;).

Although you pass parameters to REGRESS using an argument list in parentheses,
REGRESS is not a function. It can coexist with a user-written subroutine of the same
name, as long as the user-written subroutine is not specified in a RECAP command.

BY TOTAL is not supported.

MORE, MATCH, FOR, and OVER are not supported.

The process of generating the REGRESS values creates extra columns that are not printed
in the report output. The number and placement of these additional columns varies
depending on the specific request. Therefore, use of column notation is not supported
in a request that includes REGRESS.

SUMMARIZE and RECOMPUTE are not supported for the same sort field used for
REGRESS.

REGRESS is not supported for the FOCUS GRAPH facility.

The left side of a RECAP command used for REGRESS supports the CURR attribute for
creating a currency-denominated field.

Fields with missing values cannot be used in the regression.

Creating Reports 261

6. Creating Temporary Fields

Larger amounts of data produce more useful results.

Creating a Multivariate Linear Regression ColumnExample:

The following request uses the GGSALES data source to calculate an estimated DOLLARS
column. The BUDUNITS, UNITS, and BUDDOLLARS fields are the independent variables. The
DOLLARS field provides the actual values to be estimated:

DEFINE FILE GGSALES
 YEAR/Y = DATE;
 MONTH/M = DATE;
 PERIOD/I2 = MONTH;
END

TABLE FILE GGSALES
PRINT BUDUNITS UNITS BUDDOLLARS DOLLARS
BY PERIOD
ON PERIOD
RECAP EST_DOLLARS/F8 = REGRESS(3, BUDUNITS, UNITS, BUDDOLLARS, DOLLARS);
WHERE CATEGORY EQ 'Coffee'
WHERE REGION EQ 'West'
WHERE UNITS GT 1600 AND UNITS LT 1700
END

262 Information Builders

Calculating Trends and Predicting Values With Multivariate REGRESS

The output is:

PERIOD Budget Units Unit Sales Budget Dollars Dollar Sales EST_DOLLARS
------ ------------ ---------- -------------- ------------ -----------
 1 1665 1678 21645 23492 0
 1725 1669 22425 21697 0
 2 1613 1685 22582 18535 13334
 1568 1682 23520 25230 14225
 1847 1668 18470 25020 9607
 3 1646 1656 23044 19872 19872
 1759 1615 17590 17765 17765
 1498 1637 16478 21281 21281
 1653 1694 21489 16940 16940
 4 1457 1671 21855 20052 0
 5 1662 1674 24930 18414 0
 6 1825 1695 23725 25425 -41807
 1870 1620 24310 24300 -50319
 1712 1640 22256 16400 -37004
 7 1727 1623 24178 17853 -25413
 1733 1647 17330 24705 -8127
 8 1830 1652 20130 23128 6021
 1451 1660 17412 19920 7369
 1556 1643 18672 18073 7495
 9 1464 1663 14640 23282 11325
 1463 1663 21945 19956 25036
 10 1464 1667 17568 25005 25005
 1711 1623 20532 22722 22722
 1701 1626 18711 21138 21138
 1473 1616 14730 16160 16160
 11 1403 1601 21045 17611 0
 12 1796 1696 17960 25440 0

Using Text Fields in DEFINE and COMPUTE
Text fields can be assigned to alphanumeric fields and receive assignment from alphanumeric
fields. If an alphanumeric field is assigned the value of a text field that is too long for the
alphanumeric field, the value is truncated before being assigned to the alphanumeric field.

Note: COMPUTE commands in Maintain do not support text fields.

Creating Reports 263

6. Creating Temporary Fields

Assigning the Result of an Alphanumeric Expression to a Text FieldExample:

This example uses the COURSES data source, which contains a text field, to create an
alphanumeric field named ADESC, which truncates the text field at 36 characters, and a
new text field named NEWDESC, which is a text version of ADESC:

DEFINE FILE COURSES
ADESC/A36 = DESCRIPTION;
NEWDESC/TX36 = ADESC;
END

TABLE FILE COURSES
PRINT ADESC NEWDESC
END

The output is:

ADESC NEWDESC
----- -------
This course provides the DP professi This course provides the DP professi
Anyone responsible for designing FOC Anyone responsible for designing FOC
This is a course in FOCUS efficienci This is a course in FOCUS efficienci

Creating Temporary Fields Independent of a Master File

How to:

Display DEFINE Functions

Define a Function

Clear DEFINE Functions

Reference:

DEFINE Function Limits and Restrictions

The temporary fields you create with the DEFINE and COMPUTE commands are tied to a
specific Master File, and in the case of values calculated with the COMPUTE command, to
a specific request. However, you can create temporary fields that are independent of either
a Master File or a request using the DEFINE FUNCTION command.

A DEFINE function is a named group of calculations that use any number of input values and
produce a return value. When calling a DEFINE function, you must first define the function.

A DEFINE function can be called in most of the same situations that are valid for Information
Builders-supplied functions. Data types are defined with each argument. When substituting
values for these arguments, the format must match the defined format. Alphanumeric
arguments shorter than the specified format are padded with blanks, while longer
alphanumeric arguments are truncated.

264 Information Builders

Creating Temporary Fields Independent of a Master File

All calculations within the function are done in double precision. Format conversions occur
only across equal signs in the assignments that define temporary fields.

How to Define a FunctionSyntax:

DEFINE FUNCTION name (argument1/format1,..., argumentn/formatn)
[tempvariablea/formata = expressiona;]
 .
 .
 .
[tempvariablex/formatx = expressionx;]
name/format = [result_expression];
END

where:

name

Is the name of the function. This must be the last field calculated in the function, and
is used to return the value of the function to the calling procedure.

argument1...argumentn

Are the argument names.

format1...formatn

Are the formats of the function arguments.

If the format of an argument is alphanumeric, the argument value must also be
alphanumeric. Shorter arguments are padded on the right with blanks, and longer
arguments are truncated.

If the format of an argument is numeric, the argument value must also be numeric. To
prevent unexpected results, you must be consistent in your use of data types.

tempvariablea...tempvariablex

Are temporary fields. Temporary fields hold intermediate values used in the function.
You can define as many temporary fields as you need.

tempformata...tempformatx

Are the formats of the temporary fields.

expressiona...expressionx

Are the expressions that calculate the temporary field values. The expressions can use
parameters, constants, and other temporary fields defined in the same function.

format

Is the format of the value the function returns.

Creating Reports 265

6. Creating Temporary Fields

result_expression

Is the expression that calculates the value returned by the function. The expression can
use parameters, constants, and temporary fields defined in the same function.

All names defined in the body of the function are local to the function. The last field defined
before the END command in the function definition must have the same name as the function,
and represents the return value for the function.

DEFINE Function Limits and RestrictionsReference:

The number of functions you can define and use in a session is virtually unlimited.

A DEFINE function is cleared with the DEFINE FUNCTION CLEAR command. It is not cleared
by issuing a join, or by any FOCUS command.

When an expression tries to use a cleared function, an error appears.

Function names are limited to eight characters.

Argument names are limited to twelve characters. There is no limit to the number of
arguments.

DEFINE functions can call other DEFINE functions, but cannot call themselves.

If you overwrite or clear a DEFINE function, a subsequent attempt to use a temporary
field that refers to the function generates the following warning:

(FOC03665) Error loading external function '%1'

Defining a FunctionExample:

The following example creates and calls the SUBTRACT function. SUBTRACT performs a
calculation with the arguments VAL1 and VAL2.

DEFINE FUNCTION SUBTRACT (VAL1/D8, VAL2/D8)
 SUBTRACT/D8.2 = VAL1 - VAL2;
END

TABLE FILE MOVIES
 PRINT TITLE LISTPR IN 35 WHOLESALEPR AND
 COMPUTE PROFIT/D8.2 = SUBTRACT(LISTPR,WHOLESALEPR);
 BY CATEGORY
 WHERE CATEGORY EQ 'MYSTERY' OR 'ACTION'
END

266 Information Builders

Creating Temporary Fields Independent of a Master File

The output is:

CATEGORY TITLE LISTPR WHOLESALEPR PROFIT
-------- ----- ------ ----------- ------
ACTION JAWS 19.95 10.99 8.96
 ROBOCOP 19.98 11.50 8.48
 TOTAL RECALL 19.99 11.99 8.00
 TOP GUN 14.95 9.99 4.96
 RAMBO III 19.95 10.99 8.96
MYSTERY REAR WINDOW 19.98 9.00 10.98
 VERTIGO 19.98 9.00 10.98
 FATAL ATTRACTION 29.98 15.99 13.99
 NORTH BY NORTHWEST 19.98 9.00 10.98
 DEAD RINGERS 25.99 15.99 10.00
 MORNING AFTER, THE 19.95 9.99 9.96
 PSYCHO 19.98 9.00 10.98
 BIRDS, THE 19.98 9.00 10.98
 SEA OF LOVE 59.99 30.00 29.99

How to Display DEFINE FunctionsProcedure:

Issue the following command from the Command Console:

? FUNCTION

Displaying DEFINE FunctionsExample:

Issuing the command

? FUNCTION

displays information similar to the following:

ACTIVECURRENTLYFUNCTIONS

FORMATPARAMETERFORMATNAME

D8VAL1D8.2SUBTRACT
D8VAL2

If you issue the ? FUNCTION command when no functions are defined, the following appears:

NO FUNCTIONS CURRENTLY IN EFFECT

How to Clear DEFINE FunctionsSyntax:

DEFINE FUNCTION {name|*} CLEAR

where:

name

Is the name of the function name to clear.

Creating Reports 267

6. Creating Temporary Fields

*

Clears all active DEFINE functions.

268 Information Builders

Creating Temporary Fields Independent of a Master File

FOCUS

Including Totals and Subtotals7
Topics:

To help interpret detailed information in
a report, you can summarize the
information using row and column totals,
grand totals, and subtotals. You can use
these summary lines in a report to clarify
or highlight information.

Calculating Row and Column Totals

Including Section Totals and a Grand
Total

Including Subtotals

Recalculating Values for Subtotal
Rows

Manipulating Summary Values With
Prefix Operators

Combinations of Summary Commands

Producing Summary Columns for
Horizontal Sort Fields

Performing Calculations at Sort Field
Breaks

Suppressing Grand Totals

Conditionally Displaying Summary
Lines and Text

Creating Reports 269

Calculating Row and Column Totals

In this section:

Producing Row Totals for Horizontal (ACROSS) Sort Field Values

How to:

Calculate Row and Column Totals

Reference:

Using ROW-TOTAL With ACROSS and Multiple Display Commands

You can produce totals for rows or columns of numbers in a report. Use:

ROW-TOTAL to display a new column containing the sum of all numbers in each row.

COLUMN-TOTAL to display a final row on the report, which contains the totals for each
column of numbers.

You can use row totals and column totals in matrix reports (created by using a BY and an
ACROSS in your report request), rename row and column total titles, and include calculated
values in your row or column totals. You can also create row totals using ACROSS-TOTAL.

Note that when producing totals in a report, if one field is summed, the format of the row
total is the same as the format of the field. For example, if the format of the CURR_SAL field
is D12.2M, the format of the row total for CURR_SAL is also D12.2M. When you are summing
fields with different formats, the default format of D12.2 is used for the total.

How to Calculate Row and Column TotalsSyntax:

display_command fieldname AND ROW-TOTAL [alignment][/format] [AS 'name']
display_command fieldname AND COLUMN-TOTAL [alignment][AS 'name']

where:

display_command

Is one of the following commands: PRINT, LIST, SUM, or COUNT.

fieldname

Is the name of the field for which to calculate row and/or column totals.

270 Information Builders

Calculating Row and Column Totals

alignment

Specifies the alignment of the ROW-TOTAL or COLUMN-TOTAL label. Possible values are:

/R right justifies the label.

/L left justifies the label.

/C centers the label.

Note that these alignment settings are ignored in HTML output.

format

Reformats the ROW-TOTAL.

name

Is the label for the ROW-TOTAL or COLUMN-TOTAL.

You may also specify row or column totals with the ON TABLE command. Field names are
optional with COLUMN-TOTAL, and cannot be listed with ROW-TOTAL. Use the following
syntax:

ON TABLE COLUMN-TOTAL [alignment][AS 'name'][field field field]
ON TABLE ROW-TOTAL [alignment][/format] [AS 'name']

Calculating Row and Column TotalsExample:

The following request illustrates the use of ROW-TOTAL and COLUMN-TOTAL. The column
and row total labels are "TOTAL" by default. You can change them using an AS phrase.

TABLE FILE SALES
SUM RETURNS DAMAGED AND ROW-TOTAL AND COLUMN-TOTAL
BY PROD_CODE
END

The output is:

PROD_CODE RETURNS DAMAGED TOTAL
--------- ------- ------- ---------
B10 13 10 23
B12 4 3 7
B17 4 2 6
B20 1 2 3
C13 3 0 3
C17 0 0 0
C7 5 4 9
D12 3 2 5
E1 4 7 11
E2 9 4 13
E3 12 11 23

TOTAL 58 45 103

Creating Reports 271

7. Including Totals and Subtotals

Specifying Column Totals With ON TABLEExample:

The following request illustrates the use of COLUMN-TOTAL with the ON TABLE command.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
ON TABLE COLUMN-TOTAL
END

The output is:

LAST_NAME CURR_SAL
--------- --------
BANNING $29,700.00
BLACKWOOD $21,780.00
CROSS $27,062.00
GREENSPAN $9,000.00
IRVING $26,862.00
JONES $18,480.00
MCCOY $18,480.00
MCKNIGHT $16,100.00
ROMANS $21,120.00
SMITH $13,200.00
 $9,500.00
STEVENS $11,000.00

TOTAL $222,284.00

Using Row and Column Totals in a Matrix ReportExample:

The following request illustrates the use of ROW-TOTAL and COLUMN-TOTAL in a matrix report
(created by using the BY and ACROSS phrases together).

TABLE FILE EMPLOYEE
SUM CURR_SAL AND ROW-TOTAL AND COLUMN-TOTAL
BY BANK_NAME
ACROSS DEPARTMENT
END

The output is:

 DEPARTMENT
 MIS PRODUCTION TOTAL
BANK_NAME

 $40,680.00 $41,620.00 $82,300.00
ASSOCIATED $21,780.00 $42,962.00 $64,742.00
BANK ASSOCIATION $27,062.00 . $27,062.00
BEST BANK . $29,700.00 $29,700.00
STATE $18,480.00 . $18,480.00

TOTAL $108,002.00 $114,282.00 $222,284.00

272 Information Builders

Calculating Row and Column Totals

Renaming Row and Column Totals in Sorted Reports (BY)Example:

The following request illustrates how to rename the ROW-TOTAL and COLUMN-TOTAL labels
in a report that is sorted vertically.

TABLE FILE CAR
SUM DCOST RCOST ROW-TOTAL/C/D12 AS 'TOTAL_COST'
BY COUNTRY
ON TABLE COLUMN-TOTAL/C AS 'FINAL_TOTAL'
END

The output is:

COUNTRY DEALER_COST RETAIL_COST TOTAL_COST
------- ----------- ----------- ---------------
ENGLAND 37,853 45,319 83,172
FRANCE 4,631 5,610 10,241
ITALY 41,235 51,065 92,300
JAPAN 5,512 6,478 11,990
W GERMANY 54,563 64,732 119,295

 FINAL_TOTAL 143,794 173,204 316,998

Including Calculated Values in Row and Column TotalsExample:

The following request illustrates the inclusion of the calculated value, PROFIT, in row and
column totals.

TABLE FILE CAR
SUM DCOST RCOST
COMPUTE PROFIT/D12=RCOST-DCOST;
ROW-TOTAL/L/D12 AS 'TOTAL_COST'
BY COUNTRY
ON TABLE COLUMN-TOTAL/L AS 'FINAL_TOTAL'
END

The output is:

COUNTRY DEALER_COST RETAIL_COST PROFIT TOTAL_COST
------- ----------- ----------- ------ ---------------
ENGLAND 37,853 45,319 7,466 90,638
FRANCE 4,631 5,610 979 11,220
ITALY 41,235 51,065 9,830 102,130
JAPAN 5,512 6,478 966 12,956
W GERMANY 54,563 64,732 10,169 129,464

FINAL_TOTAL 143,794 173,204 29,410 346,408

Creating Reports 273

7. Including Totals and Subtotals

Using ROW-TOTAL With ACROSS and Multiple Display CommandsReference:

When a request has an ACROSS sort field, each ACROSS value displays a column for each
field displayed on the report output. For example, the following request, each state has a
column for units and a column for dollars:

TABLE FILE GGSALES
SUM UNITS AS 'U' DOLLARS AS 'D' BY CITY
ACROSS ST
IF ST EQ 'CA'
IF BUDUNITS NE MISSING
END

The output is:

 State
 CA
City U D

Los Angeles 298070 3772014
San Francisco 312500 3870258

When you specify a row total with ACROSS, the row total is calculated separately for each
column in each ACROSS group. For example, in the following request the row total has a
column for units and a column for dollars:

TABLE FILE GGSALES
SUM UNITS AS 'U' DOLLARS AS 'D' BY CITY
ACROSS ST
IF ST EQ 'CA'
IF BUDUNITS NE MISSING
 ON TABLE ROW-TOTAL
END

The output is:

 State
 CA TOTAL
 City U D U D
 --
 Los Angeles 298070 3772014 298070 3772014
 San Francisco 312500 3870258 312500 3870258

When the request also has multiple display commands, each additional command adds
additional columns to each ACROSS group on the report output.

The first column of the row total group is calculated by adding the first column from each
display command under each ACROSS value, the second column adds the second column
from each display command, and so on.

274 Information Builders

Calculating Row and Column Totals

For example, the following request has a SUM command for units and dollars and another
SUM command for budgeted units and budgeted dollars. The row total has a column for the
sum of units and budgeted units and another column for the sum of dollars and budgeted
dollars:

TABLE FILE GGSALES
SUM UNITS AS 'U' DOLLARS AS 'D' BY CITY
SUM BUDUNITS AS 'BU' BUDDOLLARS AS 'BD' BY CITY
ACROSS ST
IF ST EQ 'CA'
IF BUDUNITS NE MISSING
ON TABLE ROW-TOTAL
END

The output is:

 State
 CA TOTAL
City U D BU BD BU BD
--
Los Angeles 298070 3772014 295637 3669484 593707 7441498
San Francisco 312500 3870258 314725 3916863 627225 7787121

If the different display commands do not all specify the same number of fields, some columns
will not be represented in the row total. For example, in the following request, the second
SUM command has a column for budgeted units but not for budgeted dollars. Therefore,
the row total group has no column for dollars:

TABLE FILE GGSALES
SUM UNITS AS 'U' DOLLARS AS 'D' BY CITY
SUM BUDUNITS AS 'BU' BY CITY
ACROSS ST
IF ST EQ 'CA'
IF BUDUNITS NE MISSING
ON TABLE ROW-TOTAL
END

The output is:

 State
 CA TOTAL
City U D BU BU
--
Los Angeles 298070 3772014 295637 593707
San Francisco 312500 3870258 314725 627225

Creating Reports 275

7. Including Totals and Subtotals

In this case, you can use column notation to calculate the row total properly. For example,
the following request calculates the row total column by adding the units, dollars, and
budgeted units columns together:

TABLE FILE GGSALES
SUM UNITS AS 'U' DOLLARS AS 'D' BY CITY
SUM BUDUNITS AS 'BU' BY CITY
ACROSS ST
COMPUTE TOTAL/I10 = C1 + C2 +C3; AS 'ROW-TOTAL'
IF ST EQ 'CA'
IF BUDUNITS NE MISSING
END

The output is:

 State
 CA ROW-TOTAL
City U D BU

Los Angeles 298070 3772014 295637 4365721
San Francisco 312500 3870258 314725 4497483

Producing Row Totals for Horizontal (ACROSS) Sort Field Values

How to:

Produce Row Totals for Horizontal (ACROSS) Sort Field Values

Reference:

Usage Notes for ACROSS-TOTAL

You can produce row totals for horizontal (ACROSS) sort field values. Row totals for horizontal
sort fields, referenced by ACROSS-TOTAL, are different from standard row totals because
only horizontal sort field values, referenced by ACROSS, are included in the total. Integer,
single precision floating point, double precision floating point, packed, and long packed
fields can all be totaled.

How to Produce Row Totals for Horizontal (ACROSS) Sort Field ValuesSyntax:

ACROSS sortfield ACROSS-TOTAL [AS 'name'] [COLUMNS col1 AND col2 ...]

where:

sortfield

Is the name of the field being sorted across.

name

Is the new name for the ACROSS-TOTAL column title.

276 Information Builders

Calculating Row and Column Totals

col1, col2

Are the titles of the ACROSS columns you want to include in the total.

Producing Row Totals for Horizontal (ACROSS) Sort Field ValuesExample:

The following illustrates how to generate a row total for horizontal (ACROSS) sort field values.
Notice that the summed values in the TOTAL TITLE COUNT column only reflect the values in
the (RATING) PG and R columns. The values in the COPIES column are not included since
they are not horizontal (ACROSS) sort field values.

TABLE FILE MOVIES
SUM COPIES BY CATEGORY
COUNT TITLE BY CATEGORY
ACROSS RATING ACROSS-TOTAL
COLUMNS PG AND R
END

The output is:

 RATING
 PG R TOTAL
 TITLE TITLE TITLE
CATEGORY COPIES COUNT COUNT COUNT

ACTION 14 2 3 5
COMEDY 16 4 1 5
DRAMA 2 0 1 1
FOREIGN 5 2 3 5
MUSICALS 2 1 1 2
MYSTERY 17 2 5 7
SCI/FI 3 0 3 3

Usage Notes for ACROSS-TOTALReference:

Stacking headings in ACROSS-TOTAL is not supported.

Attempting to use ACROSS-TOTAL with other types of fields (alphanumeric, text, and
dates) produces blank columns.

In cases of multiple ACROSS columns with ACROSS-TOTAL, there are additional columns
with subtotaled values.

The results of ROW-TOTAL and ACROSS-TOTAL are the same if there is only a single
display field or single display command in the procedure.

The maximum number of ACROSS-TOTAL components is five.

ACROSS-TOTAL populates the ACROSSVALUE component in a StyleSheet. .

Creating Reports 277

7. Including Totals and Subtotals

Including Section Totals and a Grand Total
Frequently, reports contain detailed information that is broken down into subsections, for
which simple column and row totals may not provide adequate summaries. In these instances,
it is more useful to look at subtotals for particular sections, and a grand total at the end of
the report.

You can add the following commands to your requests to create section subtotals and grand
totals:

SUB-TOTAL and SUBTOTAL

SUMMARIZE and RECOMPUTE (used with calculated values)

RECAP and COMPUTE

Each command produces grand totals and/or subtotals by using different information.
Subtotals produce totals every time a specified sort field value changes, and are independent
of record selection criteria. You can further control when subtotals are produced by specifying
WHEN criteria (see Conditionally Displaying Summary Lines and Text on page 320). You can
also suppress grand totals using the NOTOTAL command. For details, see Suppressing Grand
Totals on page 319.

By default, a blank line is generated before a subtotal on the report output. You can eliminate
these automatic blank lines by issuing the SET DROPBLNKLINE=ON command.

Note: When the request has a PAGE-BREAK command, the GRANDTOTAL is on a page by
itself.

You can use prefix operators with SUBTOTAL, SUB-TOTAL, SUMMARIZE, and RECOMPUTE.
For details, see Manipulating Summary Values With Prefix Operators on page 287. In addition,
you can combine different summary operations in a single request. For information, see
Combinations of Summary Commands on page 306.

Using Section Totals and Grand TotalsExample:

The following request illustrates how to create a subtotal every time the department value
changes. The grand total is automatically produced when you use the SUBTOTAL command.

TABLE FILE EMPLOYEE
SUM DED_AMT BY DED_CODE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
WHERE DED_CODE EQ 'CITY' OR 'FED'
ON DEPARTMENT SUBTOTAL
END

278 Information Builders

Including Section Totals and a Grand Total

The first and last portions of the output are:

DED_CODE DEPARTMENT BANK_ACCT DED_AMT
-------- ---------- --------- -------
CITY MIS 40950036 $14.00
 122850108 $31.75
 163800144 $82.70

*TOTAL DEPARTMENT MIS $128.45

 PRODUCTION 160633 $7.42
 136500120 $18.25
 819000702 $60.20

*TOTAL DEPARTMENT PRODUCTION $85.87

FED MIS 40950036 $1,190.77
 122850108 $2,699.80
 163800144 $7,028.30

*TOTAL DEPARTMENT MIS $10,918.87

 PRODUCTION 160633 $631.12
 136500120 $1,552.10
 819000702 $5,120.04

*TOTAL DEPARTMENT PRODUCTION $7,303.26

TOTAL $18,436.45

Including Subtotals

How to:

Create Subtotals

Reference:

Usage Notes for Subtotals

You can use the SUBTOTAL and SUB-TOTAL commands to sum individual values, such as
columns of numbers, each time a named sort field changes value.

SUB-TOTAL displays a subtotal for all numeric values when the sort field changes value,
and for any higher-level sort fields when their values change.

SUBTOTAL displays a subtotal only when the specified sort field changes value. It does
not give subtotals for higher-level fields.

Both SUB-TOTAL and SUBTOTAL produce grand totals. You can suppress grand totals using
the NOTOTAL command. See Suppressing Grand Totals on page 319.

Creating Reports 279

7. Including Totals and Subtotals

The subtotal is calculated every time the sort field value changes or, if WHEN criteria are
applied to the sort field, every time the WHEN conditions are met.

A BY, ACROSS, or ON phrase is required to initialize the syntax.

How to Create SubtotalsSyntax:

{BY|ON} fieldname {SUB-TOTAL|SUBTOTAL} [MULTILINES]
 [field1 [AND] field2...] [AS 'text'][WHEN expression;]

where:

fieldname

Must be the name of a field in a sort phrase. A BY phrase can include a summary
command. The number of fields to subtotal multiplied by the number of levels of subtotals
counts in the number of display fields permitted for the request. For details on determining
the maximum number of display fields that can be used in a request, see Displaying
Report Data on page 45.

SUB-TOTAL|SUBTOTAL

SUB-TOTAL displays subtotals for numeric values when the BY|ON field changes value,
and for any higher-level sort fields when their values change.

SUBTOTAL displays a subtotal only when the specified sort field changes value.

MULTILINES

Suppresses the printing of a subtotal line for every sort break that has only one detail
line, since the subtotal value is equal to this one value. Note that MULTI-LINES is a
synonym for MULTILINES. MULTILINES is not supported with horizontal (ACROSS) sort
fields.

field1, field2, ...

Denotes a list of specific fields to subtotal. This list overrides the default, which includes
all numeric display fields.

AS 'text'

Enables you to specify a different label. For related information, see .

WHEN expression

Specifies the conditional display of subtotals as determined by a Boolean expression.
You must end the expression with a semicolon.

280 Information Builders

Including Subtotals

Usage Notes for SubtotalsReference:

When using a SUM or COUNT command with only one sort phrase in the request,
SUB-TOTAL and SUBTOTAL produce the same result as the value of the SUM or COUNT
command. However, when using a PRINT command with one sort phrase, SUBTOTAL is
useful because there can be many values within a sort break.

All SUB-TOTALs display up to and including the point where the sort break occurs, so only
the innermost point of subtotaling should be requested. For instance, if the BY fields are

BY AREA
BY PROD_CODE
BY DATE SUB-TOTAL

then, when AREA changes, subtotals are displayed for DATE, PROD_CODE, and AREA on
three lines (one under the other).

If you use a WHERE TOTAL or IF TOTAL test, the display of the sort field value for the
subtotal line is suppressed unless PRINTPLUS is ON. For details about using PRINTPLUS
in FOCUS, see Using PRINTPLUS in Chapter 3, Viewing and Printing Report Output.

Subtotals display on the next line if the subtotal text does not fit on the line prior to the
displayed field columns.

Generating SubtotalsExample:

The following request illustrates how to create a subtotal for SALES every time the country
value changes.

TABLE FILE CAR
SUM AVE.MPG AND SALES AND AVE.RETAIL_COST
BY COUNTRY SUB-TOTAL SALES
BY BODYTYPE
END

Creating Reports 281

7. Including Totals and Subtotals

The output is:

 AVE AVE
COUNTRY BODYTYPE MPG SALES RETAIL_COST
------- -------- ---- ----- -----------
ENGLAND CONVERTIBLE 16 0 8,878
 HARDTOP 25 0 5,100
 SEDAN 10 12000 15,671

*TOTAL ENGLAND 12000

FRANCE SEDAN 21 0 5,610

*TOTAL FRANCE 0

ITALY COUPE 11 12400 19,160
 ROADSTER 21 13000 6,820
 SEDAN 21 4800 5,925
*TOTAL ITALY 30200

JAPAN SEDAN 14 78030 3,239

*TOTAL JAPAN 78030

W GERMANY SEDAN 20 88190 9,247

*TOTAL W GERMANY 88190

TOTAL 208420

Comparing SUB-TOTAL and SUBTOTALExample:

The following request illustrates how to create a subtotal for the numeric fields DED_AMT
and GROSS when the department value changes, and for the higher-level sort field
(DED_CODE) when its value changes.

TABLE FILE EMPLOYEE
SUM DED_AMT GROSS BY DED_CODE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT SUB-TOTAL
END

If you use SUBTOTAL instead of SUB-TOTAL, the totals for DED_AMT and GROSS display
only when the DEPARTMENT value changes.

282 Information Builders

Including Subtotals

The first portion of the output is:

DED_CODE DEPARTMENT BANK_ACCT DED_AMT GROSS
-------- ---------- --------- ------- -----
CITY MIS 40950036 $14.00 $6,099.50
 122850108 $31.75 $9,075.00
 163800144 $82.70 $22,013.75

*TOTAL DEPARTMENT MIS $128.45 $37,188.25

 PRODUCTION 160633 $7.42 $2,475.00
 136500120 $18.25 $9,130.00
 819000702 $60.20 $17,094.00

*TOTAL DEPARTMENT PRODUCTION $85.87 $28,699.00
*TOTAL DED_CODE CITY $214.32 $65,887.25

The last portion of the output is:

DED_CODE DEPARTMENT BANK_ACCT DED_AMT GROSS
-------- ---------- --------- ------- -----
STAT MIS 40950036 $196.13 $6,099.50
 122850108 $444.65 $9,075.00
 163800144 $1,157.60 $22,013.75

*TOTAL DEPARTMENT MIS $1,798.38 $37,188.25

 PRODUCTION 160633 $103.95 $2,475.00
 136500120 $255.65 $9,130.00
 819000702 $843.32 $17,094.00

*TOTAL DEPARTMENT PRODUCTION $1,202.92 $28,699.00
*TOTAL DED_CODE STAT $3,001.30 $65,887.25

TOTAL $41,521.18 $461,210.75

Recalculating Values for Subtotal Rows

How to:

Subtotal Calculated Values

You can use the SUMMARIZE and RECOMPUTE commands instead of SUB-TOTAL and
SUBTOTAL to recalculate the result of a COMPUTE command. SUMMARIZE is similar to SUB-
TOTAL in that it recomputes values at every sort break. RECOMPUTE is similar to SUBTOTAL
in that it recalculates only at the specified sort break.

SUMMARIZE recomputes grand totals for the entire report. If you wish to suppress grand
totals, you can include the NOTOTAL command in your request. See Suppressing Grand
Totals on page 319.

Creating Reports 283

7. Including Totals and Subtotals

How to Subtotal Calculated ValuesSyntax:

{BY|ON} fieldname {SUMMARIZE|RECOMPUTE} [MULTILINES]
 [field1 [AND] field2...] [AS 'text'][WHEN expression;]

where:

fieldname

Must be the name of a field in a sort phrase. A BY phrase can include a summary
command. The number of fields to summarize multiplied by the number of levels of
summary commands counts in the number of display fields permitted for the request.
For details on determining the maximum number of display fields that can be used in a
request, see Displaying Report Data on page 45.

SUMMARIZE

Recomputes values at every sort break.

RECOMPUTE

Recalculates values only at the specified sort break.

MULTILINES

Suppresses the printing of a subtotal line for every sort break that has only one detail
line, since the subtotal value is equal to this one value. Note that MULTI-LINES is a
synonym for MULTILINES. MULTILINES is not supported with horizontal (ACROSS) sort
fields.

You can also suppress grand totals using the NOTOTAL command, as described in
Suppressing Grand Totals on page 319.

AS 'text'

Enables you to specify a different label. For related information, see .

field1, field2, ...

Denotes a list of specific fields to be subtotaled after the RECOMPUTE or SUMMARIZE.
This list overrides the default, which includes all numeric display fields.

WHEN expression

Specifies the conditional display of subtotals based on a Boolean expression. You must
end the expression with a semicolon.

You may also generate subtotals for the recalculated values with the ON TABLE command.
Use the following syntax:

ON TABLE SUMMARIZE

284 Information Builders

Recalculating Values for Subtotal Rows

Using SUMMARIZEExample:

The following request illustrates the use of SUMMARIZE to recalculate DG_RATIO at the
specified sort break, DEPARTMENT, and for the higher-level sort break, PAY_DATE:

TABLE FILE EMPLOYEE
SUM GROSS DED_AMT AND COMPUTE
DG_RATIO/F4.2=DED_AMT/GROSS;
BY HIGHEST PAY_DATE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT SUMMARIZE
END

The first portion of the output is:

PAY_DATE DEPARTMENT BANK_ACCT GROSS DED_AMT DG_RATIO
-------- ---------- --------- ----- ------- --------
82/08/31 MIS 40950036 $1,540.00 $725.34 .47
 122850108 $1,815.00 $1,261.40 .69
 163800144 $2,255.00 $1,668.69 .74

*TOTAL DEPARTMENT MIS $5,610.00 $3,655.43 .65

 PRODUCTION 160633 $2,475.00 $1,427.24 .58
 136500120 $1,342.00 $522.28 .39
 819000702 $2,238.50 $1,746.03 .78

*TOTAL DEPARTMENT PRODUCTION $6,055.50 $3,695.55 .61
*TOTAL PAY_DATE 82/08/31 $11,665.50 $7,350.98 .63

The last portion of the output is:

PAY_DATE DEPARTMENT BANK_ACCT GROSS DED_AMT DG_RATIO
-------- ---------- --------- ----- ------- --------
82/01/29 PRODUCTION 819000702 $2,035.00 $1,241.33 .61

*TOTAL DEPARTMENT PRODUCTION $2,035.00 $1,241.33 .61
*TOTAL PAY_DATE 82/01/29 $4,182.75 $2,648.12 .63

81/12/31 MIS 163800144 $2,147.75 $1,406.79 .66

*TOTAL DEPARTMENT MIS $2,147.75 $1,406.79 .66
*TOTAL PAY_DATE 81/12/31 $2,147.75 $1,406.79 .66

81/11/30 MIS 163800144 $2,147.75 $1,406.79 .66

*TOTAL DEPARTMENT MIS $2,147.75 $1,406.79 .66
*TOTAL PAY_DATE 81/11/30 $2,147.75 $1,406.79 .66

TOTAL $65,887.25 $41,521.18 .63

Tip: If you use SUB-TOTAL or SUBTOTAL rather than SUMMARIZE, the values of DG_RATIO
are added.

Creating Reports 285

7. Including Totals and Subtotals

Using RECOMPUTEExample:

The following request illustrates the use of RECOMPUTE to recalculate DG_RATIO only at
the specified sort break, DEPARTMENT.

TABLE FILE EMPLOYEE
SUM GROSS DED_AMT AND COMPUTE
DG_RATIO/F4.2=DED_AMT/GROSS;
BY HIGHEST PAY_DATE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT RECOMPUTE
END

The first portion of the output is:

PAY_DATE DEPARTMENT BANK_ACCT GROSS DED_AMT DG_RATIO
-------- ---------- --------- ----- ------- --------
82/08/31 MIS 40950036 $1,540.00 $725.34 .47
 122850108 $1,815.00 $1,261.40 .69
 163800144 $2,255.00 $1,668.69 .74

*TOTAL DEPARTMENT MIS $5,610.00 $3,655.43 .65

 PRODUCTION 160633 $2,475.00 $1,427.24 .58
 136500120 $1,342.00 $522.28 .39
 819000702 $2,238.50 $1,746.03 .78

*TOTAL DEPARTMENT PRODUCTION $6,055.50 $3,695.55 .61

82/07/30 MIS 40950036 $1,540.00 $725.34 .47
 122850108 $1,815.00 $1,261.40 .69

The last portion of the output is:

PAY_DATE DEPARTMENT BANK_ACCT GROSS DED_AMT DG_RATIO
-------- ---------- --------- ----- ------- --------
82/01/29 MIS 163800144 $2,147.75 $1,406.79 .66

*TOTAL DEPARTMENT MIS $2,147.75 $1,406.79 .66

 PRODUCTION 819000702 $2,035.00 $1,241.33 .61

*TOTAL DEPARTMENT PRODUCTION $2,035.00 $1,241.33 .61

81/12/31 MIS 163800144 $2,147.75 $1,406.79 .66

*TOTAL DEPARTMENT MIS $2,147.75 $1,406.79 .66

81/11/30 MIS 163800144 $2,147.75 $1,406.79 .66

*TOTAL DEPARTMENT MIS $2,147.75 $1,406.79 .66

TOTAL $65,887.25 $41,521.18 .63

286 Information Builders

Recalculating Values for Subtotal Rows

Manipulating Summary Values With Prefix Operators

In this section:

Controlling Summary Line Processing

Using Prefix Operators With Calculated Values

Using Multiple SUB-TOTAL or SUMMARIZE Commands With Prefix Operators

How to:

Use Prefix Operators With Summary Values

Reference:

Usage Notes for Summary Prefix Operators

You can use the SUBTOTAL, SUB-TOTAL, RECOMPUTE, and SUMMARIZE commands at the
ON TABLE level to specify the type of summary operation to use to produce the grand total
line on the report.

In addition, prefix operators can be used with the summary options SUBTOTAL, SUB-TOTAL,
RECOMPUTE, and SUMMARIZE at both the sort break and grand total levels.

Prefix operations on summary lines are performed on the retrieved, selected, and summed
values that become the detail lines in the report. Unlike field-based prefix operations, they
are not performed on each incoming record.

Each type of summary has its own purpose, and handles the prefix operators appropriately
for the type of summary information to be displayed. For example, using AVE. at a sort field
break produces the average within the sort group.

Alphanumeric fields can also be displayed on summary lines. In order to do this, you must
either explicitly list the alphanumeric field name on the summary command, or use the
asterisk (*) wildcard to display all fields.

Different operations from two ON phrases for the same sort break display on the same
summary line, and allow a mixture of operations on summary lines. The grand total line
populates all fields populated by any summary command, even fields that are not specified
in the grand total command.

If the same field is referenced in more than one ON phrase for the same sort break, the last
function specified is applied.

The following prefix operators are supported for numeric fields:

ASQ.

AVE.

Creating Reports 287

7. Including Totals and Subtotals

CNT.

FST.

LST.

MAX.

MIN.

SUM.

The following prefix operators are supported for alphanumeric fields:

FST.

LST.

MAX.

MIN.

SUM. (means LST. if SUMPREFIX=LST or FST. if SUMPREFIX=FST)

How to Use Prefix Operators With Summary ValuesSyntax:

{BY|ON} breakfield [AS 'text1'] sumoption [MULTILINES]
 [pref.] [*|[field1 [[pref2.] field2 ...]]]
 [AS 'text2'] [WHEN expression;]

To replace the default grand total, use the following syntax

ON TABLE sumoption [pref.][field1 [[pref2.]field2 ...]] [AS 'text2']

where:

breakfield

Is the sort field whose change in value triggers the summary operation. A BY phrase can
include a summary command. When the value of the sort field changes, it triggers the
summary operation.

sumoption

Can be one of the following: SUBTOTAL, SUB-TOTAL, RECOMPUTE, or SUMMARIZE.

'text1'

Is the column heading to use for the break field on the report output.

288 Information Builders

Manipulating Summary Values With Prefix Operators

MULTILINES

Suppresses the printing of a summary line for every sort break that has only one detail
line. Note that MULTILINES suppresses the summary line even if a prefix operator is
used to specify a different operation for the summary line. MULTI-LINES is a synonym
for MULTILINES. MULTILINES is not supported with horizontal (ACROSS) sort fields.

pref.

Is a prefix operator. When specified without a field list, the prefix operator is applied to
every numeric column in the report output and every numeric column is populated with
values on the summary row.

*

Includes all display fields on the summary line. If a prefix operator is specified, it is
applied to all fields. If the prefix operator is not supported with alphanumeric fields,
alphanumeric fields are not included on the summary line.

[field1 [field2 ... fieldn]]

Produces the type of summary specified by sumoption for the listed fields. If no field
names are listed, the summary is produced for every numeric column in the report output.

pref. field1 [field2 ... fieldn] [pref2. fieldm ...]

The first prefix operator is applied to field1 through fieldn. The second prefix operator
is applied to fieldm. Only the fields specified are populated with values on the summary
row. Each prefix operator must be separated by a blank space from the following field
name. For example:

'text2'

Is the text that prints on the left of the summary row.

expression

Is an expression that determines whether the summary operation is performed at each
break.

Usage Notes for Summary Prefix OperatorsReference:

COLUMN-TOTAL does not support prefix operators.

Prefix operators PCT., RPCT., AND TOT. are not supported.

Double prefix operators (such as PCT.CNT.) are not supported.

Creating Reports 289

7. Including Totals and Subtotals

When an ACROSS field is used in the request, the same field name displays over multiple
columns (ACROSS groups) in the report output. A prefix operator applied to such a field
on a summary line is applied to all of those columns.

The SUM. prefix operator produces the same summary values as a summary phrase with
no prefix operator.

SUMMARIZE and RECOMPUTE apply the calculations defined in the associated COMPUTE
command to the summary values. Therefore, in order to perform the necessary
calculations, the SUMMARIZE or RECOMPUTE command must calculate all of the fields
referenced in the COMPUTE command.

If the same field is referenced by more than one summary operation with different prefix
operators at each level, the default grand total (one produced without an ON TABLE
summaryoption command) applies the operation specified by the first operator used in
the report request (the left-most sort field in the output).

Using Prefix Operators With SUBTOTALExample:

The following example uses prefix operators to calculate the:

Average list price by rating.

Sum copies by category within the rating field.

Notice that the subtotal row for each rating contains a value only in the LISTPR column, and
the subtotal row for each category contains a value only in the COPIES column. The grand
total line contains values only for the columns that were subtotaled. Note the blank space
between each prefix operator and the field name that follows it:

TABLE FILE MOVIES
PRINT COPIES LISTPR WHOLESALEPR TITLE/A23
 BY RATING
 BY CATEGORY
 WHERE CATEGORY EQ 'CHILDREN' OR 'CLASSIC'
 WHERE RATING EQ 'G' OR 'NR'
 ON RATING SUBTOTAL AVE. LISTPR AS '*Ave: '
 ON CATEGORY SUBTOTAL SUM. COPIES AS '*Sum: '
END

290 Information Builders

Manipulating Summary Values With Prefix Operators

The output is:

RATING CATEGORY COPIES LISTPR WHOLESALEPR TITLE
------ -------- ------ ------ ----------- -----
G CHILDREN 2 44.95 29.99 SHAGGY DOG, THE
 2 29.95 12.50 ALICE IN WONDERLAND
 3 26.99 12.00 BAMBI

*Sum: CHILDREN 7

 CLASSIC 3 89.95 40.99 GONE WITH THE WIND

*Sum: CLASSIC 3
*Ave: G 47.96

NR CHILDREN 1 19.95 10.00 SMURFS, THE
 1 19.95 9.75 SCOOBY-DOO-A DOG IN THE
 1 14.95 7.65 SESAME STREET-BEDTIME S
 1 14.98 7.99 ROMPER ROOM-ASK MISS MO
 1 29.95 15.99 SLEEPING BEAUTY

*Sum: CHILDREN 5

 CLASSIC 1 24.98 14.99 EAST OF EDEN
 3 39.99 20.00 CITIZEN KANE
 1 29.95 15.99 CYRANO DE BERGERAC
 1 19.99 10.95 MARTY
 2 19.99 10.95 MALTESE FALCON, THE
 2 19.95 9.99 ON THE WATERFRONT
 2 89.99 40.99 MUTINY ON THE BOUNTY
 2 19.99 10.95 PHILADELPHIA STORY, THE
 2 19.98 10.99 CAT ON A HOT TIN ROOF
 2 29.95 15.00 CASABLANCA

*Sum: CLASSIC 18
*Ave: NR 27.64

TOTAL 33 31.91

Creating Reports 291

7. Including Totals and Subtotals

Using SUBTOTAL at the Sort Break and Grand Total LevelsExample:

The following example adds the ON TABLE SUBTOTAL command to the request in Using
Prefix Operators With SUBTOTAL on page 290 at the sort break level to calculate the minimum
number of copies and maximum list price on the grand total line for the entire report:

TABLE FILE MOVIES
PRINT COPIES LISTPR WHOLESALEPR TITLE/A23
 BY RATING
 BY CATEGORY
 WHERE CATEGORY EQ 'CHILDREN' OR 'CLASSIC'
 WHERE RATING EQ 'G' OR 'NR'
 ON RATING SUBTOTAL AVE. LISTPR AS '*Ave: '
 ON CATEGORY SUBTOTAL SUM. COPIES AS '*Sum: '
 ON TABLE SUBTOTAL MIN. COPIES MAX. LISTPR
END

The output is exactly the same as in the previous request, except for the grand total line:

RATING CATEGORY COPIES LISTPR WHOLESALEPR TITLE
------ -------- ------ ------ ----------- -----
G CHILDREN 2 44.95 29.99 SHAGGY DOG, THE
 2 29.95 12.50 ALICE IN WONDERLAND
 3 26.99 12.00 BAMBI

*Sum: CHILDREN 7

 CLASSIC 3 89.95 40.99 GONE WITH THE WIND

*Sum: CLASSIC 3
*Ave: G 47.96

NR CHILDREN 1 19.95 10.00 SMURFS, THE
 1 19.95 9.75 SCOOBY-DOO-A DOG IN THE
 1 14.95 7.65 SESAME STREET-BEDTIME S
 1 14.98 7.99 ROMPER ROOM-ASK MISS MO
 1 29.95 15.99 SLEEPING BEAUTY

*Sum: CHILDREN 5

 CLASSIC 1 24.98 14.99 EAST OF EDEN
 3 39.99 20.00 CITIZEN KANE
 1 29.95 15.99 CYRANO DE BERGERAC
 1 19.99 10.95 MARTY
 2 19.99 10.95 MALTESE FALCON, THE
 2 19.95 9.99 ON THE WATERFRONT
 2 89.99 40.99 MUTINY ON THE BOUNTY
 2 19.99 10.95 PHILADELPHIA STORY, THE
 2 19.98 10.99 CAT ON A HOT TIN ROOF
 2 29.95 15.00 CASABLANCA

*Sum: CLASSIC 18
*Ave: NR 27.64

TOTAL 1 89.99

292 Information Builders

Manipulating Summary Values With Prefix Operators

Displaying an Alphanumeric Field on a Summary LineExample:

The following request displays the sum of the list price field and the minimum value of the
director field by rating:

TABLE FILE MOVIES
PRINT COPIES LISTPR WHOLESALEPR DIRECTOR
BY RATING
BY CATEGORY
WHERE CATEGORY EQ 'CHILDREN' OR 'CLASSIC'
WHERE RATING EQ 'G' OR 'NR'
WHERE DIRECTOR NE ' '
ON RATING SUBTOTAL SUM. LISTPR MIN. DIRECTOR AS '*A/N:'
END

The output is:

RATING CATEGORY COPIES LISTPR WHOLESALEPR DIRECTOR
------ -------- ------ ------ ----------- --------
G CHILDREN 2 44.95 29.99 BARTON C.
 2 29.95 12.50 GEROMINI
 3 26.99 12.00 DISNEY W.
 CLASSIC 3 89.95 40.99 FLEMING V

*A/N: G 191.84 BARTON C.

NR CHILDREN 1 29.95 15.99 DISNEY W.
 CLASSIC 1 24.98 14.99 KAZAN E.
 3 39.99 20.00 WELLES O.
 1 29.95 15.99 GORDON M.
 1 19.99 10.95 MANN D.
 2 19.99 10.95 HUSTON J.
 2 19.95 9.99 KAZAN E.
 2 89.99 40.99 MILESTONE L.
 2 19.99 10.95 CUKOR G.
 2 19.98 10.99 BROOKS R.
 2 29.95 15.00 CURTIZ M.

*A/N: NR 344.71 BROOKS R.

TOTAL 536.55 BARTON C.

Creating Reports 293

7. Including Totals and Subtotals

Displaying All Fields on a Summary LineExample:

The following request displays the sum of every display field on the subtotal line. The director
field is alphanumeric, so the last value displays:

TABLE FILE MOVIES
PRINT COPIES LISTPR WHOLESALEPR DIRECTOR
BY RATING
BY CATEGORY
WHERE CATEGORY EQ 'CHILDREN' OR 'CLASSIC'
WHERE RATING EQ 'G' OR 'NR'
WHERE DIRECTOR NE ' '
ON RATING SUBTOTAL SUM. * AS '*All: '
END

The output is:

RATING CATEGORY COPIES LISTPR WHOLESALEPR DIRECTOR
------ -------- ------ ------ ----------- --------
G CHILDREN 2 44.95 29.99 BARTON C.
 2 29.95 12.50 GEROMINI
 3 26.99 12.00 DISNEY W.
 CLASSIC 3 89.95 40.99 FLEMING V

*All: G 10 191.84 95.48 FLEMING V

NR CHILDREN 1 29.95 15.99 DISNEY W.
 CLASSIC 1 24.98 14.99 KAZAN E.
 3 39.99 20.00 WELLES O.
 1 29.95 15.99 GORDON M.
 1 19.99 10.95 MANN D.
 2 19.99 10.95 HUSTON J.
 2 19.95 9.99 KAZAN E.
 2 89.99 40.99 MILESTONE L.
 2 19.99 10.95 CUKOR G.
 2 19.98 10.99 BROOKS R.
 2 29.95 15.00 CURTIZ M.

*All: NR 19 344.71 176.79 CURTIZ M.

TOTAL 29 536.55 272.27 CURTIZ M.

294 Information Builders

Manipulating Summary Values With Prefix Operators

Controlling Summary Line Processing

How to:

Control Summary Line Processing

Reference:

Usage Notes for SET SUMMARYLINES

When processing summary lines, you can control whether prefix operator processing is used
and whether SUBTOTAL and RECOMPUTE commands are propagated to the grand total row
of a report.

Summary line processing with prefix operators differs from processing without prefix operators
in both the types of operations supported and the fields affected.

By default, you cannot mix these two styles of processing in a request, and the syntax used
in the request (prefix operators or no prefix operators on summary lines) determines which
type of processing is used.

One function of the SUMMARYLINES setting is to allow you to combine fields with and without
prefix operators on summary lines in one request. In this case, prefix operator processing
is used for all summary lines. Those fields without prefix operators are processed as though
they were specified with the operator SUM. The new processing is required to display
alphanumeric fields on summary lines.

Processing of reports that use prefix operators on summary lines differs from processing
without prefix operators. In some cases, a different style of report output results from each
type of request.

If one summary command specifies one field name and another summary command specifies
a second field name:

In a report without summary prefix operators, both columns are populated on both
summary lines.

In a report with summary prefix operators, only the specified column is populated on
each summary line.

If a prefix operator is used in any summary command, prefix operator processing is required
for the request. In most requests it is clear which type of processing to use, even if prefix
operators are specified in some summary commands but not in others.

Creating Reports 295

7. Including Totals and Subtotals

However, if the first time a summary prefix operator is encountered occurs after a field name
has been specified in a summary command without an accompanying prefix operator, neither
type of processing can be implemented. In this case, by default, processing stops and the
following error message is generated:

(FOC36376) CANNOT COMBINE SUBTOTAL/RECOMPUTE STYLES WHEN SUMMARYLINES=OLD

For example:

ON RATING SUBTOTAL COPIES AVE. LISTPR

or

ON RATING SUBTOTAL LISTPR
ON CATEGORY SUBTOTAL AVE. COPIES

You can eliminate this problem by issuing the SET SUMMARYLINES=NEW command to
specify that prefix operator processing should be used. The SUM. operator is then applied
to any field that does not have a prefix operator.

The new processing is required to display alphanumeric fields on summary lines.

The second function of the SET SUMMARYLINES command is to make the processing of
SUBTOTAL, SUB-TOTAL, SUMMARIZE, and RECOMPUTE on the grand total line consistent
with how they work for sort field breaks. The setting that invokes this type of processing is
SET SUMMARYLINES=EXPLICIT.

When SUBTOTAL and RECOMPUTE are used at a sort break level, they do not propagate to
other sort breaks. SUB-TOTAL and SUMMARIZE propagate to all higher level sort breaks.

The grand total can be considered the highest level sort field in a request. However, by
default, all of the summary options, not just SUB-TOTAL and SUMMARIZE, propagate to the
grand total level.

The SET SUMMARYLINES=EXPLICIT command prevents the propagation of SUBTOTAL and
RECOMPUTE to the grand total. In addition, if all summary commands in the request specify
field lists, only the specified fields are aggregated and displayed on the grand total line.

When SUBTOTAL and RECOMPUTE are the only summary commands used in the request,
a grand total line is produced only if it is explicitly specified in the request using the ON
TABLE SUBTOTAL/SUB-TOTAL/RECOMPUTE/SUMMARIZE phrase. If the ON TABLE phrase
specifies a field list, only those fields are aggregated and displayed.

Note that you can always suppress the grand total line using the ON TABLE NOTOTAL
command in the request.

296 Information Builders

Manipulating Summary Values With Prefix Operators

How to Control Summary Line ProcessingSyntax:

SET SUMMARYLINES = {OLD|NEW|EXPLICIT}

where:

OLD

Does not allow summary fields with and without prefix operators and propagates all
summary operations to the grand total line. Fields specified on summary lines must all
have prefix operators applied or must all exclude them. This syntax determines which
type of processing is applied. OLD is the default value.

Note that a prefix operator preceding a list of field names is applied to each of those
report columns (and, therefore, is not considered mixing). You can specify the SUM.
operator for fields for which you want a standard subtotal. This produces the same value
that would have been generated without prefix operators. Alphanumeric fields are not
included on summary lines.

NEW

Propagates all summary operations to the grand total line. Uses prefix operator processing
for all summary commands (all summary fields without prefix operators are processed
as though they had a SUM. operator). Fields listed in a summary command are populated
only on summary lines created by that summary command and on summary lines created
by propagation of that summary command. Supports display of alphanumeric fields on
summary lines.

EXPLICIT

Does not propagate SUBTOTAL and RECOMPUTE to the grand total line. Uses prefix
operator processing for all summary commands (all summary fields without prefix
operators are processed as though they had a SUM. operator). Fields listed in a summary
command are populated only on summary lines created by that summary command and
on summary lines created by propagation of that summary command. Supports display
of alphanumeric fields on summary lines.

Note: This command is not supported in a request using the ON TABLE SET syntax.

Usage Notes for SET SUMMARYLINESReference:

SET SUMMARYLINES is not supported within a TABLE request (ON TABLE).

If COLUMN-TOTAL is specified in the request, all numeric fields are totaled on the grand
total line unless the COLUMN-TOTAL phrase lists specific fields. If the COLUMN-TOTAL
phrase lists specific fields, those fields and any fields propagated by SUB-TOTAL or
SUMMARIZE commands are totaled.

Creating Reports 297

7. Including Totals and Subtotals

Even if prefix operators are not used on summary lines, report output generated by the
two settings for the same request may be slightly different. With SUMMARYLINES NEW,
a summary command with a list of field names populates only those columns on the
associated summary line, while SUMMARYLINES OLD populates every column specified
in any summary command.

For example:

TABLE FILE MOVIES
PRINT COPIES LISTPR WHOLESALEPR
 BY RATING
 BY CATEGORY
 WHERE CATEGORY EQ 'CHILDREN'
 WHERE RATING EQ 'G'
 ON RATING SUBTOTAL LISTPR AS '*LIST'
 ON CATEGORY SUBTOTAL COPIES AS '*COPY'
END

The output when SUMMARYLINES=OLD has subtotals for both COPIES and LISTPR on both
sort breaks. WHOLESALEPR is not referenced in either SUBTOTAL command and, therefore,
is not on any summary line:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 2 44.95 29.99
 2 29.95 12.50
 3 26.99 12.00

*COPY CHILDREN 7 101.89
*LIST G 7 101.89

TOTAL 7 101.89

The output when SUMMARYLINES=NEW has subtotals for COPIES on the CATEGORY sort
break and for LISTPR on the RATING sort break. Both columns are populated on the grand
total line. WHOLESALEPR is not referenced in either SUBTOTAL command and, therefore, is
not on any summary line:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 2 44.95 29.99
 2 29.95 12.50
 3 26.99 12.00

*COPY CHILDREN 7
*LIST G 101.89

TOTAL 7 101.89

298 Information Builders

Manipulating Summary Values With Prefix Operators

Using SET SUMMARYLINES With SUBTOTALExample:

The following request using the MOVIES data source has a sort break for CATEGORY that
subtotals the COPIES field and a sort break for RATING that subtotals the LISTPR field:

SET SUMMARYLINES=OLD
TABLE FILE MOVIES
SUM COPIES LISTPR WHOLESALEPR
BY RATING
BY CATEGORY
WHERE CATEGORY EQ 'CHILDREN'
WHERE RATING EQ 'G'
ON RATING SUBTOTAL COPIES
ON CATEGORY SUBTOTAL LISTPR
END

Running the request with SUMMARYLINES=OLD subtotals both COPIES and LISTPR at every
sort break and propagates them to the grand total line:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 7 101.89
*TOTAL G 7 101.89

TOTAL 7 101.89

Running the request with SUMMARYLINES=NEW subtotals COPIES only for the RATING sort
break and subtotals LISTPR only for the CATEGORY sort break but propagates both to the
grand total line:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 101.89
*TOTAL G 7

TOTAL 7 101.89

Running the request with SUMMARYLINES=EXPLICIT subtotals COPIES only for the RATING
sort break and subtotals LISTPR only for the CATEGORY sort break. It does not produce a
grand total line:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 101.89
*TOTAL G 7

Creating Reports 299

7. Including Totals and Subtotals

Adding the phrase ON TABLE SUBTOTAL WHOLESALEPR with SUMMARYLINES=EXPLICIT
produces a grand total line with the WHOLESALEPR field subtotaled:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 101.89
*TOTAL G 7

TOTAL 54.49

Using COLUMN-TOTAL With SET SUMMARYLINES=EXPLICITExample:

The following request using the MOVIES data source has a sort break for CATEGORY for
which subtotals the COPIES field and a sort break for RATING that subtotals the LISTPR
field. It also has an ON TABLE COLUMN-TOTAL phrase:

SET SUMMARYLINES=EXPLICIT
TABLE FILE MOVIES
SUM COPIES LISTPR WHOLESALEPR
BY RATING
BY CATEGORY
WHERE CATEGORY EQ 'CHILDREN'
WHERE RATING EQ 'G'
ON RATING SUBTOTAL COPIES
ON CATEGORY SUBTOTAL LISTPR
ON TABLE COLUMN-TOTAL
END

The grand total line displays a column total for all numeric columns because of the ON TABLE
COLUMN-TOTAL phrase:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 101.89
*TOTAL G 7

TOTAL 7 101.89 54.49

300 Information Builders

Manipulating Summary Values With Prefix Operators

The following request has an ON TABLE SUBTOTAL WHOLESALEPR command. It also has
an ON TABLE COLUMN-TOTAL phrase:

SET SUMMARYLINES=EXPLICIT
TABLE FILE MOVIES
SUM COPIES LISTPR WHOLESALEPR
BY RATING
BY CATEGORY
WHERE CATEGORY EQ 'CHILDREN'
WHERE RATING EQ 'G'
ON RATING SUBTOTAL COPIES
ON CATEGORY SUBTOTAL LISTPR
ON TABLE SUBTOTAL WHOLESALEPR
ON TABLE COLUMN-TOTAL
END

The grand total line displays a column total only for the WHOLESALEPR column because of
the ON TABLE SUBTOTAL command:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 101.89
*TOTAL G 7

TOTAL 54.49

Using SUB-TOTAL instead of SUBTOTAL causes COPIES and LISTPR to be aggregated on the
grand total line. WHOLESALEPR is totaled because it is listed in the COLUMN-TOTAL phrase.
The subtotal for LISTPR propagates to the RATING sort break as well as to the grand total:

SET SUMMARYLINES=EXPLICIT
TABLE FILE MOVIES
SUM COPIES LISTPR WHOLESALEPR
BY RATING
BY CATEGORY
WHERE CATEGORY EQ 'CHILDREN'
WHERE RATING EQ 'G'
ON RATING SUB-TOTAL COPIES
ON CATEGORY SUB-TOTAL LISTPR
ON TABLE COLUMN-TOTAL WHOLESALEPR
END

Creating Reports 301

7. Including Totals and Subtotals

The output is:

RATING CATEGORY COPIES LISTPR WHOLESALEPR
------ -------- ------ ------ -----------
G CHILDREN 7 101.89 54.49

*TOTAL CHILDREN 101.89
*TOTAL G 7 101.89

TOTAL 7 101.89 54.49

Using Prefix Operators With Calculated Values
If a request includes the RECOMPUTE or SUMMARIZE command, the expression specified
in the associated COMPUTE command is applied using values from the summary line. The
columns used to recompute the expression can have prefix operators. The recomputed
column, regardless of the prefix operator specified for it, applies these input values to the
expression specified in the COMPUTE command. Therefore, any supported prefix operator
can be specified for the recomputed report column without affecting the calculated value.

With prefix operator processing, all fields used in the COMPUTE command must be displayed
by the RECOMPUTE or SUMMARIZE command in order to be populated. If any field used in
the expression is not populated, the calculated value returned for the expression is
unpredictable.

Using Prefix Operators With RECOMPUTEExample:

The first request creates a calculated field named , which is the difference between DOLLARS
and BUDDOLLARS. This value is then recomputed for each region, without using prefix
operators.

TABLE FILE GGSALES
SUM UNITS DOLLARS BUDDOLLARS
AND COMPUTE DIFF/I10 = DOLLARS-BUDDOLLARS;
 BY REGION
 BY CATEGORY
 WHERE CATEGORY EQ 'Food' OR 'Coffee'
 WHERE REGION EQ 'West' OR 'Midwest'
 ON REGION RECOMPUTE
END

302 Information Builders

Manipulating Summary Values With Prefix Operators

The recomputed value is the difference between the totals for DOLLARS and BUDDOLLARS.

Region Category Unit Sales Dollar Sales Budget Dollars DIFF
------ -------- ---------- ------------ -------------- ----
Midwest Coffee 332777 4178513 4086032 92481
 Food 341414 4338271 4220721 117550

*TOTAL Midwest 674191 8516784 8306753 210031

West Coffee 356763 4473517 4523963 -50446
 Food 340234 4202337 4183244 19093

*TOTAL West 696997 8675854 8707207 -31353

TOTAL 1371188 17192638 17013960 178678

The following request uses prefix operators in the RECOMPUTE command to calculate the
maximum DOLLARS and the minimum BUDDOLLARS and then recompute DIFF. No matter
which prefix operator we specify for DIFF, it is calculated as the difference between the
values in the DOLLARS and BUDDOLLARS columns. If any of the fields used in the calculation
(DOLLARS, BUDDOLLARS, and DIFF) do not display on the summary row, the calculation
cannot be performed.

TABLE FILE GGSALES
SUM UNITS DOLLARS BUDDOLLARS
AND COMPUTE DIFF/I10 = DOLLARS-BUDDOLLARS;
 BY REGION
 BY CATEGORY
 WHERE CATEGORY EQ 'Food' OR 'Coffee'
 WHERE REGION EQ 'West' OR 'Midwest'
 ON REGION RECOMPUTE MAX. DOLLARS MIN. BUDDOLLARS AVE. DIFF
END

The output is:

Region Category Unit Sales Dollar Sales Budget Dollars DIFF
------ -------- ---------- ------------ -------------- ----
Midwest Coffee 332777 4178513 4086032 92481
 Food 341414 4338271 4220721 117550

*TOTAL Midwest 4338271 4086032 252239

West Coffee 356763 4473517 4523963 -50446
 Food 340234 4202337 4183244 19093

*TOTAL West 4473517 4183244 290273

Creating Reports 303

7. Including Totals and Subtotals

Using RECOMPUTE at the Sort Break and Grand Total LevelsExample:

The following example adds the ON TABLE RECOMPUTE command to the request in Using
Prefix Operators With RECOMPUTE on page 302 to calculate the average values for each
column. Notice that the value of DIFF is calculated as the difference between the values in
the Dollar Sales and the Budget Dollars columns on the grand total line:

TABLE FILE GGSALES
SUM UNITS DOLLARS BUDDOLLARS
AND COMPUTE DIFF/I10 = DOLLARS-BUDDOLLARS;
 BY REGION
 BY CATEGORY
 WHERE CATEGORY EQ 'Food' OR 'Coffee'
 WHERE REGION EQ 'West' OR 'Midwest'
 ON REGION RECOMPUTE MAX. DOLLARS MIN. BUDDOLLARS DIFF
 ON TABLE RECOMPUTE AVE.
END

The output is:

Region Category Unit Sales Dollar Sales Budget Dollars DIFF
------ -------- ---------- ------------ -------------- ----
Midwest Coffee 332777 4178513 4086032 92481
 Food 341414 4338271 4220721 117550

*TOTAL Midwest 4338271 4086032 252239

West Coffee 356763 4473527 4523963 -50436
 Food 340234 4202338 4183244 19094

*TOTAL West 4473527 4183244 290283

TOTAL 342797 4298162 4253490 44672

Using Multiple SUB-TOTAL or SUMMARIZE Commands With Prefix Operators
SUB-TOTAL and SUMMARIZE propagate their operations to all higher-level sort fields. If a
request uses SUB-TOTAL or SUMMARIZE at multiple sort levels, more than one prefix operator
may apply to the same field.

When a SUB-TOTAL or SUMMARIZE command on a lower-level sort field propagates up to
the higher levels, it applies its prefix operators only to those fields that did not already have
different prefix operators specified at the higher level. For any field that had a prefix operator
specified at a higher level, the original prefix operator is applied at the level at which it was
first specified and to the grand total line, unless a different operator is specified for the
grand total line.

304 Information Builders

Manipulating Summary Values With Prefix Operators

Using Multiple SUB-TOTAL Commands With Prefix OperatorsExample:

The following illustrates prefix operators work in a request that has multiple SUB-TOTAL
commands, each with a different prefix operator.

DEFINE FILE GGSALES
YEAR/YY = DATE;
END

TABLE FILE GGSALES
SUM UNITS DOLLARS/D10.2 BUDDOLLARS
 BY YEAR
 BY ST
 BY REGION
 BY CATEGORY
WHERE REGION EQ 'West' OR 'Midwest'
WHERE ST EQ 'CA' OR 'IL'
WHERE YEAR EQ '1996' OR '1997'
 ON YEAR SUB-TOTAL CNT. UNITS AS '*CNT. UNITS:'
 ON ST SUB-TOTAL AVE. DOLLARS AS '*AVE. $:'
 ON REGION SUB-TOTAL MIN. AS '*MIN.:'
END

In the following report output, some of the values have been manually italicized or bolded
for clarity:

Outlined rows are the rows generated by the SUB-TOTAL commands.

Subtotal values in the normal typeface are the count of unit sales generated by the
command ON YEAR SUB-TOTAL CNT. UNITS. This is the topmost summary command,
and therefore does not propagate to any other summary lines.

Subtotal values in italic are average dollar sales generated by the command ON ST
SUB-TOTAL AVE. DOLLARS. This is the second summary command, and therefore
propagates to the DOLLARS column of summary lines for the YEAR sort field.

Subtotal values in boldface are minimums within their sort groups generated by the
command ON REGION SUB-TOTAL MIN. This is the last summary command, and therefore
propagates to all other summary lines, but only calculates minimum values for those
columns not already populated with a count or an average.

Creating Reports 305

7. Including Totals and Subtotals

Combinations of Summary Commands

Reference:

Usage Notes for Combinations of Summary Commands

You can specify a different summary operation for each sort break (BY or ACROSS field).

306 Information Builders

Combinations of Summary Commands

If you have multiple summary commands for the same sort field, the following message
displays and the last summary command specified in the request is used:

(FOC36359) MORE THAN 1 SUBTOTAL/SUB-TOTAL/RECOMPUTE/SUMMARIZE

There is more than one SUBTOTAL/SUB-TOTAL/RECOMPUTE/SUMMARIZE on the same
key field which is not allowed. The last one specified will override the rest.

SUMMARIZE and SUB-TOTAL, which propagate their summary operations to higher level sort
breaks, skip those fields at higher level sort breaks that have their own summary commands.
The propagation of summary operations depends on whether prefix operator processing is
used for summary lines. If prefix operators are:

Not used on summary lines or if you issue the SET SUMMARYLINES=OLD command,
prefix operator processing is not used for the request. In this case, if any summary
command specifies a field list, only the fields specified on the summary line field lists
are populated on the report.

Used on summary lines or if you issue the SET SUMMARYLINES=NEW command, prefix
operator processing is used for the request. In this case, SUB-TOTAL and SUMMARIZE
propagate to:

All fields at higher level sort breaks that do not have their own summary command.

Fields not specified in the field list at higher level sort breaks that do have their own
summary commands (columns that would have been empty). Note that this is the
only technique that allows different fields at the same sort break to have different
summary options.

Prefix operators on summary lines result in the same values whether the command is
RECOMPUTE/SUMMARIZE or SUBTOTAL/SUB-TOTAL. For a computed field, the prefix operator
is not applied, the value is recalculated using the expression in the COMPUTE command
and the values from the summary line.

When you use different summary commands for different sort fields, the default grand total
row inherits the summary command associated with the first sort field in the request. You
can change the operation performed at the grand total level by using the ON TABLE phrase
to specify a specific summary command.

Note: The grand total is considered the highest sort level. Therefore, although you can use
the SUMMARIZE or SUB-TOTAL command at the grand total level, these commands apply
only to the grand total and are not propagated to any other line on the report. On the grand
total level SUMMARIZE operates as a RECOMPUTE command, and SUB-TOTAL operates as
a SUBTOTAL command.

Creating Reports 307

7. Including Totals and Subtotals

Using SUBTOTAL and RECOMPUTE in a RequestExample:

In the following request, the first sort field specified is COPIES, which is associated with the
RECOMPUTE command. Therefore, on the grand total line, the value of RATIO is correctly
recomputed and the values of LISTPR and WHOLESALEPR are summed (because this is the
default operation when the field is not calculated by a COMPUTE command).

TABLE FILE MOVIES
PRINT DIRECTOR LISTPR WHOLESALEPR
COMPUTE RATIO = LISTPR/WHOLESALEPR;
BY COPIES
BY RATING
WHERE COPIES LT 3
WHERE DIRECTOR EQ 'DISNEY W.' OR 'HITCHCOCK A.'
ON COPIES RECOMPUTE AS '*REC: '
ON RATING SUBTOTAL AS '*SUB: '
END

The output is:

COPIES RATING DIRECTOR LISTPR WHOLESALEPR RATIO
------ ------ -------- ------ ----------- -----
 1 NR DISNEY W. 29.95 15.99 1.87

*SUB: NR 29.95 15.99 1.87
*REC: 1 29.95 15.99 1.87

 2 NR HITCHCOCK A. 19.98 9.00 2.22

*SUB: NR 19.98 9.00 2.22

 PG HITCHCOCK A. 19.98 9.00 2.22
 HITCHCOCK A. 19.98 9.00 2.22

*SUB: PG 39.96 18.00 4.44
 2 PG13 HITCHCOCK A. 19.98 9.00 2.22

*SUB: PG13 19.98 9.00 2.22

 R HITCHCOCK A. 19.98 9.00 2.22

*SUB: R 19.98 9.00 2.22
*REC: 2 99.90 45.00 2.22

TOTAL 129.85 60.99 2.13

If you reverse the BY fields, the grand total line sums the RATIO values as well as the LISTPR
and WHOLESALEPR values because the SUBTOTAL command controls the grand total line:

TOTAL 129.85 60.99 12.97

308 Information Builders

Combinations of Summary Commands

You can change the operation performed at the grand total level by adding the following
command to the request:

ON TABLE RECOMPUTE

The grand total line then displays the recomputed values:

TOTAL 129.85 60.99 2.13

Using SUB-TOTAL With Multiple Summary CommandsExample:

In the following request, the SUB-TOTAL command propagates its operation to the DIRECTOR
sort field (see the total line for HITCHCOCK, on which the RATIO values are subtotaled, not
recomputed).

SUB-TOTAL is not propagated to the RATING sort field which has its own RECOMPUTE
command, and for this sort field the RATIO value is recomputed. The grand total line is
recomputed because RECOMPUTE is performed on a higher level sort field than SUB-TOTAL.

TABLE FILE MOVIES
PRINT LISTPR WHOLESALEPR
COMPUTE RATIO = LISTPR/WHOLESALEPR;
BY DIRECTOR
BY RATING
BY COPIES
WHERE COPIES LT 3
WHERE DIRECTOR EQ 'HITCHCOCK A.'
ON COPIES SUB-TOTAL AS '*SUB: '
ON RATING RECOMPUTE AS '*REC: '
END

Creating Reports 309

7. Including Totals and Subtotals

The output is:

DIRECTOR RATING COPIES LISTPR WHOLESALEPR RATIO
-------- ------ ------ ------ ----------- -----
HITCHCOCK A. NR 2 19.98 9.00 2.22

*SUB: 2 19.98 9.00 2.22
*REC: NR 19.98 9.00 2.22

 PG 2 19.98 9.00 2.22
 19.98 9.00 2.22

*SUB: 2 39.96 18.00 4.44
*REC: PG 39.96 18.00 2.22

 PG13 2 19.98 9.00 2.22
*SUB: 2 19.98 9.00 2.2
*REC: PG13 19.98 9.00 2.2

HITCHCOCK A. R 2 19.98 9.00 2.2

*SUB: 2 19.98 9.00 2.2
*REC: R 19.98 9.00 2.2
*TOTAL DIRECTOR HITCHCOCK A. 99.90 45.00 11.1

TOTAL 99.90 45.00 2.2

Using Multiple Summary Commands With Prefix OperatorsExample:

The following request prints the average value of LISTPR and the recomputed value of RATIO
on the lines associated with sort field RATING. The SUB-TOTAL command associated with
sort field COPIES is propagated to all fields on the DIRECTOR sort field lines and to the
WHOLESALEPR and RATIO1 columns associated with the RATING sort field. The grand total
line is suppressed for this request.

TABLE FILE MOVIES
PRINT LISTPR WHOLESALEPR
COMPUTE RATIO/D6.2 = LISTPR/WHOLESALEPR;
COMPUTE RATIO1/D6.2 = LISTPR/WHOLESALEPR;
BY DIRECTOR
BY RATING
BY COPIES
WHERE COPIES LT 3
 WHERE DIRECTOR EQ 'KAZAN E.'
 ON RATING RECOMPUTE AVE. LISTPR RATIO AS '*REC: '
 ON COPIES SUB-TOTAL AS '*SUB: '
 ON TABLE NOTOTAL
END

310 Information Builders

Combinations of Summary Commands

On the output:

The values of WHOLESALEPR and RATIO1 on the row labeled *REC are subtotals because
of propagation of the SUB-TOTAL command to the fields not specified in the RECOMPUTE
command.

The LISTPR value is an average and the value of RATIO (which has the same definition
as RATIO1) is recomputed because these two fields are specified in the RECOMPUTE
command.

The SUB-TOTAL command is propagated to the DIRECTOR row.

The output is:

DIRECTOR RATING COPIES LISTPR WHOLESALEPR RATIO RATIO1
-------- ------ ------ ------ ----------- ----- ------
KAZAN E. NR 1 24.98 14.99 1.67 1.67

*SUB: 1 24.98 14.99 1.67 1.67

 2 19.95 9.99 2.00 2.00

*SUB: 2 19.95 9.99 2.00 2.00
*REC: NR 22.46 24.98 .90 3.66
*TOTAL DIRECTOR KAZAN E. 44.93 24.98 3.66 3.66

Propagation of Summary Commands With Field ListsExample:

In the following request, the RECOMPUTE command has a field list.

SET SUMMARYLINES = OLD
TABLE FILE MOVIES
PRINT LISTPR WHOLESALEPR
COMPUTE RATIO/D6.2 = LISTPR/WHOLESALEPR;
COMPUTE RATIO1/D6.2 = LISTPR/WHOLESALEPR;
BY DIRECTOR
BY RATING
BY COPIES
WHERE COPIES LT 3
 WHERE DIRECTOR EQ 'KAZAN E.'
 ON RATING RECOMPUTE LISTPR RATIO AS '*REC: '
 ON COPIES SUB-TOTAL AS '*SUB: '
END

Creating Reports 311

7. Including Totals and Subtotals

With SUMMARYLINES=OLD, only those fields have values on the report output:

DIRECTOR RATING COPIES LISTPR WHOLESALEPR RATIO RATIO1
-------- ------ ------ ------ ----------- ----- ------
KAZAN E. NR 1 24.98 14.99 1.67 1.67

*SUB: 1 24.98 1.67

 2 19.95 9.99 2.00 2.00

*SUB: 2 19.95 2.00
*REC: NR 44.93 1.80
*TOTAL DIRECTOR KAZAN E. 44.93 3.66

TOTAL 44.93 1.80

With SUMMARYLINES=NEW, SUB-TOTAL propagates to all of the columns that would otherwise
be unpopulated. The grand total line inherits the RECOMPUTE command for the fields listed
in its field list, and the SUB-TOTAL command propagates to the other columns:

DIRECTOR RATING COPIES LISTPR WHOLESALEPR RATIO RATIO1
-------- ------ ------ ------ ----------- ----- ------
KAZAN E. NR 1 24.98 14.99 1.67 1.67

*SUB: 1 24.98 14.99 1.67 1.67

 2 19.95 9.99 2.00 2.00

*SUB: 2 19.95 9.99 2.00 2.00
*REC: NR 44.93 24.98 1.80 3.66
*TOTAL DIRECTOR KAZAN E. 44.93 24.98 3.66 3.66

TOTAL 44.93 24.98 1.80 3.66

Usage Notes for Combinations of Summary CommandsReference:

Summary processing differs for summary commands that have prefix operators and
summary lines that do not use prefix operators. If any summary command uses prefix
operators, the entire request uses prefix operator processing. If processing without prefix
operators is initiated, but a subsequent field requires prefix operator processing, the
following message is generated and processing halts:

(FOC36376) CANNOT COMBINE SUBTOTAL/RECOMPUTE STYLES WHENSUMMARYLINES=OLD

You can prevent this message by setting SUMMARYLINES=NEW to invoke prefix operator
processing.

SET SUMMARYLINES=EXPLICIT affects propagation of summary commands to the grand
total line by making it consistent with the behavior for any sort break. Therefore, with
this setting in effect, SUB-TOTAL and SUMMARIZE propagate to the grand total line but
SUBTOTAL and RECOMPUTE do not.

312 Information Builders

Combinations of Summary Commands

Producing Summary Columns for Horizontal Sort Fields

How to:

Produce a Summary Operation on a Horizontal Sort Field

Reference:

Usage Notes for Summaries on ACROSS Fields

The summary commands SUBTOTAL, SUB-TOTAL, SUMMARIZE, and RECOMPUTE can be
used with horizontal sort breaks.

How to Produce a Summary Operation on a Horizontal Sort FieldSyntax:

{ACROSS|ON} breakfield [AS 'text1'] sumoption [AS 'text2']
 [COLUMNS c1 [AND c2 ...]]

where:

breakfield

Is the ACROSS field whose for which you want to generate the summary option. The end
of the values for the ACROSS field triggers the summary operation.

sumoption

Can be one of the following: SUBTOTAL, SUB-TOTAL, RECOMPUTE, or SUMMARIZE.

'text1'

Is the column heading to use for the break field on the report output.

'text2'

Is the text that prints on the top of the summary column.

COLUMNS c1, c2 ...

Lists the specific ACROSS values that you want to display on the report output in the
order in which you want them. This list of values cannot be specified in an ON phrase.
If it is specified in an ACROSS phrase, it must be the last option specified in the ACROSS
phrase.

Usage Notes for Summaries on ACROSS FieldsReference:

SUMMARIZE and SUB-TOTAL operate on the ACROSS field for which they are specified
and for all higher level ACROSS fields. They do not operate on BY fields. SUBTOTAL and
RECOMPUTE operate only on the ACROSS field for which they are specified.

SUMMARIZE and SUB-TOTAL commands specified for a BY field operate on that BY and
all higher level BY fields. They do not operate on ACROSS fields.

Creating Reports 313

7. Including Totals and Subtotals

ROW-TOTAL, ACROSS-TOTAL, SUBTOTAL, and SUB-TOTAL sum the values in the columns.
Unlike SUMMARIZE and RECOMPUTE, they do not reapply calculations other than sums.

Summary commands specified in an ON TABLE phrase operate on columns, not rows.

Using Summary Commands With ACROSSExample:

The following request sums units and dollars and calculates the unit cost by product and
across region and month. The ACROSS MNTH RECOMPUTE command creates totals of units
and dollars, and recomputes the calculated value for the selected months within regions.
The ACROSS REGION RECOMPUTE command does the same for the selected regions. The
ON TABLE SUMMARIZE command creates summary rows. It has no effect on columns:

DEFINE FILE GGSALES
MNTH/MTr = DATE;
END
TABLE FILE GGSALES
SUM
 UNITS/I5 AS 'UNITS' OVER
 DOLLARS/I6 AS 'DOLLARS' OVER
 COMPUTE DOLLPER/I6 = DOLLARS/UNITS; AS 'UNIT COST'
BY PRODUCT
ACROSS REGION RECOMPUTE AS 'Region Sum' COLUMNS 'Northeast' AND 'West'
ACROSS MNTH RECOMPUTE AS 'Month Sum' COLUMNS 'November' AND 'December'
WHERE DATE FROM '19971101' TO '19971231';
WHERE PRODUCT EQ 'Capuccino' OR 'Espresso';
ON TABLE SUMMARIZE AS 'Grand Total'
ON TABLE HOLD FORMAT HTML

END

314 Information Builders

Producing Summary Columns for Horizontal Sort Fields

The output is:

Performing Calculations at Sort Field Breaks

How to:

Use Subtotals in Calculations

Reference:

Usage Notes for RECAP and COMPUTE

You can use the RECAP and COMPUTE commands to create subtotal values in a calculation.
The subtotal values are not displayed. Only the result of the calculation is shown on the
report.

Creating Reports 315

7. Including Totals and Subtotals

How to Use Subtotals in CalculationsSyntax:

Both the RECAP and COMPUTE commands have similar syntax to other total and subtotal
commands.

{BY|ON} fieldname1 {RECAP|COMPUTE} fieldname2[/format] = expression;
 [WHEN expression;]

where:

fieldname1

Is the field in the BY phrase. Each time the BY field changes value, a new recap value
is calculated.

fieldname2

Is the field name that contains the result of the expression.

/format

Can be any valid format. The default is D12.2.

expression

Can be any valid expression, as described in Using Expressions on page 323. You must
end the expression with a semicolon.

WHEN expression

Is for use with RECAP only. It specifies the conditional display of RECAP lines as
determined by a Boolean expression (see Conditionally Displaying Summary Lines and
Text on page 321). You must end the expression with a semicolon.

Usage Notes for RECAP and COMPUTEReference:

RECAP uses the current value of the named sort field, the current subtotal values of any
computational fields that appear as display fields, or the last value for alphanumeric
fields.

The field names in the expression must be fields that appear on the report. That is, they
must be display fields or sort control fields.

Each RECAP value displays on a separate line. However, if the request contains a RECAP
command and SUBFOOT text, the RECAP value displays only in the SUBFOOT text and
must be specified in the text using a spot marker.

The calculations in a RECAP or COMPUTE can appear anywhere under the control break,
along with any text. (For details, see .

In an ON phrase, a COMPUTE command is the same as a RECAP command.

316 Information Builders

Performing Calculations at Sort Field Breaks

The word RECAP may not be specified more than seven times. However, more than seven
RECAP calculations are permitted. Use the following syntax:

ON fieldname RECAP field1/format= ... ;field2/format= ... ;
.
.
.

Using RECAPExample:

The following request illustrates the use of RECAP (DEPT_NET) to determine net earnings
for each department:

TABLE FILE EMPLOYEE
SUM DED_AMT AND GROSS
BY DEPARTMENT BY PAY_DATE
ON DEPARTMENT RECAP DEPT_NET/D8.2M = GROSS-DED_AMT;
WHEN PAY_DATE GT 820101
END

The output is:

DEPARTMENT PAY_DATE DED_AMT GROSS
---------- -------- ------- -----
MIS 81/11/30 $1,406.79 $2,147.75
 81/12/31 $1,406.79 $2,147.75
 82/01/29 $1,740.89 $3,247.75
 82/02/26 $1,740.89 $3,247.75
 82/03/31 $1,740.89 $3,247.75
 82/04/30 $3,386.73 $5,890.84
 82/05/28 $3,954.35 $6,649.50
 82/06/30 $4,117.03 $7,460.00
 82/07/30 $4,117.03 $7,460.00
 82/08/31 $4,575.72 $9,000.00

** DEPT_NET $22,311.98

PRODUCTION 81/11/30 $141.66 $833.33
 81/12/31 $141.66 $833.33
 82/01/29 $1,560.09 $3,705.84
 82/02/26 $2,061.69 $4,959.84
 82/03/31 $2,061.69 $4,959.84
 82/04/30 $2,061.69 $4,959.84
 82/05/28 $3,483.88 $7,048.84
 82/06/30 $3,483.88 $7,048.84
 82/07/30 $3,483.88 $7,048.84
 82/08/31 $4,911.12 $9,523.84

** DEPT_NET $27,531.14

Creating Reports 317

7. Including Totals and Subtotals

Using Multiple RECAP CommandsExample:

You can include multiple RECAP or COMPUTE commands in a request. This option enables
you to perform different calculations at different control breaks.

The following request illustrates the use of multiple RECAP commands.

TABLE FILE SALES
SUM UNIT_SOLD AND RETURNS
WHERE AREA EQ 'U'
BY DATE BY AREA BY PROD_CODE
ON DATE RECAP
DATE_RATIO=RETURNS/UNIT_SOLD;
ON AREA UNDER-LINE RECAP
AREA_RATIO=RETURNS/UNIT_SOLD;
END

The output is:

DATE AREA PROD_CODE UNIT_SOLD RETURNS
---- ---- --------- --------- -------
10/17 U B10 30 2
 B17 20 2
 B20 15 0
 C17 12 0
 D12 20 3
 E1 30 4
 E3 35 4

** AREA_RATIO .09

** DATE_RATIO .09

--
10/18 U B10 13 1

** AREA_RATIO .08

** DATE_RATIO .08

--
10/19 U B12 29 1

** AREA_RATIO .03

** DATE_RATIO .03

--

318 Information Builders

Performing Calculations at Sort Field Breaks

Suppressing Grand Totals

How to:

Suppress Grand Totals

You can use the NOTOTAL command to suppress grand totals in a report.

Suppressing the grand total is useful when there is only one value at a sort break, since the
grand total value is equal to that one value. Using the NOTOTAL command prevents the
report from displaying a grand total line for every sort break that has only one detail line.
You can also suppress subtotals using the MULTILINES command. For details, see How to
Create Subtotals on page 280.

How to Suppress Grand TotalsSyntax:

To suppress grand totals, add the following syntax to your request:

ON TABLE NOTOTAL

Suppressing Grand TotalsExample:

The following request includes the NOTOTAL phrase to suppress grand totals for CURR_SAL,
GROSS, and DED_AMT.

TABLE FILE EMPLOYEE
SUM CURR_SAL AND GROSS AND DED_AMT
BY EMP_ID
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON BANK_ACCT SUB-TOTAL
ON TABLE NOTOTAL
END

Creating Reports 319

7. Including Totals and Subtotals

The output is:

EMP_ID BANK_ACCT CURR_SAL GROSS DED_AMT
------ --------- -------- ----- -------
117593129 40950036 $18,480.00 $6,099.50 $2,866.18

*TOTAL 40950036 $18,480.00 $6,099.50 $2,866.18
*TOTAL 117593129 $18,480.00 $6,099.50 $2,866.18

119329144 160633 $29,700.00 $2,475.00 $1,427.24

*TOTAL 160633 $29,700.00 $2,475.00 $1,427.24
*TOTAL 119329144 $29,700.00 $2,475.00 $1,427.24

123764317 819000702 $26,862.00 $17,094.00 $11,949.44

*TOTAL 819000702 $26,862.00 $17,094.00 $11,949.44
*TOTAL 123764317 $26,862.00 $17,094.00 $11,949.44
326179357 122850108 $21,780.00 $9,075.00 $6,307.00

*TOTAL 122850108 $21,780.00 $9,075.00 $6,307.00
*TOTAL 326179357 $21,780.00 $9,075.00 $6,307.00

451123478 136500120 $16,100.00 $9,130.00 $3,593.92

*TOTAL 136500120 $16,100.00 $9,130.00 $3,593.92
*TOTAL 451123478 $16,100.00 $9,130.00 $3,593.92

818692173 163800144 $27,062.00 $22,013.75 $15,377.40

*TOTAL 163800144 $27,062.00 $22,013.75 $15,377.40
*TOTAL 818692173 $27,062.00 $22,013.75 $15,377.40

Conditionally Displaying Summary Lines and Text
In addition to using summary lines to control the look and content of your report, you can
specify WHEN criteria to control the conditions under which summary lines appear for each
vertical (BY) sort field value. WHEN is supported with SUBFOOT, SUBHEAD, SUBTOTAL, SUB-
TOTAL, SUMMARIZE, RECOMPUTE, and RECAP. For complete details on using the WHEN
phrase, see Conditionally Formatting Reports With the WHEN Clause on page 411.

320 Information Builders

Conditionally Displaying Summary Lines and Text

Conditionally Displaying Summary Lines and TextExample:

In a sales report that covers four regions (Midwest, Northeast, Southeast, and West), you
may only want to display a subtotal when total dollar sales are greater than $11,500,000.
The following request accomplishes this by including criteria that trigger the display of a
subtotal when dollar sales exceed $11,500,000 and subfooting text when dollar sales are
less than $11,500,000.

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY REGION
BY CATEGORY
ON REGION SUBTOTAL
WHEN DOLLARS GT 11500000
SUBFOOT
"The total for the <REGION region is less than 11500000."
WHEN DOLLARS LT 11500000
END

The output is:

Region Category Unit Sales Dollar Sales
------ -------- ---------- ------------
Midwest Coffee 332777 4178513
 Food 341414 4338271
 Gifts 230854 2883881

The total for the Midwest region is less than 11500000.
Northeast Coffee 335778 4164017
 Food 353368 4379994
 Gifts 227529 2848289

The total for the Northeast region is less than 11500000.
Southeast Coffee 350948 4415408
 Food 349829 4308731
 Gifts 234455 2986240

*TOTAL Southeast 935232 11710379

West Coffee 356763 4473517
 Food 340234 4202337
 Gifts 235042 2977092

*TOTAL West 932039 11652946

TOTAL 3688991 46156290

Creating Reports 321

7. Including Totals and Subtotals

322 Information Builders

Conditionally Displaying Summary Lines and Text

FOCUS

Using Expressions8
Topics:

An expression combines field names,
constants, and operators in a calculation
that returns a single value. You can use
an expression in a variety of commands
to assign a value to a temporary field or
Dialogue Manager amper variable, or use
it in screening. You can combine simpler
ones to build increasingly complex
expressions.

Using Expressions in Commands and
Phrases

Types of Expressions

Creating a Numeric Expression

Creating a Date Expression

When you write an expression, you can
specify the operation yourself, or you can
use one of the many supplied functions
that perform specific calculations or data
manipulation. These functions operate
on one or more arguments, and return a
single value as a result. To use a
function, you simply call it. For details
about functions, see the Using Functions
manual.

Creating a Date-Time Expression

Creating a Character Expression

Creating a Variable Length Character
Expression

Creating a Logical Expression

Creating a Conditional Expression

Creating Reports 323

Using Expressions in Commands and Phrases
You can use an expression in various commands and phrases. An expression may not exceed
40 lines and must end with a semicolon, except in WHERE and WHEN phrases, in which the
semicolon is optional.

The commands that support expressions, and their basic syntax, are summarized here. For
complete syntax with an explanation, see the applicable documentation.

You can use an expression when you:

Create a temporary field, and assign a value to that field. The field can be created in a
Master File using the DEFINE attribute, or using a DEFINE or COMPUTE command:

DEFINE command preceding a report request:

DEFINE FILE filename
fieldname [/format] = expression;

 .
 .
 .
END

DEFINE attribute in a Master File:

DEFINE fieldname [/format] = expression;$

COMPUTE command in a report request:

COMPUTE fieldname [/format] = expression;

Define record selection criteria and criteria that control report formatting.

{WHERE|IF} logical_expression[;]
 WHEN logical_expression[;]

Determine branching in Dialogue Manager, or assign a value to a Dialogue Manager
amper variable.

-IF logical_expression [THEN] GOTO label1 [ELSE GOTO label2];

-SET &name = expression;

Perform a calculation with the RECAP command in the Financial Modeling Language (FML).

RECAP name [(n)] [/format] = expression;

324 Information Builders

Using Expressions in Commands and Phrases

Types of Expressions

In this section:

Expressions and Field Formats

An expression can be one of the following:

Numeric. Use numeric expressions to perform calculations that use numeric constants
(integer or decimal) and fields. For example, you can write an expression to compute the
bonus for each employee by multiplying the current salary by the desired percentage as
follows:

COMPUTE BONUS/D12.2 = CURR_SAL * 0.05 ;

A numeric expression returns a numeric value. For details, see Creating a Numeric
Expression on page 327.

Date. Use date expressions to perform numeric calculations on dates. For example, you
can write an expression to determine when a customer can expect to receive an order
by adding the number of days in transit to the date on which you shipped the order as
follows:

COMPUTE DELIVERY/MDY = SHIPDATE + 5 ;

There are two types of date expressions:

Date expressions, which return a date, a component of a date, or an integer that
represents the number of days, months, quarters, or years between two dates. For
details, see Creating a Date Expression on page 331.

Date-time expressions, which you can create using a variety of specialized date-time
functions, each of which returns a different kind of value. For details on these functions,
see the Using Functions manual.

Character. Use character expressions to manipulate alphanumeric constants or fields.
For example, you can write an expression to extract the first initial from an alphanumeric
field as follows:

COMPUTE FIRST_INIT/A1 = EDIT (FIRST_NAME, '9$$$$$$$$$') ;

A character expression returns an alphanumeric value. For details, see Creating a Character
Expression on page 344.

Note: Text fields can be assigned to alphanumeric fields and receive assignment from
alphanumeric fields. Text fields can also participate in expressions using the operators
CONTAINS and OMITS.

Creating Reports 325

8. Using Expressions

Logical. Use logical expressions to evaluate the relationship between two values. A
logical expression returns TRUE or FALSE. For details, see Creating a Logical Expression
on page 351.

Conditional. Use conditional expressions to assign values based on the result of logical
expressions. A conditional expression (IF ... THEN ... ELSE) returns a numeric or
alphanumeric value. For details, see Creating a Conditional Expression on page 353.

Expressions and Field Formats
When you use an expression to assign a value to a field, make sure that you give the field
a format that is consistent with the value returned by the expression. For example, if you
use a character expression to concatenate a first name and last name and assign it to the
field FULL_NAME, make sure you define the field as character.

Assigning a Field Format of Sufficient LengthExample:

The following example contains a character expression that concatenates a first name and
last name to derive the full name. It assigns the field FULL_NAME an alphanumeric format
of sufficient length to accommodate the concatenated name:

DEFINE FILE EMPLOYEE
FULL_NAME/A25 = FIRST_NAME | LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT FULL_NAME
WHERE LAST_NAME IS 'BLACKWOOD'
END

The output is:

FULL_NAME

ROSEMARIE BLACKWOOD

326 Information Builders

Types of Expressions

Creating a Numeric Expression

In this section:

Order of Evaluation

How to:

Express a Number in Scientific Notation

Reference:

Arithmetic Operators

A numeric expression performs a calculation that uses numeric constants, fields, operators,
and functions to return a numeric value. When you use a numeric expression to assign a
value to a field, that field must have a numeric format. The default format is D12.2.

A numeric expression can consist of the following components, shown below in bold:

A numeric constant. For example:

COMPUTE COUNT/I2 = 1 ;

A numeric constant in scientific notation. For example:

COMPUTE COST/D12.2 = EXPN(8E+3);

For syntax usage, see How to Express a Number in Scientific Notation on page 328.

A numeric field. For example:

COMPUTE RECOUNT/I2 = COUNT ;

Two numeric constants or fields joined by an arithmetic operator. For example:

COMPUTE BONUS/D12.2 = CURR_SAL * 0.05 ;

For a list of arithmetic operators, see Arithmetic Operators on page 329.

A numeric function. For example:

COMPUTE LONGEST_SIDE/D12.2 = MAX (WIDTH, HEIGHT) ;

Creating Reports 327

8. Using Expressions

Two or more numeric expressions joined by an arithmetic operator. For example:

COMPUTE PROFIT/D12.2 = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

Note the use of parentheses to change the order of evaluation of the expression. For
information on the order in which numeric operations are performed, see Order of
Evaluation on page 330.

Before they are used in calculations, numeric values are generally converted to double-
precision floating-point format. The result is then converted to the specified field format. In
some cases the conversion may result in a difference in rounding. .

If a number is too large (greater than 1075) or too small (less than 10-75), you receive an
Overflow or Underflow warning, and zeros display for the field value.

Note: You can change the overflow character by issuing the SET OVERFLOWCHAR command.

For detailed information on rounding behavior for numeric data formats, see the Describing
Data manual.

How to Express a Number in Scientific NotationSyntax:

In an IF clause, use the following:

IF field op n[.nn]{E|D|e|d}[+|-]p

In a WHERE clause, use the following:

WHERE field op EXPN(n[.nn{E|D|e|d}[+|-]p);

In a COMPUTE command, use the following:

COMPUTE field[/format] = EXPN(n[.nn]{{E|D|e|d}[+|-]p);

In a DEFINE command, use the following:

DEFINE FILE filename
field[/format] = EXPN(n[.nn]{E|D|e|d}[+|-]p);
END

In a DEFINE in the Master File, use the following:

DEFINE field[/format] = EXPN(n[.nn]{{E|D|e|d}[+|-]p);

where:

field

Is a field in a request.

/format

Is the optional format of the field. For information on formats, see the Describing Data
manual.

328 Information Builders

Creating a Numeric Expression

op

Is a relational operator in a request.

n.nn

Is a numeric constant that consists of a whole number component, followed by a decimal
point, followed by a fractional component.

E, D, e, d

Denotes scientific notation. E, e, d, and D are interchangeable.

+, -

Indicates if p is positive or negative. Positive is the default.

p

Is the power of 10 to which to raise the number. The range of values for p is between
 -78 and +78.

Note: EXPN is useful for calculations on fields with F and D formats. It is generally not useful
for calculations on fields with P or I formats.

Evaluating a Number in Scientific NotationExample:

You can use scientific notation in an IF or WHERE clause to express 8000 as 8E+03:

IF RCOST LT 8E+03

WHERE RCOST LT EXPN(8E+03)

Arithmetic OperatorsReference:

The following list shows the arithmetic operators you can use in an expression:

+Addition
-Subtraction
*Multiplication
/Division
**Exponentiation

Note: If you attempt to divide by 0, the value of the expression is 0. Multiplication and
exponentiation are not supported for date expressions of any type. To isolate part of a date,
use a simple assignment command.

Creating Reports 329

8. Using Expressions

Order of Evaluation
Numeric expressions are evaluated in the following order:

1. Exponentiation.

2. Division and multiplication.

3. Addition and subtraction.

When operators are at the same level, they are evaluated from left to right. Because
expressions in parentheses are evaluated before any other expression, you can use
parentheses to change this predefined order. For example, the following expressions yield
different results because of parentheses:

COMPUTE PROFIT/D12.2 = RETAIL_PRICE - UNIT_COST * UNIT_SOLD ;
COMPUTE PROFIT/D12.2 = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

In the first expression, UNIT_SOLD is first multiplied by UNIT_COST, and the result is
subtracted from RETAIL_PRICE. In the second expression, UNIT_COST is first subtracted
from RETAIL_PRICE, and that result is multiplied by UNIT_SOLD.

Note: Two operators cannot appear consecutively. The following expression is invalid:

a * -1

To make it valid, you must add parentheses:

a* (-1)

Controlling the Order of EvaluationExample:

The order of evaluation can affect the result of an expression. Suppose you want to determine
the dollar loss in retail sales attributed to the return of damaged items. You could issue the
following request:

TABLE FILE SALES
PRINT RETAIL_PRICE RETURNS DAMAGED
COMPUTE RETAIL_LOSS/D12.2 = RETAIL_PRICE * RETURNS + DAMAGED;
BY PROD_CODE
WHERE PROD_CODE IS 'E1';
END

The calculation

COMPUTE RETAIL_LOSS/D12.2 = RETAIL_PRICE * RETURNS + DAMAGED;

gives an incorrect result because RETAIL_PRICE is first multiplied by RETURNS, and then
the result is added to DAMAGED. The correct result is achieved by adding RETURNS to
DAMAGED, then multiplying the result by RETAIL_PRICE.

330 Information Builders

Creating a Numeric Expression

You can change the order of evaluation by enclosing expressions in parentheses. An
expression in parentheses is evaluated before any other expression. You may also use
parentheses to improve readability.

Using parentheses, the correct syntax for the preceding calculation is:

COMPUTE RETAIL_LOSS/D12.2 = RETAIL_PRICE * (RETURNS + DAMAGED);

The output is:

PROD_CODE RETAIL_PRICE RETURNS DAMAGED RETAIL_LOSS
--------- ------------ ------- ------- -----------
E1 $.89 4 7 9.79

Creating a Date Expression

In this section:

Formats for Date Values

Performing Calculations on Dates

Cross-Century Dates With DEFINE and COMPUTE

Returned Field Format Selection

Using a Date Constant in an Expression

Extracting a Date Component

Combining Fields With Different Formats in an Expression

A date expression performs a numeric calculation that involves dates.

A date expression returns a date, a date component, or an integer that represents the
number of days, months, quarters, or years between two dates. You can write a date
expression directly that consists of:

A date constant. For example:

COMPUTE END_DATE/MDYY = 'FEB 29 2000';

This requires single quotation marks around the date constant.

A date field. For example:

COMPUTE NEWDATE/YMD = START_DATE;

An alphanumeric, integer, or packed decimal format field, with date edit options. For
example, in the second COMPUTE command, OLDDATE is a date expression:

COMPUTE OLDDATE/I6YMD = 980307;
COMPUTE NEWDATE/YMD DFC 19 YRT 10 = OLDDATE;

Creating Reports 331

8. Using Expressions

A calculation that uses an arithmetic operator or date function to return a date. Use a
numeric operator only with date formats (formerly called Smart dates). The following
example first converts the integer date HIRE_DATE (format I6YMD) to the date format
CONVERTED_HDT (format YMD). It then adds 30 days to CONVERTED_HDT:

COMPUTE CONVERTED_HDT/YMD = HIRE_DATE;
HIRE_DATE_PLUS_THIRTY/YMD = CONVERTED_HDT + 30;

A calculation that uses a numeric operator or date function to return an integer that
represents the number of days, months, quarters, or years between two dates. The
following example uses the date function YMD to calculate the difference (number of
days) between an employee hire date and the date of his first salary increase:

COMPUTE DIFF/I4 = YMD (HIRE_DATE,FST.DAT_INC);

Formats for Date Values

Reference:

Base Dates for Date Formats

Impact of Date Formats on Storage and Display

You can work with dates in one of two ways:

In date format. The value is treated as an integer that represents the number of days
between the date value and a base date. There are two base dates for date formats:

YMD and YYMD formats have a base date of December 31, 1900.

YM and YYM formats have a base date of January, 1901.

When displayed, the integer value is converted to the corresponding date in the format
specified for the field. The format can be specified in either the Master File or in the
command that uses an expression to assign a value to the field. These were previously
referred to as smart date formatted fields.

In integer, packed decimal, or alphanumeric format with date edit options. The
value is treated as an integer, a packed decimal, or an alphanumeric string. When
displayed, the value is formatted as a date. These were previously referred to as old date
formatted fields.

You can convert a date in one format to a date in another format simply by assigning one
to the other. For example, the following assignments take a date stored as an alphanumeric
field, formatted with date edit options, and convert it to a date stored as a temporary date
field:

COMPUTE ALPHADATE/A6MDY = '120599' ;
 REALDATE/MDY = ALPHADATE;

332 Information Builders

Creating a Date Expression

Base Dates for Date FormatsReference:

The following table shows the base date for each supported date format:

Base DateFormat

1900/12/31YMD, YYMD, MDYY, DMYY, MDY, and DMY

1901/01 on z/OS and VM

1900/12/31 on Windows and UNIX

YM, YYM, MYY, and MY

1901 Q1YQ, YYQ, QYY, and QY

1900/365JUL and YYJUL

There is no base date for these formats;
these are just numbers, not dates.

D
M
Y, YY
Q
W

Note that the base date used for the functions DA and DT is December 31, 1899. For details
on date functions, see the Using Functions manual.

Impact of Date Formats on Storage and DisplayReference:

The following table illustrates how the field format affects storage and display:

Integer, Packed, Decimal,
or Alphanumeric Format
(For example: A8MDYY)

Date Format (For example:
MDYY)

DisplayedStoredDisplayedStoredValue

02/28/19990228199902/28/199935853February 28, 1999

03/01/19990301199903/01/199935854March 1, 1999

Creating Reports 333

8. Using Expressions

Performing Calculations on Dates
The format of a field determines how you can use it in a date expression. Calculations on
dates in date format can incorporate numeric operators as well as numeric functions.
Calculations on dates in integer, packed, decimal, or alphanumeric format require the use
of date functions. Numeric operators return an error message or an incorrect result.

A full set of functions is supplied with your software, enabling you to manipulate dates in
integer, packed decimal, and alphanumeric format. For details on date functions, see the
Using Functions manual.

Calculating DatesExample:

Assume that your company maintains a SHIPPING database. The following example calculates
how many days it takes the shipping department to fill an order by subtracting the date on
which an item is ordered, the ORDER_DATE, from the date on which it is shipped, the
SHIPDATE:

COMPUTE TURNAROUND/I4 = SHIP_DATE - ORDER_DATE;

An item ordered on February 28, 1999, and shipped on March 1, 1999, results in a difference
of one day. However, if the SHIP_DATE and ORDER_DATE fields have an integer format, the
result of the calculation (730000) is incorrect, since you cannot use the numeric operator
minus (-) with that format.

The following table shows how the field format affects the result:

Value in Integer
Format

Value in Date
Format

0301199935854SHIP_DATE = March 1, 1999

0228199935853ORDER_DATE = February 28, 1999

7300001TURNAROUND

To obtain the correct result using fields in integer, packed, decimal, or alphanumeric format,
use the date function MDY, which returns the difference between two dates in the form
month-day-year. Using the function MDY, you can calculate TURNAROUND as follows:

COMPUTE TURNAROUND/I4 = MDY(ORDER_DATE, SHIP_DATE);

334 Information Builders

Creating a Date Expression

Cross-Century Dates With DEFINE and COMPUTE
You can use an expression in a DEFINE or COMPUTE command, or in a DEFINE attribute in
a Master File, that implements the sliding window technique for cross-century date processing.
The parameters DEFCENT and YRTHRESH provide a means of interpreting the century if the
first two digits of the year are not provided elsewhere. If the first two digits are provided,
they are simply accepted.

Returned Field Format Selection
A date expression always returns a number. That number may represent a date, or the
number of days, months, quarters, or years between two dates. When you use a date
expression to assign a value to a field, the format selected for the field determines how the
result is returned.

Selecting the Format of a Returned FieldExample:

Consider the following commands, assuming that SHIP_DATE and ORDER_DATE are date-
formatted fields. The first command calculates how many days it takes a shipping department
to fill an order by subtracting the date on which an item is ordered, ORDER_DATE, from the
date on which it is shipped, SHIP_DATE. The second command calculates a delivery date
by adding five days to the date on which the order is shipped.

COMPUTE TURNAROUND/I4 = SHIP_DATE - ORDER_DATE;
COMPUTE DELIVERY/MDY = SHIP_DATE + 5;

In the first command, the date expression returns the number of days it takes to fill an order;
therefore, the associated field, TURNAROUND, must have an integer format. In the second
command, the date expression returns the date on which the item will be delivered; therefore,
the associated field, DELIVERY, must have a date format.

Using a Date Constant in an Expression
When you use a date constant in a calculation with a field in date format, you must enclose
it in single quotation marks; otherwise, it is interpreted as the number of days between the
constant and the base date (December 31, 1900, or January 1, 1901). For example, if
022899 were not enclosed in quotation marks, the value would be interpreted as the
22,899th day after 12/31/1900, rather than as February 28, 1999.

Initializing a Field With a Date ConstantExample:

The following command initializes START_DATE with the date constant 02/28/99:

COMPUTE START_DATE/MDY = '022899';

Creating Reports 335

8. Using Expressions

The following command calculates the number of days elapsed since January 1, 1999:

COMPUTE YEAR_TO_DATE/I4 = CURR_DATE - 'JAN 1 1999' ;

Extracting a Date Component
Date components include days, months, quarters, or years. You can write an expression
that extracts a component from a field in date format. However, you cannot write an
expression that extracts days, months, or quarters from a date that does not have these
components. For example, you cannot extract a month from a date in YY format, which
represents only the number of years.

Extracting the Month Component From a DateExample:

The following example extracts the month component from SHIP_DATE, which has the format
MDYY:

COMPUTE SHIP_MONTH/M = SHIP_DATE;

If SHIP_DATE has the value March 1, 1999, the above expression returns the value 03 for
SHIP_MONTH.

A calculation on a date component automatically produces a valid value for the desired
component. For example, if the current value of SHIP_MONTH is 03, the following expression
correctly returns the value 06:

COMPUTE ADD_THREE/M = SHIPMONTH + 3;

If the addition of months results in an answer greater than 12, the months are adjusted
correctly (for example, 11 + 3 is 2, not 14).

Combining Fields With Different Formats in an Expression
When using fields in date format, you can combine fields with a different order of components
within the same expression. In addition, you can assign the result of a date expression to
a field with a different order of components from the fields in the expression.

You cannot, however, write an expression that combines dates in date format with dates in
integer, packed, decimal or character format.

Combining Fields With Format YYMD and MDYExample:

Consider the two fields DATE_PAID and DUE_DATE. DATE_PAID has the format YYMD, and
DUE_DATE has the format MDY. You can combine these two fields in an expression to
calculate the number of days that a payment is late:

COMPUTE DAYS_LATE/I4 = DATE_PAID - DUE_DATE;

336 Information Builders

Creating a Date Expression

Assigning a Different Order of Components to a Returned FieldExample:

Consider the field DATE_SOLD. This field contains the date on which an item is sold, in
YYMD format. The following expression adds seven days to DATE_SOLD to determine the
last date on which the item can be returned. It then assigns the result to a field with DMY
format:

COMPUTE RETURN_BY/DMY = DATE_SOLD + 7;

Creating a Date-Time Expression

In this section:

Specifying a Date-Time Value

Manipulating Date-Time Values

How to:

Specify the Order of Date Components in a Date-Time Field

A date-time expression returns date and time components. You can create these expressions
using a variety of supplied date-time functions. For details about date-time functions, see
the Using Functions manual.

How to Specify the Order of Date Components in a Date-Time FieldSyntax:

SET DATEFORMAT = option

where:

option

Can be one of the following: MDY, DMY, YMD, or MYD. MDY is the default value for the
U.S. English format.

For an example, see Specifying the Order of Date Components for a Date-Time Field on page
340.

Specifying a Date-Time Value
An external date-time value is a constant in character format from one of the following
sources:

A sequential data source.

Typed by an application user at a terminal or workstation.

Used in an expression in a WHERE, IF, DEFINE, or a COMPUTE.

Creating Reports 337

8. Using Expressions

A date-time constant typed by an application user at a terminal or workstation, or a date-
time value as it appears in a character file has one of the following formats:

time_string [date_string]
date_string [time_string]

A date-time constant in a COMPUTE, DEFINE, or WHERE expression must have one of the
following formats:

DT(time_string [date_string])
DT(date_string [time_string])

A date-time constant in an IF expression has one of the following formats:

'time_string [date_string]'
'date_string [time_string]'

If the value contains no blanks or special characters, the single quotation marks are not
necessary. Note that the DT prefix is not supported in IF criteria.

where:

time_string

Cannot contain blanks. Time components are separated by colons, and may be followed
by AM, PM, am, or pm. For example:

14:30:20:99 (99 milliseconds)
14:30
14:30:20.99 (99/100 seconds)
14:30:20.999999 (999999 microseconds)
02:30:20:500pm

Note that the second can be expressed with a decimal point or be followed by a colon:

If there is a colon after the second, the value following it represents the millisecond.
There is no way to express the microsecond or nanosecond using this notation.

A decimal point in the second value indicates the decimal fraction of a second. A
microsecond can be represented using six decimal digits. A nanosecond can be
represented using nine decimal digits.

date_string

Can have one of the following three formats:

Numeric string format is exactly four, six, or eight digits. Four-digit strings are
considered to be a year (century must be specified). The month and day are set to
January 1. Six and eight-digit strings contain two or four digits for the year, followed
by two for the month, and then two for the day. Because the component order is fixed
with this format, the DATEFORMAT setting described in How to Specify the Order of
Date Components in a Date-Time Field on page 337 is ignored.

338 Information Builders

Creating a Date-Time Expression

If a numeric-string format longer than eight digits is encountered, it is treated as a
combined date-time string in the Hn format. The following are examples of numeric
string date constants:

99
1999
19990201

Formatted-string format contains a one or two-digit day, a one or two-digit month,
and a two or four-digit year separated by spaces, slashes, hyphens, or periods. All
three parts must be present and follow the DATEFORMAT setting described in How
to Specify the Order of Date Components in a Date-Time Field on page 337. If any of
the three fields is four digits, it is interpreted as the year, and the other two fields
must follow the order given by the DATEFORMAT setting. The following are examples
of formatted-string date constants:

1999/05/20
5 20 1999
99.05.20
1999-05-20

Translated-string format contains the full or abbreviated month name. The year
must also be present in four-digit or two-digit form. If the day is missing, day 1 of the
month is assumed; if present, it can have one or two digits. If the string contains
both a two-digit year and a two-digit day, they must be in the order given by the
DATEFORMAT setting. For example:

January 6 2000

Note:

The date and time strings must be separated by at least one blank space. Blank spaces
are also permitted at the beginning and end of the date-time string or immediately before
an am/pm indicator.

In each date format, two-digit years are interpreted using the [F]DEFCENT and [F]YRTHRESH
settings.

Assigning Date-Time LiteralsExample:

The DT prefix can be used in a COMPUTE, DEFINE, or WHERE expression to assign a date-
time literal to a date-time field. For example:

DT2/HYYMDS = DT(20051226 05:45);

DT3/HYYMDS = DT(2005 DEC 26 05:45);

DT4/HYYMDS = DT(December 26 2005 05:45);

Creating Reports 339

8. Using Expressions

Specifying the Order of Date Components for a Date-Time FieldExample:

The following request sets DATEFORMAT to MYD:

SET DATEFORMAT = MYD
DEFINE FILE EMPLOYEE
DTFLDYYMD/HYYMDI = DT(APR 04 05);
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL DTFLDYYMD
END

The output shows that the natural date literal 'APR 04 05' is interpreted as April 5, 1904:

 CURR_SAL DTFLDYYMD
 -------- ---------
$11,000.00 1904/04/05 00:00
$13,200.00 1904/04/05 00:00
$18,480.00 1904/04/05 00:00
 $9,500.00 1904/04/05 00:00
$29,700.00 1904/04/05 00:00
$26,862.00 1904/04/05 00:00
$21,120.00 1904/04/05 00:00
$18,480.00 1904/04/05 00:00
$21,780.00 1904/04/05 00:00
$16,100.00 1904/04/05 00:00
 $9,000.00 1904/04/05 00:00
$27,062.00 1904/04/05 00:00

Reading Date-Time Values From a Transaction FileExample:

The DTTRANS comma-delimited transaction file has an ID field and a date-time field that
contains both the date (as eight characters) and time (in the format hour:minute:second):

01, 20000101 02:57:25,$
02, 19991231 14:05:35,$

Because the transaction file contains the dates in numeric string format, the DATEFORMAT
setting is not used, and the dates are entered in YMD order.

The following transaction file is also valid. It contains formatted string dates that comply
with the default DATEFORMAT setting, MDY:

01, 01/01/2000 02:57:25,$
02, 12/31/1999 14:05:35,$

The following Master File describes the FOCUS data source named DATETIME, which receives
these values:

FILE=DATETIME, SUFFIX=FOC ,$
SEGNAME=DATETIME, SEGTYPE=S0 ,$
FIELD=ID, ID, USAGE = I2 ,$
FIELD=DT1, DT1, USAGE=HYYMDS ,$

340 Information Builders

Creating a Date-Time Expression

Using a Date-Time Value in a COMPUTE CommandExample:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME AND COMPUTE
NEWSAL/D12.2M = CURR_SAL + (0.1 * CURR_SAL);
RAISETIME/HYYMDIA = DT(20000101 09:00AM);
WHERE CURR_JOBCODE LIKE 'B%'
END

The output is:

LAST_NAME FIRST_NAME NEWSAL RAISETIME
--------- ---------- ------ ---------
SMITH MARY $14,520.00 2000/01/01 9:00AM
JONES DIANE $20,328.00 2000/01/01 9:00AM
ROMANS ANTHONY $23,232.00 2000/01/01 9:00AM
MCCOY JOHN $20,328.00 2000/01/01 9:00AM
BLACKWOOD ROSEMARIE $23,958.00 2000/01/01 9:00AM
MCKNIGHT ROGER $17,710.00 2000/01/01 9:00AM

Using a Date-Time Value in WHERE CriteriaExample:

In a WHERE clause, a date-time constant must use the DT() format:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE
WHERE TRANSDATE GT DT(2000/01/01 02:57:25)
END

The output is:

CUSTID TRANSDATE
------ ---------
1118 2000/06/26 05:45
1237 2000/02/05 03:30

Using a Date-Time Value in IF CriteriaExample:

In an IF clause, a date-time constant must be enclosed in single quotation marks if it contains
any blanks:

TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE
IF TRANSDATE GT '2000/01/01 02:57:25'
END

Note: The DT prefix for a date-time constant is not supported in an IF clause.

The output is:

CUSTID TRANSDATE
------ ---------
1118 2000/06/26 05:45
1237 2000/02/05 03:30

Creating Reports 341

8. Using Expressions

Specifying Universal Date-Time Input ValuesExample:

With DTSTANDARD settings of STANDARD and STANDARDU, the following date-time values
can be read as input:

DescriptionInput Value

Comma separates time components instead of period14:30[:20,99]

Universal time14:30[:20.99]Z

Each of these is the same as above in Central European
Time

15:30[:20,99]+01
15:30[:20,99]+0100
15:30[:20,99]+01:00

Same as above in Eastern Standard Time09:30[:20.99]-05

Note that these values are stored identically internally with the STANDARDU setting. With
the STANDARD setting, everything following the Z, +, or - is ignored.

Manipulating Date-Time Values
The only direct operations that can be performed on date-time variables and constants are
comparison using a logical expression, and simple assignment of the form A = B.

Computations only allow direct assignment within data types: alpha to alpha, numeric to
numeric, date to date, and date-time to date-time. All other operations are accomplished
through a set of date-time functions.

Any two date-time values can be compared, even if their lengths do not match.

If a date-time field supports missing values, fields that contain the missing value have a
greater value than any date-time field can have. Therefore, in order to exclude missing values
from the report output when using a GT or GE operator in a selection test, it is recommended
that you add the additional constraint field NE MISSING to the selection test:

date_time_field {GT|GE} date_time_value AND date_time_field NE MISSING

Assignments are permitted between date-time formats of equal or different lengths. Assigning
a 10-byte date-time value to an 8-byte date-time value truncates the microsecond portion
(no rounding takes place). Assigning a short value to a long one sets the low-order three
digits of the microseconds to zero.

Other operations, including arithmetic, concatenation, EDIT, and LIKE on date-time operands
are not supported. Prefix operators that work with alphanumeric fields are supported.

342 Information Builders

Creating a Date-Time Expression

Testing for Missing Date-Time ValuesExample:

Consider the DATETIM2 Master File:

FILE=DATETIM2, SUFFIX=FOC ,$
SEGNAME=DATETIME, SEGTYPE=S0 ,$
FIELD=ID, ID, USAGE = I2 ,$
FIELD=DT1, DT1, USAGE=HYYMDS, MISSING=ON,$

Field DT1 supports missing values. Consider the following request:

TABLE FILE DATETIM2
PRINT ID DT1
END

The resulting report output shows that in the instance with ID=3, the field DT1 has a missing
value:

ID DT1
-- ---
 1 2000/01/01 02:57:25
 2 1999/12/31 00:00:00
 3 .

The following request selects values of DT1 that are greater than 2000/01/01 00:00:00
and are not missing:

TABLE FILE DATETIM2
PRINT ID DT1
 WHERE DT1 NE MISSING AND DT1 GT DT(2000/01/01 00:00:00);
END

The missing value is not included in the report output:

ID DT1
-- ---
 1 2000/01/01 02:57:25

Assigning a Different Usage Format to a Date-Time ColumnExample:

Consider the following request using the VIDEOTR2 data source:

TABLE FILE VIDEOTR2
 PRINT CUSTID TRANSDATE AND COMPUTE
 DT2/HYYMDH = TRANSDATE;
 T1/HHIS = TRANSDATE;
 WHERE DATE EQ 2000
 END

The output is:

CUSTID TRANSDATE DT2 T1
------ --------- --- --
1118 2000/06/26 05:45 2000/06/26 05 05:45:00
1237 2000/02/05 03:30 2000/02/05 03 03:30:00

Creating Reports 343

8. Using Expressions

Creating a Character Expression

In this section:

Embedding a Quotation Mark in a Quote-Delimited Literal String

Concatenating Character Strings

A character expression uses alphanumeric constants, fields, concatenation operators, or
functions to derive an alphanumeric value.

Both text and alphanumeric fields can be assigned values stored in text fields or alphanumeric
expressions in TABLE COMPUTE, MODIFY COMPUTE, and DEFINE commands. If an
alphanumeric field is assigned the value of a text field that is too long for the alphanumeric
field, the value is truncated before being assigned to the alphanumeric field.

A character expression can consist of:

An alphanumeric constant (character string) enclosed in single quotation marks. For
example:

COMPUTE STATE/A2 = 'NY';

A combination of alphanumeric fields and/or constants joined by the concatenation
operator. For example:

DEFINE FILE EMPLOYEE TITLE/A19 = 'DR. ' | LAST_NAME;
END

An alphanumeric function. For example:

DEFINE FILE EMPLOYEE INITIAL/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$$');
END

A text field.

Note: Non-printable characters are not supported in an alphanumeric constant.

Embedding a Quotation Mark in a Quote-Delimited Literal String
Under certain conditions, you can use quote-delimited strings containing embedded quotation
marks. Within the string, you can use either one single quotation mark or two contiguous
single quotation marks to represent the single quotation mark. Both are interpreted as a
single quotation mark.

You can use quote-delimited strings in the following instances:

WHERE and IF criteria containing multiple quotes.

WHERE criteria containing: fieldname {IS, IS-NOT, IN, IN FILE, or NOT IN FILE}.

344 Information Builders

Creating a Character Expression

EDIT.

WHEN fieldname EQ an embedded quote in a literal.

DEFINE commands.

DEFINE attributes in Master Files.

Database Administrator (DBA) attributes in Master Files (for example, VALUE = fieldname
EQ an embedded quote in a literal).

ACCEPT=, DESCRIPTION=, TITLE= attributes in Master Files.

AS.

DECODE.

Specifying the Data Value O'BRIEN in a Quote-Delimited Literal StringExample:

The following example illustrates the use of quotation marks for the correct interpretation
of the data value O'BRIEN:

TABLE FILE VIDEOTRK
PRINT LASTNAME
WHERE LASTNAME IS 'O'BRIEN'
END

Concatenating Character Strings
You can write an expression that concatenates two or more alphanumeric constants and/or
fields into a single character string. This concatenation operator has two forms, as shown
in the following table:

DescriptionRepresentsSymbol

Preserves trailing blanks.Weak concatenation|

Moves trailing blanks to the end of a concatenated
string.

Strong concatenation||

Creating Reports 345

8. Using Expressions

Concatenating Character StringsExample:

The following example uses the EDIT function to extract the first initial from a first name. It
then uses both strong and weak concatenation to produce the last name, followed by a
comma, followed by the first initial, followed by a period:

DEFINE FILE EMPLOYEE
FIRST_INIT/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$');
NAME/A19 = LAST_NAME ||(', '| FIRST_INIT |'.');
END

TABLE FILE EMPLOYEE
PRINT NAME WHERE LAST_NAME IS 'BANNING'
END

The output is:

NAME

BANNING, J.

The request evaluates the expressions as follows:

1. The EDIT function extracts the initial J from FIRST_NAME.

2. The expression in parentheses returns the value:

, J.

3. LAST_NAME is concatenated to the string derived in step 2 to produce:

Banning, J.

While LAST_NAME has the format A15 in the EMPLOYEE Master File, strong concatenation
suppresses the trailing blanks. Regardless of the suppression or inclusion of blanks, the
resulting field name, NAME, has a length of 19 characters (A19).

346 Information Builders

Creating a Character Expression

Creating a Variable Length Character Expression

In this section:

Using Concatenation With AnV Fields

Using the EDIT Function With AnV Fields

Using CONTAINS and OMITS With AnV Fields

Using LIKE With AnV Fields

Using the EQ, NE, LT, GT, LE, and GE Operators With AnV Fields

Using the DECODE Function With AnV Fields

Using the Assignment Operator With AnV Fields

As an alphanumeric type, an AnV field can be used in arithmetic and logical expressions in
the same way that the An type is used.

An expression that contains AnV type fields can be of either the AnV or An type.

The type that results from the expression depends on the specific type of operation, as
described in subsequent sections.

Note: Because AnV fields have two bytes of overhead and there is additional processing
required to strip them, AnV format is not recommended for use in non-relational data sources.

Using Concatenation With AnV Fields
If either of the operands in a concatenation between two fields is an AnV field, variable
length alphanumeric rules are used to perform the concatenation:

The size of the concatenated string is the sum of the sizes of the operands.

For weak concatenation, the actual length of the concatenated string is the sum of the
two actual lengths of the input strings.

For strong concatenation, the actual length stored in an AnV field of the concatenated
string is the sum of the actual length of the first input string minus its number of trailing
blanks plus the actual length of the second string.

For any An field in the concatenation, the size and length are equal.

Creating Reports 347

8. Using Expressions

Using the EDIT Function With AnV Fields
The following expression results in an AnV format only when x has AnV format.

EDIT(x,mask)

The actual length of the result is the number of characters in mask other than '$'.

Note that an actual length of zero may result.

EDIT(x) can be used to convert an AnV field to an integer value when x has AnV format.

Using CONTAINS and OMITS With AnV Fields
The only difference in evaluation of the CONTAINS and OMITS operators with AnV fields
occurs when one of the operands has an actual length of zero.

In the following examples, the field Z has an actual length of zero, but X and Y do not:

ResultExpression

FALSEZ CONTAINS Y

TRUEX CONTAINS Z

TRUEZ CONTAINS Z

TRUEZ OMITS Y

FALSEX OMITS Z

FALSEZ OMITS Z

Using LIKE With AnV Fields
The only difference in evaluation of the following expression occurs when x has an actual
length of zero:

x LIKE mask ...

In the following example, the field instance Z has an actual length of zero:

Z LIKE mask ...

This expression evaluates to TRUE only when the mask consists exclusively of percent ('%')
signs.

348 Information Builders

Creating a Variable Length Character Expression

Note that no other mask can evaluate to an empty string. Even the mask in the following
expression has a length of one, and therefore the expression evaluates as FALSE:

Z LIKE ''

Using the EQ, NE, LT, GT, LE, and GE Operators With AnV Fields
As with An type fields, operations are evaluated on the assumption that the shorter operand
is padded with blanks.

Therefore, even an empty AnV field, Z, is compared as a field consisting of all blanks.

In the following examples, Z is an empty AnV field instance and X is an AnV field instance
that is not empty and contains non-blank characters:

ResultExpression

TRUEZ EQ Z
Z GE Z
Z LE Z

FALSEZ NE Z
Z LT Z
Z GT Z

FALSEZ EQ X

TRUEZ NE X

TRUEZ LT X

FALSEZ GT X

TRUEZ LE X

FALSEZ GE X

FALSEX EQ Z

TRUEX NE Z

FALSEX LT Z

TRUEX GT Z

FALSEX LE Z

Creating Reports 349

8. Using Expressions

ResultExpression

TRUEX GE Z

Using the DECODE Function With AnV Fields
DECODE alphafield (value 'result'...

The use of either an An or AnV field with DECODE causes a result of type An as long as the
result part of the value-result pairs is provided as a constant. (Constants are type An.)

Using the Assignment Operator With AnV Fields
There are three situations to consider when using the assignment operator with the AnV
format: AnV data type on the right hand side only, AnV data type on both sides, and AnV
data type on the left side only.

fld/An = AnV_type_expression;

The actual length of the evaluated expression is lost on assignment to the An field.

The size of the AnV result does not prevent assignment to a shorter An format field:

If the result of the expression has an actual length that is shorter than the length of
the field on the left side of the assignment operator, the result is padded with blanks.

If the result of the expression has an actual length that is longer than the length of
the field on the left side of the assignment operator, the result is truncated.

fld/AnV = AnV_type_expression;

The length of the result is assigned as the length of the field on the left of the assignment
operator unless it exceeds the field's declared size. In this case, the length assigned is
the declared size (n).

350 Information Builders

Creating a Variable Length Character Expression

The size of the AnV evaluation result does not prevent assignment to a shorter AnV field:

If the length of the result of the expression is shorter than the size of the field on the
left side of the assignment operator, the result is padded with blanks.

If the result of the expression has an actual length that is longer than the size of the
field on the left side of the assignment operator, the result is truncated.

fld/AnV = An_type_expression;

The length of the field on the left side of the assignment operator is assigned equal to
its size (n).

The actual length of the result is verified against the size n declared for the AnV field.
An error is generated if the result is longer than n.

Creating a Logical Expression

How to:

Write a Relational Expression

Write a Boolean Expression

Reference:

Logical Operators

A logical expression determines whether a particular condition is true. There are two kinds
of logical expressions: relational and Boolean. The entities to be compared determine the
kind of expression used:

A relational expression returns TRUE or FALSE based on a comparison of two individual
values (either field values or constants).

A Boolean expression returns TRUE or FALSE based on the outcome of two or more
relational expressions.

You can use a logical expression to assign a value to a numeric field. If the expression is
true, the field receives the value 1. If the expression is false, the field receives the value 0.

Creating Reports 351

8. Using Expressions

Logical OperatorsReference:

The following is a list of common operators used in logical expressions. For information on
relational operators and additional operators available for record selection using WHERE
and IF, see Selecting Records for Your Report on page 157.

DescriptionOperator

Returns the value TRUE if the value on the left is equal to the value on
the right.

EQ

Returns the value TRUE if the value on the left is not equal to the value
on the right.

NE

Returns the value TRUE if the value on the left is greater than or equal
to the value on the right.

GE

Returns the value TRUE if the value on the left is greater than the value
on the right.

GT

Returns the value TRUE if the value on the left is less than or equal to
the value on the right.

LE

Returns the value TRUE if the value on the left is less than the value on
the right.

LT

Returns the value TRUE if both operands are true.AND

Returns the value TRUE if either operand is true.OR

Returns the value TRUE if the operand is false.NOT

Contains the specified character strings.CONTAINS

Omits the specified character strings.OMITS

Returns the value TRUE if the field is missing .IS MISSING

Returns the value TRUE if the field is not missing.IS-NOT
MISSING

352 Information Builders

Creating a Logical Expression

How to Write a Relational ExpressionSyntax:

Any of the following are valid for a relational expression:

value {EQ|NE} value value {LE|LT} value value {GE|GT} valuecharacter_value
 {CONTAINS|OMITS} character_value

where:

value

Is a field value or constant.

character_value

Is a character string. If it contains blanks, the string must be enclosed in single quotation
marks.

How to Write a Boolean ExpressionSyntax:

Either of the following is valid for a Boolean expression:

(relational_expression) {AND|OR} (relational_expression)
NOT (logical_expression)

where:

relational_expression

Is an expression based on a comparison of two individual values (either field values or
constants).

logical_expression

Is an expression that evaluates to the value TRUE or FALSE. If the expression is true,
the field receives the value 1. If the expression is false, the field receives the value 0.
The expression must be enclosed in parentheses.

Creating a Conditional Expression

How to:

Write a Conditional Expression

A conditional expression assigns a value based on the result of a logical expression. The
assigned value can be numeric or alphanumeric.

Note: Unlike selection criteria using IF, all alphanumeric values in conditional expressions
must be enclosed in single quotation marks. For example, IF COUNTRY EQ 'ENGLAND'.

Creating Reports 353

8. Using Expressions

How to Write a Conditional ExpressionSyntax:

IF expression1 THEN expression2 [ELSE expression3]

where:

expression1

Is the expression that is evaluated to determine whether the field is assigned the value
of expression2 or of expression3.

expression2

Is an expression that results in a format compatible with the format assigned to the
field. It may be a conditional expression, in which case you must enclose it in
parentheses.

expression3

Is an expression that results in a format compatible with the format assigned to the
field. Enclosure of the expression in parentheses is optional.

ELSE

Is optional, along with expression3. However, if you do not specify an ELSE condition
and the IF condition is not met, the value is taken from the last evaluated condition.

Note that the final sorted report may display mixed values. This depends on whether a
DEFINE or a COMPUTE is used, and if a data record is evaluated before or after
aggregation.

The expressions following THEN and ELSE must result in a format that is compatible with
the format assigned to the field. Each of these expressions may itself be a conditional
expression. However, the expression following IF may not be an IF ... THEN ... ELSE expression
(for example, IF ... IF ...).

Supplying a Value With a Conditional ExpressionExample:

The following example uses a conditional expression to assign the value NONE to the field
BANK_NAME when it is missing a data value (that is, when the field has no data in the data
source):

DEFINE FILE EMPLOYEE
BANK_NAME/A20 = IF BANK_NAME EQ ' ' THEN 'NONE'
ELSE BANK_NAME;
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND BANK_NAME
BY EMP_ID BY BANK_ACCT
END

354 Information Builders

Creating a Conditional Expression

The output is:

EMP_ID BANK_ACCT CURR_SAL BANK_NAME
------ --------- -------- ---------
071382660 $11,000.00 NONE
112847612 $13,200.00 NONE
117593129 40950036 $18,480.00 STATE
119265415 $9,500.00 NONE
119329144 160633 $29,700.00 BEST BANK
123764317 819000702 $26,862.00 ASSOCIATED
126724188 $21,120.00 NONE
219984371 $18,480.00 NONE
326179357 122850108 $21,780.00 ASSOCIATED
451123478 136500120 $16,100.00 ASSOCIATED
543729165 $9,000.00 NONE
818692173 163800144 $27,062.00 BANK ASSOCIATION

Defining a True or False ConditionExample:

You can define a true or false condition and then test it to control report output. The following
example assigns the value TRUE to the field MYTEST if either of the relational expressions
in parentheses is true. It then tests the value of MYTEST:

DEFINE FILE EMPLOYEE
MYTEST= (CURR_SAL GE 11000) OR (DEPARTMENT EQ 'MIS');
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND DEPARTMENT
BY EMP_ID
IF MYTEST IS TRUE
END

The output is:

EMP_ID CURR_SAL DEPARTMENT
------ -------- ----------
071382660 $11,000.00 PRODUCTION
112847612 $13,200.00 MIS
117593129 $18,480.00 MIS
119329144 $29,700.00 PRODUCTION
123764317 $26,862.00 PRODUCTION
126724188 $21,120.00 PRODUCTION
219984371 $18,480.00 MIS
326179357 $21,780.00 MIS
451123478 $16,100.00 PRODUCTION
543729165 $9,000.00 MIS
818692173 $27,062.00 MIS

Note: Testing for a TRUE or FALSE condition is valid only with the IF command. It is not valid
with WHERE.

Creating Reports 355

8. Using Expressions

356 Information Builders

Creating a Conditional Expression

FOCUS

Customizing Tabular Reports9
Topics:

FOCUS provides a variety of formatting
options that enable you to customize
your reports. For example, you can
specify page breaks, rename report
column titles, and add subfoot text to
the bottom of pages.

Producing Headings and Footings

Creating Paging and Numbering

Suppressing Fields: SUP-PRINT or
NOPRINTNote: FOCUS formats reports

automatically using defaults based on
the formats of fields. However, you can
override these defaults to customize your
report format to suit your individual
requirements.

Reducing a Report's Width: FOLD-LINE
and OVER

Positioning Columns: IN

Separating Sections of a Report:
SKIP-LINE and UNDER-LINEIf you save your report output in HTML,

Excel 2000, PDF, or PostScript format,
you have many additional formatting
options that are described in Styling
Reports on page 491.

Controlling Column Spacing: SET
SPACES

Creating New Column Titles: AS

Customizing Column Names: SET
QUALTITLES

Column Title Justification

Customizing Reports With SET
Parameters

Conditionally Formatting Reports With
the WHEN Clause

Controlling the Display of Empty
Reports

Creating Reports 357

Producing Headings and Footings

In this section:

Limits for Headings and Footings

Report and Page Headings

Report and Page Footings

Subheads and Subfoots

Using Data in Headings and Footings

Positioning Text

Extending Heading and Footing Code to Multiple Lines

Producing a Free-Form Report

You can use a variety of headings and footings to clarify the information presented in your
reports. The following diagram illustrates the available options:

358 Information Builders

Producing Headings and Footings

Limits for Headings and Footings
The following limitations apply to report headings and footings, page headings and footings,
and sort headings and footings:

In a single report, there can be a maximum of 32K characters for all types of heading
and footing text.

The maximum number of sort headings plus sort footings in one request is 64.

The maximum limit of nested headings is 64.

If your code for a single heading or footing line is broken into multiple lines in the report
request, you can indicate that they are all a single line of heading using the <0X spot
marker. For more information, see Customizing Reports With SET Parameters on page 410.

The maximum number of objects per line in a heading or footing is 128.

For PDF and Postscript reports, the heading or footing lines must fit within the maximum
report width to be displayed properly. Also, in order for the report body to be displayed,
the number of heading or footing lines must leave room on the page for at least one
detail line (including column titles).

Report and Page Headings

How to:

Create a Report Heading

Create a Page Heading

A report heading is text that appears at the top of the first page of a report. A page heading
is text that appears at the top of every page of a report. In general, the heading is composed
of text that you supply in your report request, enclosed in double quotation marks.

Note: If the end quotation mark of the heading text is omitted, all subsequent lines of the
request are treated as part of the heading.

Creating Reports 359

9. Customizing Tabular Reports

How to Create a Report HeadingSyntax:

To create a report heading, the syntax is:

ON TABLE [PAGE-BREAK AND] SUBHEAD
"text"

where:

PAGE-BREAK

Is an optional phrase that positions the report heading on a separate page, which is
then followed by the first page of the report itself. If you do not use PAGE-BREAK, the
report heading appears on Page 1, followed immediately by the page heading and column
titles.

text

Is text that you supply between quotation marks that appears as a heading. The text
must be on a line by itself and must immediately follow the SUBHEAD command.

How to Create a Page HeadingSyntax:

To place a heading on every page of the report, the syntax is:

TABLE FILE filename
[HEADING [CENTER]]
"text"

where:

HEADING

Is optional if you place the text before the first display command; otherwise, it is required
to identify the text as a heading. The command CENTER centers the heading over the
text automatically.

text

Is the text placed within quotation marks that appears on every page. The text can be
split over multiple lines, and must begin on the line immediately following the HEADING
command.

If you supply two or more text lines between quotation marks, the lines are automatically
adjusted into pairs to provide coverage across the printed page.

To position heading text, use spot markers as described in Using Data in Headings and
Footings on page 372.

360 Information Builders

Producing Headings and Footings

Creating a Report HeadingExample:

The following request creates a report heading:

TABLE FILE EMPLOYEE
SUM GROSS
BY DEPARTMENT BY HIGHEST PAY_DATE
ON TABLE PAGE-BREAK AND SUBHEAD
"PLEASE RETURN THIS TO MARY SMITH"
END

The first two pages of output follow (only the page preceding the body of the report has the
subhead):

PAGE 1
PLEASE RETURN THIS TO MARY SMITH
PAGE 2
DEPARTMENT PAY_DATE GROSS
---------- -------- -----
MIS 82/08/31 $9,000.00
 82/07/30 $7,460.00
 82/06/30 $7,460.00
 82/05/28 $6,649.51
 82/04/30 $5,890.84
 82/03/31 $3,247.75
 82/02/26 $3,247.75
 82/01/29 $3,247.75
 81/12/31 $2,147.75
 81/11/30 $2,147.75

PRODUCTION 82/08/31 $9,523.84
 82/07/30 $7,048.84
 82/06/30 $7,048.84
 82/05/28 $7,048.84
 82/04/30 $4,959.84
 82/03/31 $4,959.84
 82/02/26 $4,959.84

Creating a Page HeadingExample:

The following request prints a heading on each page:

TABLE FILE EMPLOYEE
"ACCOUNT REPORT FOR DEPARTMENT"
PRINT CURR_SAL BY DEPARTMENT BY HIGHEST BANK_ACCT
BY EMP_ID
ON DEPARTMENT PAGE-BREAK
END

Creating Reports 361

9. Customizing Tabular Reports

This request produces the following two-page report:

PAGE 1
ACCOUNT REPORT FOR DEPARTMENT
DEPARTMENT BANK_ACCT EMP_ID CURR_SAL
---------- --------- ------ --------
MIS 163800144 818692173 $27,062.00
 122850108 326179357 $21,780.00
 40950036 117593129 $18,480.00
 112847612 $13,200.00
 219984371 $18,480.00
 543729165 $9,000.00
PAGE 2
ACCOUNT REPORT FOR DEPARTMENT
DEPARTMENT BANK_ACCT EMP_ID CURR_SAL
---------- --------- ------ --------
PRODUCTION 819000702 123764317 $26,862.00
 136500120 451123478 $16,100.00
 160633 119329144 $29,700.00
 071382660 $11,000.00
 119265415 $9,500.00
 126724188 $21,120.00

Creating a Multi-Line HeadingExample:

The following request creates a two-line report heading:

TABLE FILE PROD
" DETAIL LISTING OF AREA SALES
 DISTRIBUTION"
" FIRST QUARTER OF YEAR
 BRANCH MANAGERS"
BY PROD_CODE NOPRINT
END

The report heading across the top of each page appears as:

DETAIL LISTING OF AREA SALES DISTRIBUTION
 FIRST QUARTER OF YEAR BRANCH MANAGERS

DISTRIBUTION and BRANCH MANAGERS are on the far right of the report because of trailing
blanks in the procedure. The open and closing quote marks indicate the length of the text.
To avoid extra blanks, code <0X at the end of the line to be continued. For more information,
see Positioning Text on page 374.

362 Information Builders

Producing Headings and Footings

Report and Page Footings

How to:

Create a Report Footing

Create a Page Footing

A report footing is text that appears at the bottom of the last page of a report. A page footing
is text that appears on the bottom of every page of a report. In general, the footing is
composed of text that you can supply between quotation marks in a report request.

Note: If the ending quotation mark of the footing text is omitted, all subsequent lines of the
request are treated as part of the footing.

How to Create a Report FootingSyntax:

To place a footing on the last page of the report, the syntax is:

ON TABLE [PAGE-BREAK AND] SUBFOOT
"text"

where:

PAGE-BREAK

Is an optional phrase that positions the report footing on the last page by itself. If not
used, the report footing appears as the last line on the report.

Note: If PAGE-BREAK is specified in the BY phrase and not in the ON TABLE phrase, the
report footing appears as the last line on the last page of the report.

text

Is the text you supply in quotation marks that appears as a footing. The text begins on
the line following the keyword SUBFOOT.

How to Create a Page FootingSyntax:

To display a footing on every page of a report, the syntax is:

FOOTING [CENTER] [BOTTOM]
"text"

where:

FOOTING

Is the keyword that identifies the text as a footing.

Creating Reports 363

9. Customizing Tabular Reports

CENTER

Centers the footing automatically.

BOTTOM

Places the footing at the bottom of the page. If BOTTOM is not specified, the footing
text appears two lines below the report.

text

Is the text you place within quotation marks that appears on every page.

Creating a Page FootingExample:

The following request creates a page footing:

TABLE FILE CAR
WRITE SALES BY COUNTRY
FOOTING
"THIS IS HOW A FOOTNOTE IS ADDED TO EACH"
"PRINTED PAGE"
END

The output is:

COUNTRY SALES
------- -----
ENGLAND 12000
FRANCE 0
ITALY 30200
JAPAN 78030
W GERMANY 88190

THIS IS HOW A FOOTNOTE IS ADDED TO EACH
PRINTED PAGE

364 Information Builders

Producing Headings and Footings

Subheads and Subfoots

How to:

Create a Subhead

Create Subfoots

Reference:

Usage Notes for Creating Subfoots

A subhead is text that can be placed before the sort field values change. A subfoot is text
that can be placed after the sort field values change. You can use NEWPAGE on a subheading
or subfooting to start a new page after the subheading or before the subfooting. It separates
the subheading or subfooting from its associated data but does not separate the data from
the next subheading or prior subfooting.

In conjunction with the PAGE-BREAK command, this enables you to create a cover page for
each section of a report.

Note:

If the ending quotation mark of the subheading text is omitted, all subsequent lines of
the request are treated as part of the subheading.

If the ending quotation mark of the subfooting text is omitted, all subsequent lines of
the request are treated as part of the subfooting.

By default, FOCUS generates a blank line before a subheading or subfooting. You can
eliminate these automatic blank lines by issuing the SET DROPBLNKLINE=ON command.
For more information, see the Developing Applications manual.

How to Create a SubheadSyntax:

{ON|BY} fieldname SUBHEAD [NEWPAGE]
"text"
[WHEN expression;]

where:

fieldname

Is the sort field before which the text is inserted.

NEWPAGE

Inserts a new page after the sort heading or before the sort footing. Column titles appear
on every page. In HTML reports, blank space is added instead of a new page.

Creating Reports 365

9. Customizing Tabular Reports

text

Is the text you supply between double quotation marks that is printed following the
SUBHEAD phrase.

WHEN expression

Specifies a conditional subhead in the printing of a report, as determined by a Boolean
expression. Used with SUBHEAD, the WHEN clause must be placed on a line following
the text you enclose in double quotation marks.

Using SubheadsExample:

This request creates a subheading whenever the PROD_NAME field changes:

TABLE FILE PROD
SUM PACKAGE AND UNIT_COST
BY PROD_NAME NOPRINT BY PROD_CODE
ON PROD_NAME SUBHEAD
" SUMMARY FOR <PROD_NAME"
END

The output is:

PROD_CODE PACKAGE UNIT_COST
--------- ------- ---------
 SUMMARY FOR AMERICAN CHEESE
C7 8 OUNCES $2.19
 SUMMARY FOR BUTTER MILK
C14 32 OUNCES $1.89
 SUMMARY FOR CHEDDAR CHEESE
B19 7 OUNCES $.95
 SUMMARY FOR CHOCOLATE MILK
B20 32 OUNCES $1.79
 SUMMARY FOR HEAVY CREAM
C17 32 OUNCES $1.89
 SUMMARY FOR LARGE EGGS
E2 ONE DOZEN $.79
 SUMMARY FOR MEDIUM EGGS
E1 ONE DOZEN $.59
 SUMMARY FOR SALTED BUTTER
D15 8 OUNCES $.69
 SUMMARY FOR SOUR CREAM
C13 16 OUNCES $1.49
 SUMMARY FOR SWISS CHEESE
B17 16 OUNCES $1.65
 SUMMARY FOR WHIPPED BUTTER
D12 16 OUNCES $1.79
 SUMMARY FOR WHOLE MILK
B10 16 OUNCES $.65
B12 32 OUNCES $1.15
 SUMMARY FOR X-LARGE EGGS
E3 ONE DOZEN $.89

366 Information Builders

Producing Headings and Footings

How to Create SubfootsSyntax:

The syntax is:

{ON|BY} fieldname SUBFOOT [WITHIN] [MULTILINES] [NEWPAGE]
"text"
[WHEN expression;]

where:

fieldname

Is the field after which the text is inserted.

WITHIN

Causes the fields in the SUBFOOT to be calculated within each value of fieldname.
Without this option, a field in the SUBFOOT is taken from the last line of report output
above the subfooting.

text

Is the text you supply between double quotation marks that is printed following the
SUBFOOT phrase.

MULTILINES

Is used to suppress the SUBFOOT when there is only one line of output for the BY group.
Note that MULTI-LINES is a synonym for MULTILINES.

FOCUS also allows you to suppress grand totals using the NOTOTAL phrase as described
in Including Totals and Subtotals on page 269.

NEWPAGE

Inserts a new page after the heading or before the footing. Column titles appear on every
page. In HTML reports, blank space is added instead of a new page.

WHEN expression

Specifies a conditional subfoot in the printing of a report, as determined by a Boolean
expression. Used with SUBFOOT, WHEN must be placed on the line following the text
you enclose in double quotation marks.

Usage Notes for Creating SubfootsReference:

When a SUBFOOT follows a RECAP, the default display of the RECAP values is suppressed,
as it is assumed that the SUBFOOT is being used to display the RECAP.

Creating Reports 367

9. Customizing Tabular Reports

A SUBFOOT can also be used as a complete report request without any display command
if data is embedded in the text, because fields in the text become implicit display fields.
The default display command is SUM. For more information, see Using Data in Headings
and Footings on page 372.

If the report request contains the command SUM and the display field is specified in a
subfoot, the value is summed. Use direct operators with fields specified in subfootings.

SUBFOOT WITHIN is useful where a prefixed field within a sort break would result in a
single value (for example, AVE., MIN., MAX). Use of PCT. or APCT. displays only the last
value from the sort group.

SUBFOOT WITHIN "<prefix.fieldname "does not result in the same value as SUBTOTAL
prefix. The SUBFOOT WITHIN creates a display field that operates on the original input
records. SUBTOTAL with a prefix operates on the internal matrix (so AVE. is the average
of the SUMS or, if a display field had the prefix AVE., the average of the averages).
SUBFOOT WITHIN "<AVE.field " generates av overall average.

Prefix operators are not supported on alphanumeric fields in a WITHIN phrase.

ST. is not supported in a SUBFOOT WITHIN phrase.

Using SubfootsExample:

This example creates a subfooting whenever the DEPARTMENT value changes:

TABLE FILE EMPLOYEE
SUM DED_AMT AND GROSS
BY DEPARTMENT BY HIGHEST PAY_DATE
ON DEPARTMENT RECAP
DEPAR_NET/D8.2=GROSS-DED_AMT;
ON DEPARTMENT SUBFOOT
"DEPARTMENT NET = <DEPAR_NET"
END

368 Information Builders

Producing Headings and Footings

The output is:

DEPARTMENT PAY_DATE DED_AMT GROSS
---------- -------- ------- -----
MIS 82/08/31 $4,575.72 $9,000.00
 82/07/30 $4,117.03 $7,460.00
 82/06/30 $4,117.03 $7,460.00
 82/05/28 $3,954.35 $6,649.50
 82/04/30 $3,386.73 $5,890.84
 82/03/31 $1,740.89 $3,247.75
 82/02/26 $1,740.89 $3,247.75
 82/01/29 $1,740.89 $3,247.75
 81/12/31 $1,406.79 $2,147.75
 81/11/30 $1,406.79 $2,147.75
DEPARTMENT NET = 22,311.98
PRODUCTION 82/08/31 $4,911.12 $9,523.84
 82/07/30 $3,483.88 $7,048.84
 82/06/30 $3,483.88 $7,048.84
 82/05/28 $3,483.88 $7,048.84
 82/04/30 $2,061.69 $4,959.84
 82/03/31 $2,061.69 $4,959.84
 82/02/26 $2,061.69 $4,959.84
 82/01/29 $1,560.09 $3,705.84
 81/12/31 $141.66 $833.33
 81/11/30 $141.66 $833.33
DEPARTMENT NET = 27,531.14

Creating Reports 369

9. Customizing Tabular Reports

Generating a Subfoot Within a Sort GroupExample:

The following request displays the average and minimum salary values first within department,
then within department and job class, and last within department, job calss and employee
ID. Subfootings are generated on the department and jobcode sort fields. The DEFINE FILE
command created two additional fields with the SALARY value, one for each sort break:

DEFINE FILE EMPDATA
SALDEPT/D6 WITH SALARY = SALARY;
SALDEPTJOB/D6 WITH SALARY = SALARY;
DEPT/A4 WITH SALARY = EDIT(DEPT, '9999');
JOB/A8 WITH SALARY = JOBCLASS;
END
TABLE FILE EMPDATA
SUM AVE.SALDEPT AS 'DEPT,AVE'
 MIN.SALDEPT AS 'DEPT,MIN'
 BY DEPT
SUM AVE.SALDEPTJOB AS 'DEPT/JOB, AVE' IN 32
 MIN.SALDEPTJOB AS 'DEPT/JOB, MIN' IN 42
BY DEPT
BY JOB
PRINT AVE.SALARY/D6 AS 'AVE' IN 52
 MIN.SALARY/D6 AS 'MIN' IN 61
BY DEPT
BY JOB
BY PIN NOPRINT
ON DEPT SUBFOOT
"******************DEPARTMENT <DEPT SUBFOOT**************************"
"NOT WITHIN: AVE=<AVE.SALARY MIN=<MIN.SALARY "
ON DEPT SUBFOOT WITHIN
" WITHIN: AVE=<AVE.SALARY MIN=<MIN.SALARY "
"***"
ON JOB SUBFOOT
"</1 ***************DEPARTMENT <DEPT / JOB <JOB SUBFOOT***************"
"NOT WITHIN: AVE=<AVE.SALARY MIN=<MIN.SALARY "
ON JOB SUBFOOT WITHIN
" WITHIN: AVE=<AVE.SALARY MIN=<MIN.SALARY "
"*** </1"
 WHERE DEPT EQ 'MARK'
 WHERE JOBCLASS EQ '257PSB' OR '257PTB'
END

370 Information Builders

Producing Headings and Footings

The report output shows that each SUBFOOT without the WITHIN phrase uses the report line
above the subfooting in the calculations. The SUBFOOT within both department and jobcode
uses the calculations that were specified in the second SUM command (by department by
jobcode), and the SUBFOOT within department only uses the calculations that were specified
in the first SUM command (by department):

 DEPT DEPT DEPT/JOB DEPT/JOB
DEPT AVE MIN JOB AVE MIN AVE MIN
---- ---- ---- --- -------- -------- --- ---
MARK 56,757 50,500 257PSB 55,860 50,500 55,500 55,500
 62,500 62,500
 50,500 50,500
 52,000 52,000
 58,800 58,800

***************DEPARTMENT MARK / JOB 257PSB SUBFOOT***************
NOT WITHIN: AVE= $58,800.00 MIN= $58,800.00
 WITHIN: AVE= $55,860.00 MIN= $50,500.00

 257PTB 59,000 55,500 62,500 62,500
 55,500 55,500

***************DEPARTMENT MARK / JOB 257PTB SUBFOOT***************
NOT WITHIN: AVE= $55,500.00 MIN= $55,500.00
 WITHIN: AVE= $59,000.00 MIN= $55,500.00

******************DEPARTMENT MARK SUBFOOT**************************
NOT WITHIN: AVE= $55,500.00 MIN= $55,500.00
 WITHIN: AVE= $56,757.14 MIN= $50,500.00

Creating a Cover Page for Each Sort Group in a ReportExample:

The following request prints the subheading "SUM OF PRICES AND QUANTITIES FOR THE
region REGION" and then starts a new page containing the data for that region. The PAGE-
BREAK command starts a new page after printing this data, prior to the subheading for the
subsequent region:

TABLE FILE CENTORD
SUM LINEPRICE AS ''
QUANTITY AS ''
BY REGION NOPRINT PAGE-BREAK
BY STATE AS ''
ON REGION SUBHEAD NEWPAGE
"SUM OF PRICES AND QUANTITIES FOR THE <REGION REGION"
END

Creating Reports 371

9. Customizing Tabular Reports

The first few pages of output follow:

PAGE 1

SUM OF PRICES AND QUANTITIES FOR THE EAST REGION

PAGE 2

CT $16,238,158.37 65,979
DC $70,928,546.26 274,714
DE $2,500,849.39 10,226
MA $34,010,314.29 131,956
MD $24,978,362.10 94,827
NH $4,985,236.56 20,752
NJ $38,906,712.15 154,974
NY $41,667,939.52 171,742
PA $27,830,850.54 104,456
RI $821,994.05 3,250
VT $2,751,969.47 10,631

PAGE 3

SUM OF PRICES AND QUANTITIES FOR THE NORTH REGION

PAGE 4

IA $2,469,227.24 10,068
IL $34,444,984.60 134,351
IN $12,477,236.78 50,124
KS $2,136,103.34 7,870
MI $47,979,137.95 191,671
MN $28,162,612.99 114,687
NA $1,027,220.04 3,040
OH $25,681,832.51 102,089
ON $12,699,111.42 49,142
WI $11,283,071.47 44,157

Note that without the PAGE-BREAK command, the subheading for each new region prints at
the bottom of the page for the prior region's data.

Using Data in Headings and Footings

How to:

Insert Data in Headings and Footings

Reference:

Usage Notes for Data in Headings and Footings

You can embed the values of fields in headings, subheads, subfoots, and footings.

372 Information Builders

Producing Headings and Footings

How to Insert Data in Headings and FootingsSyntax:

To put a value in one of these titles, use the following syntax:

<fieldname
<fieldname>

where:

<fieldname

Places the data value in the heading or footing, and suppresses trailing blanks.

<fieldname>

Places the data value in the heading or footing, and retains trailing blanks.

Usage Notes for Data in Headings and FootingsReference:

Trailing blanks in alphanumeric fields may be omitted by using only the opening < character
for data in headings. For example, if AREA is a 16-character alphanumeric field, the line
is expanded by 16 characters at the point of substitution of the retrieved value. If only
the opening character is used, only the non-blank characters of the particular value are
substituted. For example, if <AREA retrieves the value of EAST, only four characters plus
one leading blank are inserted in the line, rather than a full 16 characters which the data
value could contain.

A SUBFOOT can be used as a complete report request without any display command if
data is embedded in the text, because fields in the text become implicit display fields.

You can place page numbers in headings and footings using TABPAGENO (see Inserting
Page Numbers: TABPAGENO on page 9-463).

Fields in headings and footings are evaluated as if they were objects of the first verb.
Fields in subheads and subfoots are evaluated as part of the first verb in which they are
referenced. If a field is not referenced, it is evaluated as part of the last verb.

Text fields (FORMAT=TXnn) can be embedded in a heading or footing.

Text field values may display on multiple lines. The output is aligned vertically so that
the position of the field on the initial line is maintained on the following lines.

The number of characters in the TX format specification determines the number of
spaces per line for the field in the heading or footing.

HEADING and FOOTING lines can contain multiple TX fields. SUBHEAD and SUBFOOT
lines can contain at most one.

You cannot embed TX fields in FML free-text lines.

Creating Reports 373

9. Customizing Tabular Reports

Using Data in a Heading and FootingExample:

This request displays the DEPARTMENT field in the heading and footing:

TABLE FILE EMPLOYEE
"<DEPARTMENT>: BANK, EMPLOYEES AND SALARIES </1"
PRINT CURR_SAL
BY DEPARTMENT NOPRINT BY BANK_ACCT
BY LAST_NAME BY FIRST_NAME
ON DEPARTMENT PAGE-BREAK
FOOTING
"<DEPARTMENT EMPLOYEES WITH ELECTRONIC TRANSFER ACCOUNTS"
END

The output is:

PAGE 1

MIS : BANK, EMPLOYEES AND SALARIES

BANK_ACCT LAST_NAME FIRST_NAME CURR_SAL
--------- --------- ---------- --------
 GREENSPAN MARY $9,000.00
 MCCOY JOHN $18,480.00
 SMITH MARY $13,200.00
 40950036 JONES DIANE $18,480.00
122850108 BLACKWOOD ROSEMARIE $21,780.00
163800144 CROSS BARBARA $27,062.00

MIS EMPLOYEES WITH ELECTRONIC TRANSFER ACCOUNTS
PAGE 2

PRODUCTION : BANK, EMPLOYEES AND SALARIES

BANK_ACCT LAST_NAME FIRST_NAME CURR_SAL
--------- --------- ---------- --------
 ROMANS ANTHONY $21,120.00
 SMITH RICHARD $9,500.00
 STEVENS ALFRED $11,000.00
 160633 BANNING JOHN $29,700.00
136500120 MCKNIGHT ROGER $16,100.00
819000702 IRVING JOAN $26,862.00

PRODUCTION EMPLOYEES WITH ELECTRONIC TRANSFER ACCOUNTS

Positioning Text
The positioning of text and data in headings, footings, subheads, and subfoots can be
controlled by a spot marker, which identifies the column where the text should begin. A spot
marker consists of a left caret (<) followed by a number indicating the absolute or relative
column position. The right caret (>) is optional, and can make the spot marker clearer to a
reader.

374 Information Builders

Producing Headings and Footings

The various ways spot markers can be used are illustrated in the chart below:

UsageExampleMarker

The next character starts in column 50.<50 <n or <n>

The next character starts four columns from the last
non-blank character.

<+4 <+n or <+n>

The next character starts one column to the left of the
last character and suppresses or writes over all or part
of a field.

<-1 <-n or <-n>

Skip two lines.</2 </n or </n>

Positions the next character immediately to the right of
the last character (skip zero columns). This is used when
you have more than two lines between the double
quotation marks in a stored procedure that make up a
single line of heading, subhead, footing, or subfoot
display. No spaces are inserted between the spot marker
and the start of a continuation line.

<0X<0X or <0X>

Note: If you place a skip line spot marker on a line by itself, it skips one line more than you
asked for. To avoid this, put the skip line marker on the same line with additional text from
the report. In addition, each field needs one space for field attributes; if a field placed with
a spot marker overlaps an existing field, unpredictable results may occur.

Positioning TextExample:

To place a character in a specific column:

"<50 SUMMARY REPORT"

The letter S in SUMMARY starts in Position 50 of the line.

To place a substituted value in a specific column:

"<15 COST OF VEHICLE IS <40 <RCOST>"
"<10 <DIVISION <30 <AREA <50 <DATE"

To add spaces to the right of the last non-blank character:

"DAILY REPORT <DATE <+5 <LOCATION <+5 <PRODUCT"

Creating Reports 375

9. Customizing Tabular Reports

To move to the left of the last non-blank character:

"<60 CONFIDENTIAL <-40 <FIRST_NAME"

Skipping backward may cover other text on a line. This may be useful in some cases,
but in general should be avoided.

To show four lines of heading text between double quotation marks:

"THIS HEADING <0X
SHOULD APPEAR <0X
ON ONE <0X
LINE"

The above produces the line:

THIS HEADING SHOULD APPEAR ON ONE LINE

To position a long line:

"<20 DETAIL REPORT WITH LOTS OF TEXT ON ONE LINE
<100 EVEN THOUGH IT IS ON TWO LINES IN THE REQUEST"

To skip multiple lines:

"</4 THIS IS ON THE FIFTH LINE DOWN"

Extending Heading and Footing Code to Multiple Lines

How to:

Extend Heading and Footing Code to Multiple Lines

A single line heading or footing code, between double quotation marks, can be a maximum
of 32K characters. However, in some editors the maximum length of a line of code in a
procedure is 80 characters. In cases like this, you can use the <0X spot marker to continue
your heading onto the next line. The heading or footing content and spacing appears exactly
as if typed on a single line.

Even if you do not need to extend your code beyond the 80-character line limit, this technique
is convenient, since shorter lines may be easier to read on screen and to print on printers.

How to Extend Heading and Footing Code to Multiple LinesProcedure:

To extend the length of a single-line heading or footing beyond 80 characters:

1. Begin the heading or footing with double quotation marks.

376 Information Builders

Producing Headings and Footings

2. Split the heading or footing content into multiple lines of up to 76 characters each, using
the <0X spot marker at any point up to the 76th character to continue your heading onto
the next line. (The four remaining spaces are required for the spot marker itself, and a
blank space preceding it.)

3. Place the closing double quotation marks at the end of the final line of heading or footing
code.

Extending Heading and Footing Code to Multiple LinesExample:

This request creates a sort heading coded on two lines. The <0X spot marker positions the
first character on the continuation line immediately to the right of the last character on the
previous line. No spaces are inserted between the spot marker and the start of a continuation
line.

SET PAGE-NUM = OFF
JOIN STORE_CODE IN CENTCOMP TO STORE_CODE IN CENTORD
TABLE FILE CENTCOMP
HEADING
"Century Corporation Orders Report"
PRINT PROD_NUM QUANTITY LINEPRICE
BY STORE_CODE NOPRINT
BY ORDER_NUM
ON STORE_CODE SUBHEAD
"Century Corporation orders for store <STORENAME <0X
(store # <STORE_CODE|) <0X in <STATE|."
END

The partial output is:

 Century Corporation Orders Report
 Order Product Line
 Number: Number#: Quantity: Total
 ------- -------- --------- -----
 Century Corporation orders for store Audio Expert (store # 1003CA) in CA.
 48108 1006 90 $29,310.78
 1008 90 $13,368.96
 1020 90 $25,033.89
 1032 290 $20,481.38
 1034 290 $114,618.37
 Century Corporation orders for store Audio Expert (store # 1003CO) in CO.
 54095 1006 12 $3,645.42
 1008 12 $1,926.35
 1020 12 $3,314.28
 1032 211 $15,983.61
 1034 211 $87,868.51

Tip: Although it is demonstrated here for a sort heading, you can use this technique with
any heading or footing line.

Creating Reports 377

9. Customizing Tabular Reports

Using Data in a HeadingExample:

The following example lists the employee's name, department, job description, and skill
category in the heading:

TABLE FILE EMPLOYEE
"EMPLOYEE NAME <FIRST_NAME <LAST_NAME"
"CURRENT DEPARTMENT <DEPARTMENT"
"JOB TITLE <JOB_DESC"
"**********************************"
"SKILL CATEGORY <SKILLS"
"**********************************"
" "
WHERE EMP_ID IS '112847612'
END

The output is:

EMPLOYEE NAME MARY SMITH
CURRENT DEPARTMENT MIS
JOB TITLE FILE QUALITY

SKILL CATEGORY FIQU

Using Direct Operators in Headings and FootingsExample:

You can use any prefix operator in a heading or footing to perform specific operations. This
example prints the maximum, minimum, average, and total units sold:

TABLE FILE SALES
"MOST UNITS SOLD WERE <MAX.UNIT_SOLD"
"LEAST UNITS SOLD WERE <MIN.UNIT_SOLD"
"AVERAGE UNITS SOLD WERE <AVE.UNIT_SOLD"
"TOTAL UNITS SOLD WERE <TOT.UNIT_SOLD"
END

The output is:

PAGE 1

MOST UNITS SOLD WERE 80
LEAST UNITS SOLD WERE 12
AVERAGE UNITS SOLD WERE 35
TOTAL UNITS SOLD WERE 645

378 Information Builders

Producing Headings and Footings

This request prints the COUNTRY field, count of models, and average retail cost in a subfoot
each time the country changes:

TABLE FILE CAR
BY COUNTRY NOPRINT SUBFOOT
"NUMBER OF MODELS IN COUNTRY <COUNTRY = <CNT.MODEL <0X
WITH AVERAGE COST OF <AVE.RCOST "
END

The output is:

NUMBER OF MODELS IN COUNTRY ENGLAND = 4 WITH AVERAGE COST OF 11,330

NUMBER OF MODELS IN COUNTRY FRANCE = 1 WITH AVERAGE COST OF 5,610

NUMBER OF MODELS IN COUNTRY ITALY = 4 WITH AVERAGE COST OF 12,766

NUMBER OF MODELS IN COUNTRY JAPAN = 2 WITH AVERAGE COST OF 3,239

NUMBER OF MODELS IN COUNTRY W GERMANY = 7 WITH AVERAGE COST OF 9,247

This request prints the totals of units sold, returns, and actual sales:

DEFINE FILE SALES
ACTUAL_SALES/D8.2 = UNIT_SOLD-RETURNS;
%SALES/F5.1 = 100*ACTUAL_SALES/UNIT_SOLD;
END

TABLE FILE SALES
"SUMMARY OF ACTUAL SALES"
"UNITS SOLD <TOT.UNIT_SOLD"
"RETURNS <TOT.RETURNS"
" =============="
"TOTAL SOLD <TOT.ACTUAL_SALES"
" "
"BREAKDOWN BY PRODUCT"
PRINT UNIT_SOLD AND RETURNS AND ACTUAL_SALES
BY PROD_CODE
END

The following shows the beginning of the output:

SUMMARY OF ACTUAL SALES
UNITS SOLD 645
RETURNS 58
 ==============
TOTAL SOLD 587.00

BREAKDOWN BY PRODUCT
PROD_CODE UNIT_SOLD RETURNS ACTUAL_SALES
--------- --------- ------- ------------
B10 60 10 50.00
 30 2 28.00
 13 1 12.00
B12 40 3 37.00

Creating Reports 379

9. Customizing Tabular Reports

The following special operators are specifically for use in subfootings:

ST.fieldname

Produces a subtotal value of the specified field at a sort break in the report.

CT.fieldname

Produces a cumulative total of the specified field.

Producing a Free-Form Report
Report requests do not have to produce a tabular display, but may consist of only the heading,
as long as the heading has a data field referenced in it. If the request has no display
command but there is a data field embedded in the heading, FOCUS assumes that this is
a heading-only request and does not print the body of the report. Any data fields referenced
in the heading are treated as if they were display fields. Their values at the time the heading
is printed are what they would have been had they been mentioned as in a display command.
Free-form reports are described in detail in Creating a Free-Form Report on page 1009.

Creating Paging and Numbering

In this section:

Specifying a Page Break: PAGE-BREAK

Inserting Page Numbers: TABPAGENO

Controlling Report Page Numbering

Suppressing Page Numbers: SET PAGE

Preventing an Undesirable Split: NOSPLIT

The appearance of your report can be enhanced by controlling paging and page numbering.
You can:

Specify a page break: PAGE-BREAK.

Insert page numbers: TABPAGENO.

Specify the number of the first page, and continue page numbering across multiple
reports: FOCFIRSTPAGE and FOCNEXTPAGE.

Suppress page numbers: SET PAGE.

Prevent an undesirable split: NOSPLIT.

380 Information Builders

Creating Paging and Numbering

Specifying a Page Break: PAGE-BREAK

How to:

Specify a Page Break

Reference:

Usage Notes for Page Breaks

Use the PAGE-BREAK option to start a new page each time the specified sort field value
changes, or to prevent information that should be grouped together from being presented
over more than one page.

To specify a page break, use PAGE-BREAK in either an ON phrase or BY phrase immediately
after the sort field on which you want to break the page. Put the PAGE-BREAK command on
the lowest-level sort field at which the page break is to occur. You can also use PAGE-BREAK
to:

Reset the report page to 1 at specified points (REPAGE).

Specify conditional page breaks in the printing of a report (with WHEN).

How to Specify a Page BreakSyntax:

The syntax is:

{ON|BY} fieldname PAGE-BREAK [REPAGE][WHEN expression;]

where:

fieldname

Is a sort field. A change in the sort field value causes a page break.

REPAGE

Resets the page number to 1 at the sort break or, if WHEN is used, whenever the
conditions in the WHEN clause are met.

WHEN expression

Specifies conditional page breaks in the printing of a report, as determined by a Boolean
expression (see Conditionally Formatting Reports With the WHEN Clause on page 411).

Usage Notes for Page BreaksReference:

Page headings and column titles appear at the top of each new page.

Page breaks automatically occur whenever a higher-level sort field changes.

Creating Reports 381

9. Customizing Tabular Reports

PAGE-BREAK is ignored when report output is stored in HOLD, SAVE, or SAVB files (see
Saving and Reusing Your Report Output on page 421.

When the request has a PAGE-BREAK, the GRANDTOTAL is on a page by itself.

Specifying a Page BreakExample:

TABLE FILE EMPLOYEE
PRINT EMP_ID
BY SALARY IN-GROUPS-OF 5000
BY PCT_INC BY DAT_INC
ON SALARY PAGE-BREAK
END

The first two pages of this report display as:

PAGE 1

 SALARY PCT_INC DAT_INC EMP_ID
 ------ ------- ------- ------
 $5,000.00 .00 82/01/04 119265415
 82/04/01 543729165
 .04 82/06/11 543729165
 .05 82/05/14 119265415
PAGE 2

 SALARY PCT_INC DAT_INC EMP_ID
 ------ ------- ------- ------
 $10,000.00 .10 82/01/01 071382660
 112847612
 .12 81/01/01 071382660

Inserting Page Numbers: TABPAGENO
By default, FOCUS reserves the first two lines of each report page: the first line contains
the page number at the left margin—that is, in the top-left corner of the page—and the
following line is blank. You can change the position of the page number with the TABPAGENO
system variable.

TABPAGENO contains the page number of the current page and acts like a field name.
Therefore, it can be positioned in a heading or footing (or subhead/subfoot). The default
page number in the top left-hand corner is automatically suppressed when this variable is
used.

Note: In a styled report, you can also create numbering of the form Page x of y using the
TABLASTPAGE variable. For more information, see Styling Reports on page 491.

382 Information Builders

Creating Paging and Numbering

Inserting Page NumbersExample:

This request

TABLE FILE PROD
"<TABPAGENO"
PRINT PACKAGE AND UNIT_COST
BY PROD_NAME BY PROD_CODE
ON PROD_NAME PAGE-BREAK
END

creates the following report (of which the first two pages are shown):

 1
PROD_NAME PROD_CODE PACKAGE UNIT_COST
--------- --------- ------- ---------
AMERICAN CHEESE C7 8 OUNCES $2.19
 2
PROD_NAME PROD_CODE PACKAGE UNIT_COST
--------- --------- ------- ---------
BUTTER MILK C14 32 OUNCES $1.89

Note that FOCUS continues to reserve the top two lines of every report page.

Controlling Report Page Numbering

How to:

Set the First Page Number for a Report

The SET FOCFIRSTPAGE command enables you to designate the first page number on a
report. You can set FOCFIRSTPAGE to a specific number or the value of a Dialogue Manager
variable. The &FOCNEXTPAGE variable enables you to establish consecutive page numbering
across multiple reports.

When a report is processed, the variable &FOCNEXTPAGE is set to the number following the
last page number in the report. This value can then be used as the first page number in a
subsequent report, making the report output from multiple requests more useful and readable.

Consecutive page numbering can span multiple -INCLUDE commands.

If TABPAGENO is used in a request with FOCFIRSTPAGE, it correctly reflects the page number
set by FOCFIRSTPAGE.

How to Set the First Page Number for a ReportSyntax:

At the command line, in a FOCEXEC, or in a FOCUS-supported profile:

SET FOCFIRSTPAGE = {n|&var}

Creating Reports 383

9. Customizing Tabular Reports

In a TABLE request:

ON TABLE SET FOCFIRSTPAGE {n|&var}

where:

n

Is the one- to six-digit number to be assigned to the first page of report output. The
default value is 1.

&var

Is a Dialogue Manager variable whose value is used as the first page number of the
report. &FOCNEXTPAGE is a system variable whose value is one greater than the last
page of the prior report.

Setting the Number of the First Page of a ReportExample:

This example runs two report requests, each of which uses TABPAGENO in its heading:

The first report displays a list of movies.

The second report displays movies with specific ratings. The SET FOCFIRSTPAGE command
prior to the second report causes it to start with the next consecutive page number after
the end of the first report.

384 Information Builders

Creating Paging and Numbering

The following procedure contains both report requests:

TABLE FILE MOVIES
HEADING
"MOVIES BY CATEGORY AND DIRECTOR: PAGE <TABPAGENO "
" "
PRINT RATING TITLE
BY CATEGORY BY DIRECTOR
WHERE CATEGORY EQ 'ACTION' OR 'MUSICALS' OR 'COMEDY' OR 'CHILDREN'
WHERE DIRECTOR NE ' '
WHERE RATING NE 'NR'
END

-RUN
SET FOCFIRSTPAGE=&FOCNEXTPAGE

TABLE FILE MOVIES
HEADING
"MOVIES APPROPRIATE FOR CHILDREN: PAGE <TABPAGENO "
" "
PRINT TITLE
BY CATEGORY BY DIRECTOR BY RATING
WHERE CATEGORY EQ 'ACTION' OR 'MUSICALS' OR 'COMEDY' OR 'CHILDREN'
WHERE DIRECTOR NE ' '
WHERE RATING EQ 'G' OR RATING CONTAINS 'PG'
END

Creating Reports 385

9. Customizing Tabular Reports

The first report has pages 1 and 2. The output is:

MOVIES BY CATEGORY AND DIRECTOR: PAGE 1

CATEGORY DIRECTOR RATING TITLE
-------- -------- ------ -----
ACTION MCDONALD P. R RAMBO III
 SCOTT T. PG TOP GUN
 SPIELBERG S. PG JAWS
 VERHOVEN P. R ROBOCOP
 R TOTAL RECALL
CHILDREN BARTON C. G SHAGGY DOG, THE
 DISNEY W. G BAMBI
 GEROMINI G ALICE IN WONDERLA
COMEDY ABRAHAMS J. PG AIRPLANE
 ALLEN W. PG ANNIE HALL
 BROOKS J.L. R BROADCAST NEWS
 HALLSTROM L. PG13 MY LIFE AS A DOG
 MARSHALL P. PG BIG
 ZEMECKIS R. PG BACK TO THE FUTUR
MUSICALS ATTENBOROUGH R. PG13 CHORUS LINE, A
 FOSSE B. PG CABARET

MOVIES BY CATEGORY AND DIRECTOR: PAGE 2

CATEGORY DIRECTOR RATING TITLE
-------- -------- ------ -----
MUSICALS FOSSE B. R ALL THAT JAZZ
 JEWISON N. G FIDDLER ON THE ROOF

The second report starts on page 3. The output is:

MOVIES APPROPRIATE FOR CHILDREN: PAGE 3

CATEGORY DIRECTOR RATING TITLE
-------- -------- ------ -----
ACTION SCOTT T. PG TOP GUN
 SPIELBERG S. PG JAWS
CHILDREN BARTON C. G SHAGGY DOG, THE
 DISNEY W. G BAMBI
 GEROMINI G ALICE IN WONDERLAND
COMEDY ABRAHAMS J. PG AIRPLANE
 ALLEN W. PG ANNIE HALL
 HALLSTROM L. PG13 MY LIFE AS A DOG
 MARSHALL P. PG BIG
 ZEMECKIS R. PG BACK TO THE FUTURE
MUSICALS ATTENBOROUGH R. PG13 CHORUS LINE, A
 FOSSE B. PG CABARET
 JEWISON N. G FIDDLER ON THE ROOF

386 Information Builders

Creating Paging and Numbering

Suppressing Page Numbers: SET PAGE

How to:

Suppress Page Numbers

Automatic page numbering can also be suppressed with the SET PAGE command.

How to Suppress Page NumbersSyntax:

To suppress page numbering, the syntax is:

SET PAGE = {OFF|NOPAGE|TOP}

where:

OFF

Suppresses automatic page numbering. You can still use the variable TABPAGENO as
described in Inserting Page Numbers: TABPAGENO on page 382. Note that FOCUS reserves
the top two lines of every page.

NOPAGE

Suppresses all page indicators and makes the first two lines of each report page available
for your use. NOPAGE does not issue page ejects; they are issued if you use SET
PAGE=OFF.

TOP

Omits the line at the top of each page of the report output for the page number and the
blank line that follows it. The first line of the report output contains the heading, if one
is specified, or the column titles, if there is no heading.

Preventing an Undesirable Split: NOSPLIT

How to:

Prevent an Undesirable Split

Reference:

Usage Notes for Preventing an Undesirable Split

Page breaks sometimes occur where report information has been logically grouped by sort
field(s), causing one or two lines to appear by themselves on the next page or screen. To
prevent this, use NOSPLIT in either an ON phrase, or immediately after the first reference
to the sort field in a BY phrase.

Creating Reports 387

9. Customizing Tabular Reports

How to Prevent an Undesirable SplitSyntax:

{ON|BY} fieldname NOSPLIT

where:

fieldname

Is the name of the sort field for which the sort groups are kept together on the same
page.

Whenever the value of the specified field changes, FOCUS determines if the total number
of lines related to the new value can fit on the current page. If they cannot, the page breaks
and the group of lines appears on the next page.

Usage Notes for Preventing an Undesirable SplitReference:

Only one NOSPLIT option is allowed per report. If a PAGE-BREAK option also exists in the
request, it must relate to a higher-level sort field; otherwise, NOSPLIT is ignored.

Subtotals, footings, subheads, and subfoots are placed on the same page as the detail
lines; headings are placed on the new page.

NOSPLIT is ignored when report output is stored in HOLD, SAVE, or SAVB files (see Saving
and Reusing Your Report Output on page 421.

NOSPLIT is not compatible with the TABLEF command, and produces an FOC037 error
message.

Preventing an Undesirable SplitExample:

TABLE FILE EMPLOYEE
PRINT DED_CODE AND DED_AMT
BY PAY_DATE BY LAST_NAME
ON LAST_NAME NOSPLIT
END

388 Information Builders

Creating Paging and Numbering

Depending upon how many lines your output device is set to, the first two pages of the
previous request might display as:

PAGE 1

PAY_DATE LAST_NAME DED_CODE DED_AMT
-------- --------- -------- -------
81/11/30 CROSS CITY $7.52
 FED $638.96
 FICA $526.20
 HLTH $32.22
 LIFE $19.33
 SAVE $77.32
 STAT $105.24
 STEVENS CITY $.83
 FED $70.83
 FICA $58.33
 STAT $11.67
PAGE 2

PAY_DATE LAST_NAME DED_CODE DED_AMT
-------- --------- -------- -------
81/12/31 CROSS CITY $7.52
 FED $638.96
 FICA $526.20
 HLTH $32.22
 LIFE $19.33
 SAVE $77.32
 STAT $105.24
 STEVENS CITY $.83
 FED $70.83
 FICA $58.33
 STAT $11.67

Creating Reports 389

9. Customizing Tabular Reports

Here are the first two pages without NOSPLIT:

PAGE 1

PAY_DATE LAST_NAME DED_CODE DED_AMT
-------- --------- -------- -------
81/11/30 CROSS CITY $7.52
 FED $638.96
 FICA $526.20
 HLTH $32.22
 LIFE $19.33
 SAVE $77.32
 STAT $105.24
 STEVENS CITY $.83
 FED $70.83
 FICA $58.33
 STAT $11.67
81/12/31 CROSS CITY $7.52
 FED $638.96
 FICA $526.20
 HLTH $32.22
 LIFE $19.33
 SAVE $77.32
PAGE 2

PAY_DATE LAST_NAME DED_CODE DED_AMT
-------- --------- -------- -------
81/12/31 CROSS STAT $105.24
 STEVENS CITY $.83
 FED $70.83
 FICA $58.33
 STAT $11.67
82/01/29 CROSS CITY $7.52
 FED $638.96
 FICA $526.20
 HLTH $32.22
 LIFE $19.33
 SAVE $77.32
 STAT $105.24
 IRVING CITY $6.10
 FED $518.92
 FICA $427.35
 HLTH $50.87
 LIFE $30.52

The report without NOSPLIT has an undesirable split for Cross on Page 2, whereas the report
using NOSPLIT does not.

390 Information Builders

Creating Paging and Numbering

Suppressing Fields: SUP-PRINT or NOPRINT

How to:

Suppress Fields

Reference:

Usage Notes for Suppressing Fields

You can create reports that do not display the values or titles of fields, but only use those
fields to produce specific effects. FOCUS provides options to suppress the printing of field
values: NOPRINT and SUP-PRINT.

How to Suppress FieldsSyntax:

display fieldname {SUP-PRINT|NOPRINT}
{ON|BY} fieldname {SUP-PRINT|NOPRINT}

where:

display

Is any display command.

fieldname

Is a sort field or display field. The values of the field may be used, but they are not
displayed.

Usage Notes for Suppressing FieldsReference:

If you put a NOPRINT or SUP-PRINT phrase in a computed field, you must then repeat
AND COMPUTE before the next computed field.

If you use the NOPRINT option with a BY field and create a HOLD file, the BY field is
excluded from the file. For example, a request that includes the phrase

BY DEPARTMENT NOPRINT

results in a HOLD file that does not contain the DEPARTMENT field.

Suppressing FieldsExample:

To print a list of employee names in alphabetical order, if you simply use the request

TABLE FILE EMPLOYEE
PRINT LAST_NAME
END

Creating Reports 391

9. Customizing Tabular Reports

you get a report that lists the last names of employees in the order they were entered into
the data source:

LAST_NAME

STEVENS
SMITH
JONES
SMITH
BANNING
IRVING
ROMANS
MCCOY
BLACKWOOD
MCKNIGHT
GREENSPAN
CROSS

To print the last names in alphabetical order, use NOPRINT in conjunction with a BY phrase:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY LAST_NAME NOPRINT
END

which produces the desired result:

LAST_NAME

BANNING
BLACKWOOD
CROSS
GREENSPAN
IRVING
JONES
MCCOY
MCKNIGHT
ROMANS
SMITH
SMITH
STEVENS

Suppressing a Sort FieldExample:

Consider the following example, where the report is sorted, but the field that determines
the sort order is not displayed:

TABLE FILE SALES
PRINT UNIT_SOLD AND DELIVER_AMT
BY CITY BY PROD_CODE BY RETAIL_PRICE
ON RETAIL_PRICE SUP-PRINT
END

392 Information Builders

Suppressing Fields: SUP-PRINT or NOPRINT

The output is:

CITY PROD_CODE UNIT_SOLD DELIVER_AMT
---- --------- --------- -----------
NEW YORK B10 30 30
 B17 20 40
 B20 15 30
 C17 12 10
 D12 20 30
 E1 30 25
 E3 35 25
NEWARK B10 13 30
 B12 29 30
STAMFORD B10 60 80
 B12 40 20
 B17 29 30
 C13 25 30
 C7 45 50
 D12 27 40
 E2 80 100
 E3 70 80
UNIONDALE B20 25 40
 C7 40 40

Also, consider the following example which does not display a COUNTRY column:

TABLE FILE CAR
SUM SALES BY COUNTRY
BY CAR
ON COUNTRY SUB-TOTAL SUP-PRINT PAGE-BREAK
END

Creating Reports 393

9. Customizing Tabular Reports

The first part of the output is:

PAGE 1

CAR SALES
--- -----
JAGUAR 12000
JENSEN 0
TRIUMPH 0

*TOTAL ENGLAND
 12000
PAGE 2

CAR SALES
--- -----
PEUGEOT 0

*TOTAL FRANCE
 0
PAGE 3

CAR SALES
--- -----
ALFA ROMEO 30200
MASERATI 0

*TOTAL ITALY
 30200

Reducing a Report's Width: FOLD-LINE and OVER

In this section:

Compressing the Columns of Reports: FOLD-LINE

Decreasing the Width of a Report: OVER

Wide reports are difficult to read, especially on a screen. To reduce a report's width, use
FOLD-LINE and OVER.

394 Information Builders

Reducing a Report's Width: FOLD-LINE and OVER

Compressing the Columns of Reports: FOLD-LINE

How to:

Compress Report Columns

Reference:

Usage Notes for Compressing Report Columns

A single line on a report can be folded to compress it into fewer columns. This enables you
to display a wide report on a narrow screen and enhance the appearance of many reports
which might otherwise have wasted space under sort control fields which change infrequently.

How to Compress Report ColumnsSyntax:

display fieldname ... FOLD-LINE fieldname ...
{ON|BY} fieldname FOLD-LINE

where:

display

Is any display command.

fieldname

Causes columns to be placed on a separate line when the value of the field changes in
the BY or ON phrase. The field name may be a sort field or display field. When it is a
display field, it is placed under the preceding field.

Usage Notes for Compressing Report ColumnsReference:

The second half of the folded line is offset by two spaces from the first part when the
line is folded on a sort control field.

Instead of FOLD-LINE, you can also use the OVER phrase to decrease the width of reports,
as described in Decreasing the Width of a Report: OVER on page 396.

When the point of line folding is after a display field, there is no offset. A simple way to
change the line alignment is to use a title with leading blanks. See Creating New Column
Titles: AS on page 406.

Up to 16 FOLD-LINE phrases can be used in a request.

Creating Reports 395

9. Customizing Tabular Reports

Compressing Report ColumnsExample:

The following report places all fields following the DEPARTMENT field on another line:

TABLE FILE EMPLOYEE
SUM ED_HRS BY DEPARTMENT
PRINT ED_HRS AND LAST_NAME AND FIRST_NAME
BY DEPARTMENT BY HIGHEST BANK_ACCT
ON DEPARTMENT FOLD-LINE
END

The output is:

DEPARTMENT

 ED_HRS BANK_ACCT ED_HRS LAST_NAME FIRST_NAME
 ------ --------- ------ --------- ----------
MIS
 231.00 163800144 45.00 CROSS BARBARA
 122850108 75.00 BLACKWOOD ROSEMARIE
 40950036 50.00 JONES DIANE
 36.00 SMITH MARY
 .00 MCCOY JOHN
 25.00 GREENSPAN MARY
PRODUCTION
 120.00 819000702 30.00 IRVING JOAN
 136500120 50.00 MCKNIGHT ROGER
 160633 .00 BANNING JOHN
 25.00 STEVENS ALFRED
 10.00 SMITH RICHARD
 5.00 ROMANS ANTHONY

Decreasing the Width of a Report: OVER

How to:

Decrease the Width of a Report

Reference:

Usage Notes for Decreasing Report Width

One way to decrease the width of your report, particularly when using the ACROSS phrase,
is to use OVER. OVER places field names over one another.

396 Information Builders

Reducing a Report's Width: FOLD-LINE and OVER

How to Decrease the Width of a ReportSyntax:

display fieldname1 OVER fieldname2 OVER fieldname3 ...

where:

display

Is any display command.

fieldname1, fieldname2, fieldname3

Are fields to be placed over each other, instead of printed beside each other in a row.
The field names must be display fields.

Usage Notes for Decreasing Report WidthReference:

Keep the following in mind when using OVER:

For more complex combinations of IN and OVER, you may want to create subfoots with
data. Subfoots with data are discussed in Using Data in Headings and Footings on page
372.

Text fields cannot be specified with OVER.

Decreasing the Width of a ReportExample:

The following report stacks the display fields over each other:

TABLE FILE EMPLOYEE
SUM GROSS OVER DED_AMT OVER
COMPUTE NET/D8.2M = GROSS - DED_AMT;
ACROSS DEPARTMENT
END

The request produces the following report. Notice the ACROSS values display to the left,
not directly above the data values.

 DEPARTMENT
 MIS PRODUCTION
--
GROSS $50,499.12 $50,922.38
DED_AMT $28,187.25 $23,391.35
NET $22,311.88 $27,531.03

Without the OVER phrase, the report looks like this:

DEPARTMENT
MIS PRODUCTION
--
GROSS $50,499.12 GROSS $50,922.38
DED_AMT $28,187.25 NET $22,311.88 DED_AMT $23,391.35 NET $27,531.03

Creating Reports 397

9. Customizing Tabular Reports

Positioning Columns: IN

How to:

Position Columns

Reference:

Usage Notes for Positioning Columns

FOCUS automatically formats a page and uses common default values for determining
column positions and spacing. You can override these defaults by specifying the absolute
or relative column position where a data value is to appear on a report.

How to Position ColumnsSyntax:

field IN {n|+n}

Valid values are:

field

Is the field (that is, the column) that you want to move.

n

Is a number indicating the absolute position of the column.

+n

Is a number indicating the relative position of the column. That is, +n is the number of
characters to the right of the last column.

Usage Notes for Positioning ColumnsReference:

The IN phrase can be used with ACROSS to specify both the starting column of the entire
ACROSS set as well as the spacing between each column within the ACROSS.

When one field is positioned over another (for example, when OVER or FOLD-LINE is used;
see Reducing a Report's Width: FOLD-LINE and OVER on page 394), the positions apply to
the line on which the referenced field occurs.

398 Information Builders

Positioning Columns: IN

Positioning ColumnsExample:

The following request positions all of the report columns:

TABLE FILE EMPLOYEE
PRINT BANK_NAME IN 1
BY HIGHEST BANK_ACCT IN 26
BY LAST_NAME IN 40
END

This request produces the following report. There is a blank line following Smith because
LAST_NAME is a sort field and there are two employees named SMITH in the database.

BANK_NAME BANK_ACCT LAST_NAME
--------- --------- ---------
ASSOCIATED 819000702 IRVING
BANK ASSOCIATION 163800144 CROSS
ASSOCIATED 136500120 MCKNIGHT
ASSOCIATED 122850108 BLACKWOOD
STATE 40950036 JONES
BEST BANK 160633 BANNING
 GREENSPAN
 MCCOY
 ROMANS
 SMITH

 STEVENS

Positioning Columns With ACROSSExample:

The IN phrase can be used with ACROSS to specify both the starting column of the entire
ACROSS set as well as the spacing between each column within the ACROSS, as shown in
the following example:

TABLE FILE CAR
SUM UNITS IN +1 ACROSS CAR IN 30
BY COUNTRY
END

This places one extra space between the data columns in the matrix, and displays the
ACROSS sets beginning in Position 30, as shown in the partial first page of the report below.

 CAR
 ALFA ROMEO AUDI BMW
COUNTRY

ENGLAND . . .
FRANCE . . .
ITALY 30200 . .
JAPAN . . .
W GERMANY . 7800 80390

Creating Reports 399

9. Customizing Tabular Reports

Positioning Columns With FOLD-LINEExample:

When one field is positioned over another (for example, when OVER or FOLD-LINE is used;
see Reducing a Report's Width: FOLD-LINE and OVER on page 394), the positions apply to the
line on which the referenced field occurs, as in the following example:

TABLE FILE CAR
SUM RCOST BY CAR
BY COUNTRY IN 25
ON COUNTRY FOLD-LINE
END

which creates this report, in which COUNTRY starts in column 25 and RCOST appears on
the second line.

CAR COUNTRY
--- -------
 RETAIL_COST

ALFA ROMEO ITALY
 19,565
AUDI W GERMANY
 5,970
BMW W GERMANY
 58,762
DATSUN JAPAN
 3,139
JAGUAR ENGLAND
 22,369
JENSEN ENGLAND
 17,850
MASERATI ITALY
 31,500
PEUGEOT FRANCE
 5,610

Positioning Columns With OVERExample:

The following report request stacks the SALES field over the RETAIL_COST field:

TABLE FILE CAR
PRINT SALES IN 50 OVER RCOST IN 50
BY COUNTRY IN 10 BY MODEL
END

400 Information Builders

Positioning Columns: IN

The output is:

 COUNTRY MODEL
 ------- -----
 ENGLAND INTERCEPTOR III SALES 0
 RETAIL_COST 17,850
 TR7 SALES 0
 RETAIL_COST 5,100
 V12XKE AUTO SALES 0
 RETAIL_COST 8,878
 XJ12L AUTO SALES 12000
 RETAIL_COST 13,491
 FRANCE 504 4 DOOR SALES 0
 RETAIL_COST 5,610
 ITALY DORA 2 DOOR SALES 0
 RETAIL_COST 31,500
 2000 GT VELOCE SALES 12400
 RETAIL_COST 6,820
 2000 SPIDER VELOCE SALES 13000
 RETAIL_COST 6,820
 2000 4 DOOR BERLINA SALES 4800

Separating Sections of a Report: SKIP-LINE and UNDER-LINE

In this section:

Adding Blank Lines: SKIP-LINE

Underlining Values: UNDER-LINE

To make a detailed report easier to read and interpret, you can separate sections of
it—individual lines, or entire sort groups—by inserting blank lines between them, or (for sort
groups only) by underlining them.

Adding Blank Lines: SKIP-LINE

How to:

Add Blank Lines

Reference:

Usage Notes for Adding Blank Lines

Report information often stands out more clearly if there are lines skipped between individual
lines, or between sort groups. You can use SKIP-LINE with either a sort field, or a display
field:

If you use SKIP-LINE with a sort field, FOCUS inserts a blank line between each section
of the report.

Creating Reports 401

9. Customizing Tabular Reports

If you use SKIP-LINE with a display field, FOCUS inserts a blank line between each line
of the report—in effect, double-spacing the report. Double spacing is especially helpful
when a report is used as a review document, as it makes it easy for the reader to write
comments next to individual lines.

How to Add Blank LinesSyntax:

To add blank lines, use SKIP-LINE with the keyword ON or BY. Use the WHEN clause to
specify conditional blank lines in the printing of a report. The syntax is:

display fieldname SKIP-LINE
{ON|BY} fieldname SKIP-LINE [WHEN expression;]

where:

display

Is any display command.

fieldname

Is used so that when the value of this field changes, a blank line is inserted before the
next set of values.

WHEN expression

Specifies conditional blank lines in the printing of a report as determined by a Boolean
expression.

You can use only one SKIP-LINE in each report request. You do not have to enter it on its
own line; instead, include it after the field name or sort field for which you want to insert a
blank line.

Usage Notes for Adding Blank LinesReference:

Keep the following in mind when using SKIP-LINE:

If the field name is a sort field, a blank line is inserted just before every change in value
of the sort field.

If the field name is a display field, a blank line is inserted after every printed line. The
WHEN clause does not apply to display fields.

This is one of the only ON conditions that does not have to refer solely to sort control
(BY) fields.

Only one SKIP-LINE option is allowed per request, and it may affect more than one sort
field.

402 Information Builders

Separating Sections of a Report: SKIP-LINE and UNDER-LINE

Adding Blank LinesExample:

The following example skips a line when the employee ID changes:

DEFINE FILE EMPLOYEE
INCREASE/D8.2M = .05*CURR_SAL;
CURR_SAL/D8.2M=CURR_SAL;
NEWSAL/D8.2M=CURR_SAL + INCREASE;
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL OVER INCREASE OVER NEWSAL
BY EMP_ID BY LAST_NAME BY FIRST_NAME
ON EMP_ID SKIP-LINE
END

The first part of the report output is shown below:

EMP_ID LAST_NAME FIRST_NAME
------ --------- ----------

071382660 STEVENS ALFRED CURR_SAL $11,000.00
 INCREASE $550.00
 NEWSAL $11,550.00

112847612 SMITH MARY CURR_SAL $13,200.00
 INCREASE $660.00
 NEWSAL $13,860.00

117593129 JONES DIANE CURR_SAL $18,480.00
 INCREASE $924.00
 NEWSAL $19,404.00

119265415 SMITH RICHARD CURR_SAL $9,500.00
 INCREASE $475.00
 NEWSAL $9,975.00

119329144 BANNING JOHN CURR_SAL $29,700.00

Underlining Values: UNDER-LINE

How to:

Underline Values

Drawing a line across the page after all of the information for a particular section has been
displayed can enhance the readability of a printed report.

Creating Reports 403

9. Customizing Tabular Reports

How to Underline ValuesSyntax:

{ON|BY} fieldname UNDER-LINE [WHEN expression;]

where:

fieldname

Is used so that a line is drawn when the value of the field changes. A line is automatically
drawn after any other option such as RECAP or SUB-TOTAL (but before PAGE-BREAK).

WHEN expression

Specifies conditional underlines in the printing of a report, as determined by a Boolean
expression (see Inserting Page Numbers: TABPAGENO on page 382).

Underlining ValuesExample:

The following example adds an underline when the bank name changes:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND BANK_ACCT AND LAST_NAME
BY BANK_NAME
ON BANK_NAME UNDER-LINE
END

The request produces the following report:

BANK_NAME EMP_ID BANK_ACCT LAST_NAME
--------- ------ --------- ---------
 071382660 STEVENS
 112847612 SMITH
 119265415 SMITH
 126724188 ROMANS
 219984371 MCCOY
 543729165 GREENSPAN

ASSOCIATED 123764317 819000702 IRVING
 326179357 122850108 BLACKWOOD
 451123478 136500120 MCKNIGHT

BANK ASSOCIATION 818692173 163800144 CROSS

BEST BANK 119329144 160633 BANNING

STATE 117593129 40950036 JONES

404 Information Builders

Separating Sections of a Report: SKIP-LINE and UNDER-LINE

Controlling Column Spacing: SET SPACES

How to:

Control Column Spacing

By default, FOCUS puts one or two spaces between report columns, depending on the output
width. The SET SPACES command enables you to control the number of spaces between
columns in a report.

How to Control Column SpacingSyntax:

SET SPACES = {n|AUTO}

Valid values are:

n

Is a number indicating from 1 to 8 spaces.

AUTO

Specifies that FOCUS automatically puts one or two spaces between columns depending
on report output and available output length. AUTO is the default setting.

SET SPACES may also be issued from within a TABLE request.

For ACROSS phrases, SET SPACES n controls the distance between ACROSS sets. Within
an ACROSS set, the distance between fields is always one space and cannot be changed.

Controlling Column SpacingExample:

The following example illustrates the use of ACROSS with SET SPACES:

TABLE FILE CAR
SUM DEALER_COST RETAIL_COST ACROSS CAR BY COUNTRY
IF CAR EQ 'ALFA ROMEO' OR 'BMW'
ON TABLE SET SPACES 8
END

The ACROSS set consists of the fields DEALER_COST and RETAIL_COST. The distance
between each set is eight spaces.

 CAR
 ALFA ROMEO BMW
COUNTRY DEALER_COST RETAIL_COST DEALER_COST RETAIL_COST
--
ITALY 16,235 19,565 . .
W GERMANY . . 49,500 58,762

Creating Reports 405

9. Customizing Tabular Reports

Creating New Column Titles: AS

How to:

Create Column Titles

Reference:

Usage Notes for New Column Titles

Use the AS option to rename existing column titles in your reports. Any of the following titles
can be changed with an AS phrase:

ACROSS titles can be replaced by one line of text only.

A SUBTOTAL line can be replaced by one line of text only.

FOR phrases.

Fields for the MATCH command.

How to Create Column TitlesSyntax:

The syntax for changing default titles is:

field AS 'title1,title2,...'

where:

field

Can be a sort field, display field, column total, or row total.

title

Is the new column title enclosed in single quotation marks.

To specify multiple lines in a column title, separate each line's text with commas. Up
to five lines are allowed.

Usage Notes for New Column TitlesReference:

When using FOLD-LINE, the titles appear one over the other. No more than one line per
title is allowed with FOLD-LINE. (See Reducing a Report's Width: FOLD-LINE and OVER on
page 394.)

406 Information Builders

Creating New Column Titles: AS

The use of a title line larger than the format size of the data is one convenient way to
space out a report across the columns of the page. For instance,

PRINT UNITS BY MONTH AS ' MONTH'

shifts the title for MONTH to the right and all other columns, in this case UNITS, shift to
the right. For more information on changing the column position, see Reducing a Report's
Width: FOLD-LINE and OVER on page 394.

If you do not want any field name or title displayed in the report, you can also use the
AS phrase by entering two consecutive single quotation marks. For example:

PRINT LAST_NAME AS ''

To display underscores, enclose blanks in single quotation marks.

If you put an AS phrase in a computed field, you must then repeat the keyword COMPUTE
before the next computed field.

The width allotted for column titles has no limit other than the memory available. It is
initially set to 6K, but if that is not enough, the space is dynamically extended to
accommodate the column title space required.

Creating New Column TitlesExample:

The following example assigns new column titles for the LAST_NAME, FIRST_NAME, and
EMP_ID fields:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AS 'NAME' AND LAST_NAME AS ''
BY DEPARTMENT
BY EMP_ID AS 'EMPLOYEE,NUMBER'
END

This request produces the following report:

 EMPLOYEE
DEPARTMENT NUMBER NAME
---------- -------- ----
MIS 112847612 MARY SMITH
 117593129 DIANE JONES
 219984371 JOHN MCCOY
 326179357 ROSEMARIE BLACKWOOD
 543729165 MARY GREENSPAN
 818692173 BARBARA CROSS
PRODUCTION 071382660 ALFRED STEVENS
 119265415 RICHARD SMITH
 119329144 JOHN BANNING
 123764317 JOAN IRVING
 126724188 ANTHONY ROMANS
 451123478 ROGER MCKNIGHT

Creating Reports 407

9. Customizing Tabular Reports

Customizing Column Names: SET QUALTITLES

How to:

Customize Column Headings

Reference:

Usage Notes for Qualified Column Titles

The FOCUS SET command, SET QUALTITLES, enables you to determine whether or not
duplicate field names appear as qualified column titles in TABLE output. (For more information
about qualified field names, see Displaying Report Data on page 45.)

How to Customize Column HeadingsSyntax:

SET QUALTITLES = {ON|OFF}

where:

ON

Enables qualified column titles when duplicate field names exist and FIELDNAME is set
to NEW.

OFF

Disables qualified column titles. OFF is the default value.

SET QUALTITLES may also be issued from within a TABLE request.

Qualified column titles are automatically used, even if qualified field names are not used in
the request.

Usage Notes for Qualified Column TitlesReference:

AS names are used if duplicate field names are referenced in a MATCH request.

AS names are used when duplicate field names exist in a HOLD file.

408 Information Builders

Customizing Column Names: SET QUALTITLES

Column Title Justification

How to:

Justify Column Titles

Reference:

Usage Notes for Justifying Column Titles

You can specify whether column titles in a report are left-justified, right-justified, or centered.
By default, column titles for alphanumeric fields are left-justified, and column titles for
numeric and date fields are right-justified over the displayed column.

How to Justify Column TitlesSyntax:

The syntax to alter default justification is:

fieldname [alignment] [/format]

where:

alignment

Specifies the alignment of the column title.

/R specifies that the column title is to be right-justified.

/L specifies that the column title is to be left-justified.

/C specifies that the column title is to be centered.

/format

Is an optional format specification for the field.

Usage Notes for Justifying Column TitlesReference:

You may specify justification for display fields, BY fields, ACROSS fields, column totals,
and row totals. For ACROSS fields, data values, not column titles, are justified as
specified.

For display commands and row totals only, the justification parameter may be combined
with a format specification, which precedes or follows the justification parameter (for
example, PRINT CAR/A8/R MODEL/C/A15).

If a title is specified with an AS phrase or in the Master File, that title is justified as
specified for the field.

Creating Reports 409

9. Customizing Tabular Reports

When multiple ACROSS fields are requested, justification is performed on the lowest
ACROSS level only. All other justification parameters for ACROSS fields are ignored.

Justifying Column TitlesExample:

The following example illustrates column title justification with a format specification, a BY
field specification, and an AS phrase specification:

TABLE FILE CAR
PRINT MODEL/A10 STANDARD/A15/R AS 'RJUST,STANDARD' BY CAR/C
WHERE CAR EQ 'JAGUAR' OR 'TOYOTA'
END

The output is:

 RJUST
 CAR MODEL STANDARD
---------------- ----- ---------------
JAGUAR V12XKE AUT POWER STEERING
 XJ12L AUTO RECLINING BUCKE
 WHITEWALL RADIA
 WRAP AROUND BUM
 4 WHEEL DISC BR
TOYOTA COROLLA 4 BODY SIDE MOLDI
 MACPHERSON STRU

Customizing Reports With SET Parameters

How to:

Use SET Parameters in Requests

Most SET commands that change system defaults may be issued from within a report
request. Many SET command parameters can be used to enhance the readability and
usefulness of your reports. The SET command, when used in this manner, affects only the
request in which it occurs. For a complete list of SET parameters and acceptable values,
see the Developing Applications manual.

How to Use SET Parameters in RequestsSyntax:

The syntax is:

ON TABLE SET parameter value [AND parameter value...]

where:

parameter

Is the SET command parameter that you wish to change.

410 Information Builders

Customizing Reports With SET Parameters

value

Replaces the default value.

Setting Parameters in a Report RequestExample:

This request changes the NODATA character for missing data from a period (default) to the
word NONE. No equal sign is allowed.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME BY FIRST_NAME
ACROSS DEPARTMENT
ON TABLE SET NODATA NONE
END

This request produces the following report:

 DEPARTMENT
 MIS PRODUCTION
LAST_NAME FIRST_NAME

BANNING JOHN NONE $29,700.00
BLACKWOOD ROSEMARIE $21,780.00 NONE
CROSS BARBARA $27,062.00 NONE
GREENSPAN MARY $9,000.00 NONE
IRVING JOAN NONE $26,862.00
JONES DIANE $18,480.00 NONE
MCCOY JOHN $18,480.00 NONE
MCKNIGHT ROGER NONE $16,100.00
ROMANS ANTHONY NONE $21,120.00
SMITH MARY $13,200.00 NONE
 RICHARD NONE $9,500.00
STEVENS ALFRED NONE $11,000.00

Conditionally Formatting Reports With the WHEN Clause

How to:

Create Conditional Formatting

Reference:

Usage Notes for Conditional Formatting

Use the WHEN clause in a TABLE request to conditionally display summary lines and
formatting options for BY fields. The expression in the WHEN clause enables you to control
where options such as SUBTOTAL and SUBFOOT appear in the report.

Creating Reports 411

9. Customizing Tabular Reports

The WHEN clause is an extension of the ON phrase, and must follow the ON phrase to which
it applies. One WHEN clause can be specified for each option in the ON phrase. Multiple
WHEN clauses are also permitted.

Used with certain formatting options in a TABLE request, the WHEN clause controls when
those formatting options are displayed. If a WHEN clause is not used, the formatting options
are displayed whenever the sort field value changes.

How to Create Conditional FormattingSyntax:

Syntax for the WHEN clause is:

ON fieldname option WHEN expression[;]

where:

option

Is any one of the following options for the ON phrase in a TABLE:

SUBHEADPAGE-BREAKRECAP

SUBFOOTREPAGERECOMPUTE

SUB-TOTALSKIP-LINESUBTOTAL

SUMMARIZEUNDER-LINE

If the WHEN clause is used with SUBHEAD or SUBFOOT, it must be placed on the line
following the text that is enclosed in double quotation marks (see Conditionally Formatting
Reports With the WHEN Clause on page 411).

expression

Is any Boolean expression that is valid on the right side of a COMPUTE expression (see
Using Expressions on page 323).

Note:

IF ... THEN ... ELSE logic is not necessary in a WHEN clause, and is not supported.

All non-numeric literals in a WHEN expression must be specified with single quotation
marks.

The semicolon at the end of a WHEN expression is optional, and may be included for
readability.

412 Information Builders

Conditionally Formatting Reports With the WHEN Clause

Usage Notes for Conditional FormattingReference:

A separate WHEN clause may be used for each option specified in an ON phrase. The
ON field name phrase needs to be specified only once.

You can use the WHEN clause to display a different SUBFOOT or SUBHEAD for each break
group.

The WHEN clause only applies to the option that immediately precedes it.

If a WHEN clause specifies an aggregated field, the value tested is aggregated only within
the break determined by the field in the corresponding ON phrase.

In the WHEN clause for a SUBFOOT, the SUBTOTAL is calculated and evaluated. This
applies to fields with prefix operators and to summed fields. For alphanumeric fields, the
last value in the break group is used in the test.

Conditionally Formatting ReportsExample:

In the following example, the WHEN clause prints a subfoot at the break for the field
STORE_CODE only when the sum of PRODSALES exceeds $500:

DEFINE FILE SALES
PRODSALES/D9.2M = UNIT_SOLD * RETAIL_PRICE;
END
TABLE FILE SALES
SUM PRODSALES
BY STORE_CODE
ON STORE_CODE SUBFOOT
"*** SALES FOR STORE <STORE_CODE EXCEED $500 ****"
WHEN PRODSALES GT 500
END

The report output looks like this:

STORE_CODE PRODSALES
---------- ---------
K1 $56.08
14B $535.34
*** SALES FOR STORE 14B EXCEED $500 ****
14Z $224.88
77F $151.85

Creating Reports 413

9. Customizing Tabular Reports

Selectively Displaying a SUBTOTAL and SUBFOOTExample:

You can print a report that selectively displays a SUBTOTAL and a SUBFOOT with two WHEN
phrases:

TABLE FILE SALES
PRINT UNIT_SOLD RETAIL_PRICE
BY PROD_CODE
ON PROD_CODE SUBTOTAL
WHEN PROD_CODE CONTAINS 'B'
SUBFOOT
"PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP"
WHEN PROD_CODE CONTAINS 'C'
END

The relevant parts of the output are:

PROD_CODE UNIT_SOLD RETAIL_PRICE
--------- --------- ------------
B10 60 $.95
 30 $.85
 13 $.99

*TOTAL B10
 103 $2.79

B12 40 $1.29
 29 $1.49

*TOTAL B12
 69 $2.78

B17 29 $1.89
 20 $1.89

*TOTAL B17
 49 $3.78
 .
 .
 .
C13 25 $1.99

PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP
C17 12 $2.09

PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP
 .
 .
 .

414 Information Builders

Conditionally Formatting Reports With the WHEN Clause

Selectively Displaying Multiple SubheadsExample:

In the following example, a different subhead is displayed depending on the value of the BY
field. If the value of PROD_CODE contains the literal B, C, or E, the subhead CURRENT
PRODUCT LINE is displayed. If PROD_CODE contains the literal D, the subhead DISCONTINUED
PRODUCT is displayed.

TABLE FILE SALES
PRINT UNIT_SOLD RETAIL_PRICE
BY PROD_CODE
ON PROD_CODE
SUBHEAD
"CURRENT PRODUCT LINE"
WHEN PROD_CODE CONTAINS 'B' OR 'C' OR 'E'
SUBHEAD
"DISCONTINUED PRODUCT"
WHEN PROD_CODE CONTAINS 'D'
END

This produces the following report:

PROD_CODE UNIT_SOLD RETAIL_PRICE
--------- --------- ------------
CURRENT PRODUCT LINE
B10 60 $.95
 30 $.85
 13 $.99
CURRENT PRODUCT LINE
B12 40 $1.29
 29 $1.49
CURRENT PRODUCT LINE
B17 29 $1.89
 20 $1.89
CURRENT PRODUCT LINE
B20 15 $1.99
 25 $2.09
CURRENT PRODUCT LINE
C13 25 $1.99
CURRENT PRODUCT LINE
C17 12 $2.09
CURRENT PRODUCT LINE
C7 45 $2.39
 40 $2.49
DISCONTINUED PRODUCT
D12 27 $2.19
 20 $2.09
CURRENT PRODUCT LINE
E1 30 $.89
CURRENT PRODUCT LINE
E2 80 $.99
CURRENT PRODUCT LINE
E3 70 $1.09
 35 $1.09

Creating Reports 415

9. Customizing Tabular Reports

Selectively Displaying a SubfootExample:

In the following example, a subtotal is calculated for each PROD_CODE, but the subfoot is
displayed only when PROD_CODE contains the literal B:

SET PAGE-NUM = OFF
SET SCREEN = PAPER
-RUN
TABLE FILE SALES
PRINT UNIT_SOLD RETAIL_PRICE
BY PROD_CODE
ON PROD_CODE SUBTOTAL AND SUBFOOT
"PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP"
" "
WHEN PROD_CODE CONTAINS 'B'
END

416 Information Builders

Conditionally Formatting Reports With the WHEN Clause

The partial output is:

PROD_CODE UNIT_SOLD RETAIL_PRICE
--------- --------- ------------
B10 60 $.95
 30 $.85
 13 $.99

*TOTAL B10
 103 $2.79

PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP
B12 40 $1.29
 29 $1.49

*TOTAL B12
 69 $2.78
 PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP
B17 29 $1.89
 20 $1.89

*TOTAL B17
 49 $3.78

PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP
B20 15 $1.99
 25 $2.09
*TOTAL B20
 40 $4.08

PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP

C13 25 $1.99
*TOTAL C13
 25 $1.99

C17 12 $2.09

*TOTAL C17
 12 $2.09

Creating Reports 417

9. Customizing Tabular Reports

Using Aggregation in the WHEN ClauseExample:

The following request prints a subfoot depending on the sum of the UNIT_SOLD field. Each
subfoot displays the subtotal of the UNIT_SOLD field within its sort group:

TABLE FILE SALES
SUM UNIT_SOLD
 BY STORE_CODE BY PROD_CODE

ON STORE_CODE SUBFOOT
"SELLING ABOVE QUOTA <ST.UNIT_SOLD "
" "
WHEN UNIT_SOLD GT 100
SUBFOOT
"SELLING AT QUOTA <ST.UNIT_SOLD"
" "
WHEN UNIT_SOLD GE 40 AND UNIT_SOLD LT 100
SUBFOOT
"SELLING BELOW QUOTA <ST.UNIT_SOLD"
" "
WHEN UNIT_SOLD LT 40
END

The output is:

STORE_CODE PROD_CODE UNIT_SOLD
---------- --------- ---------
K1 B10 13
 B12 29
SELLING AT QUOTA 42

14B B10 60
 B12 40
 B17 29
 C13 25
 C7 45
 D12 27
 E2 80
 E3 70
SELLING ABOVE QUOTA 376

14Z B10 30
 B17 20
 B20 15
 C17 12
 D12 20
 E1 30
14Z E3 35
SELLING ABOVE QUOTA 162

77F B20 25
 C7 40
SELLING AT QUOTA 65

418 Information Builders

Conditionally Formatting Reports With the WHEN Clause

Controlling the Display of Empty Reports

How to:

Control Empty Reports

Reference:

Usage Notes for Displaying Empty Reports

The SET command, SET EMPTYREPORT, enables you to control the output generated when
a TABLE request retrieves zero records.

The EMPTYREPORT=ANSI setting introduces ANSI-compliant handling of reports with zero
records, producing a one-line report containing only the specified missing data character. If
the request is a COUNT operation, however, a zero is displayed for the missing values.

How to Control Empty ReportsSyntax:

Use this command:

SET EMPTYREPORT = {ANSI|ON|OFF}

Valid values are:

ANSI

Produces a single-line report and displays the missing data character or a zero if a COUNT
is requested. in each case, &RECORDS will be 0, and &LINES will be 1.

If the SQL Translator is invoked, ANSI automatically replaces OFF as the default setting
for EMPTYREPORT.

ON

Generates an empty report when zero records are found.

OFF

Does not generate a report when zero records are found. OFF is the default setting.

The command may also be issued from a request. For example:

ON TABLE SET EMPTYREPORT ON

Usage Notes for Displaying Empty ReportsReference:

TABLEF is not supported with SET EMPTYREPORT. When a TABLEF request retrieves zero
records, EMPTYREPORT behaves as if EMPTYREPORT is set ON.

Creating Reports 419

9. Customizing Tabular Reports

This is a change in default behavior from prior releases of FOCUS. To restore prior default
behavior, issue the SET EMPTYREPORT = ON command.

SET EMPTYREPORT = OFF is not supported for HOLD FORMAT WP files or styled output
formats.

SET EMPTYREPORT = ON behaves as described regardless of ONLINE or OFFLINE settings.

420 Information Builders

Controlling the Display of Empty Reports

FOCUS

Saving and Reusing Your Report Output10
Topics:

When you run a report request, by default
the data values are collected and
presented in a viewable form, complete
with column titles and formatting
features. Instead of viewing the data
values, you can save them to a special
data file to:

Saving Your Report Output

Creating a HOLD File

Holding Report Output in FOCUS
Format

Display as a Web page, as a printed
document, or in a text document.

Controlling Attributes in HOLD Master
Files

Process in another application, such
as a spreadsheet, a database, a word
processor, or a 3GL program.

Keyed Retrieval From HOLD Files

Using DBMS Temporary Tables as
HOLD Files

Send to another location, such as a
browser or PC. Creating SAVE and SAVB Files

Creating a PCHOLD FileExtract a subset of the original data
source in order to generate multi-step
reports. Choosing Output File Formats

Using Text Fields in Output FilesExtract a data source to a structured
extract file that retains information
about the segment relationships in
order to facilitate migration of data
sources and reports between
operating environments.

Creating a Delimited Sequential File

Saving Report Output in INTERNAL
Format

Creating a Structured HOLD File

Creating Reports 421

Saving Your Report Output

In this section:

Naming and Storing Report Output Files

The following commands extract and save report output in a variety of file formats:

HOLD. The HOLD command creates a data source containing the output of a report
request. By default, the data is stored in binary format, but you can specify a different
format, such as FOCUS, HTML, or Excel. For some formats, the HOLD command also
creates a corresponding Master File. You can then write other report requests that in
turn extract or save data from the HOLD file. See Creating a HOLD File on page 423.

SAVE and SAVB. The SAVE command is identical to a HOLD command, except that it
does not create a Master File, and ALPHA is the default format. If you wish to create a
SAVE file in BINARY format, use a variation of the SAVE command called SAVB.

As with a HOLD file, you can specify a variety of formats suitable for use with other
software products. See Creating SAVE and SAVB Files on page 449.

PCHOLD. The PCHOLD command creates a data source containing the output of a report
request, and downloads the HOLD data source and the optional Master File to a client
computer or browser. As with a HOLD file, you can specify a variety of file formats. See
Creating a PCHOLD File on page 453.

Tip: When saving or holding output files, it is recommended to have an Allocation in place
for the file. This is not applicable for PCHOLD files.

Naming and Storing Report Output Files
During a session, a report output file remains usable until it is erased or overwritten. A
subsequent output file created during the same session replaces the initial version, unless
you give it another name by using the AS phrase.

A FILEDEF or ALLOCATE command is automatically issued when you create an output file.
The ddname used to identify the file is the same as the name of the report output file (HOLD,
SAVE, or SAVB, or the name in the AS phrase), if not already allocated.

By default, report output files created with HOLD, SAVE, or SAVB are written to temporary
space. When the session ends, these files are no longer available unless you save the
output to a specific location.

To save report output files to a specific location, use a FILEDEF or ALLOCATE command. In
the VM/CMS environment you can use a FILEDEF command to save an output file to a
specific location and assign it a file name, file type, and file mode. In z/OS, you can
dynamically allocate an output file using the DYNAM ALLOCATE or TSO ALLOCATE command.

422 Information Builders

Saving Your Report Output

See the Overview and Operating Environments manual for details.

Creating a HOLD File

How to:

Create a HOLD File

Create HOLD Files From Hot Screen

Set the Default HOLD Format

Query a HOLD Master File

You can use the HOLD command to create report output files for a range of purposes:

As a tool for data extraction, the HOLD command enables you to retrieve and process
data, then extract the results for further processing. Your report request can create a
new data source, complete with a corresponding Master File, from which you can generate
new reports.

The output Master File contains only the fields in the report request. The fields in a HOLD
file have the original names specified in the Master File that are retrieved if the report
is displayed or printed. You can alter the field names in the output Master File using the
AS phrase in conjunction with the command SET ASNAMES. See Controlling Field Names
in a HOLD Master File on page 435.

The HOLD command enables you to specify the appropriate formats for displaying or
processing report output files in other software applications. See Choosing Output File
Formats on page 455.

When an application requires a data format that is not among the HOLD options, you can
use a subroutine to process each output record as it is written to the HOLD data source.

Note: For information on writing programs to create HOLD files, see Writing User-Coded
Programs to Create HOLD Files on page 1183.

If your environment supports the SET parameter SAVEMATRIX, you can preserve the internal
matrix of your last report in order to keep it available for subsequent HOLD, SAVE, and SAVB
commands when the request is followed by Dialogue Manager commands. For details on
SAVEMATRIX, see the Developing Applications manual.

Creating Reports 423

10. Saving and Reusing Your Report Output

How to Create a HOLD FileSyntax:

From a report request, use

ON TABLE HOLD [AS filename] [FORMAT fmt] [MISSING {ON|OFF}][VIA program]

or

hold_field HOLD [AS filename] [FORMAT fmt] [MISSING {ON|OFF}][VIA program]

After a report is executed, use

HOLD [AS filename] [FORMAT fmt] [MISSING {ON|OFF}][VIA program]

where:

HOLD

Extracts and saves report output. BINARY is the default format used when the HOLD
command is issued without an explicit format. The output is saved with an associated
Master File.

Note: Change the default output format to ALPHA by issuing the SET HOLDFORMAT
command.

hold_field

Is the name of the last display field in the request.

AS filename

Specifies a name for the HOLD file. If you do not specify a file name, HOLD becomes
the default. Since each subsequent HOLD command overwrites the previous HOLD file,
it is advisable to code a distinct file name in each request to direct the extracted data
to a separate file, thereby preventing it from being overwritten by the next HOLD command.

FORMAT fmt

Specifies the format of the HOLD output file. BINARY is the default format.

To display as a Web page, choose: HTML, HTMTABLE, DHTML

To display as a printed document, choose: PDF, PS

To use in a text document, choose: ALPHA, DOC, WP

To use in a spreadsheet application, choose: DIF, EXCEL, EXL97, EXL2K [PIVOT],
LOTUS, SYLK, TAB, TABT

To use in a database application, choose: COMMA, COM, COMT,FOCUS,DB2, FUSION,
SQL, SQLORA, SQLDBC

To use with a 3-GL program, choose: INTERNAL

To use for additional reporting, choose: ALPHA, BINARY, FOCUS

424 Information Builders

Creating a HOLD File

To use as a transaction file for modifying a data source, choose: ALPHA, BINARY

For details about all available formats, see Choosing Output File Formats on page 455.

MISSING

Controls whether fields with the attribute MISSING=ON in the Master File are carried
over into the HOLD file. MISSING ON is the default attribute. If the HOLD command
specifies MISSING OFF, fields with the MISSING attribute are not carried over. For related
information, see Handling Records With Missing Field Values on page 807. Also see the
Developing Applications manual for the SET HOLDMISS, SET NULL, and SET HNODATA
parameters, which control how missing values are propagated to alphanumeric and
comma-delimited files.

VIA program

Calls a user-coded program to create the extract file. BINARY is the default format; ALPHA
format is also available. Other formats are not available when you use a program with
the HOLD command.

How to Create HOLD Files From Hot ScreenSyntax:

From the FOCUS command line or from Hot Screen, use the following after the report is
executed

HOLD [AS filename][FORMAT fmt][MISSING {ON|OFF}][VIAprogram]

where:

fmt

Can be ALPHA, BINARY, DIF, SYLK, WP, INTERNAL, or FOCUS. If you omit the format,
the default HOLD format (BINARY) is used.

You can issue HOLD from the Hot Screen command line at any time while a report is displayed
and on any page of the report. Regardless of the page from which you issue the command,
the entire report is saved, and a data source and Master File are created for that report (just
as when you issue the HOLD command from within a TABLE request, or after exiting Hot
Screen).

You can issue multiple HOLD commands for a single TABLE request; however, once you
specify the FOCUS format with a HOLD command from Hot Screen, you cannot issue another
HOLD command during that Hot Screen session.

Note that you cannot use the SAVE or SAVB commands from Hot Screen. You must include
these commands in a report request, or issue them from the FOCUS command level after
exiting Hot Screen.

Creating Reports 425

10. Saving and Reusing Your Report Output

How to Set the Default HOLD FormatSyntax:

SET HOLDFORMAT = {BINARY|ALPHA}

or

ON TABLE SET HOLDFORMAT {BINARY|ALPHA}

where:

BINARY

Sets the default HOLD file format to BINARY.

ALPHA

Sets the default HOLD file format to ALPHA.

Extracting Data to a HOLD FileExample:

The following request extracts data from the EMPLOYEE data source and creates a HOLD
file.

TABLE FILE EMPLOYEE
SUM CURR_SAL AND ED_HRS
BY DEPARTMENT
LIST CURR_SAL AND ED_HRS AND BANK_ACCT
BY DEPARTMENT
BY LAST_NAME BY FIRST_NAME
ON TABLE HOLD
END

The following message appears:

NUMBER OF RECORDS IN TABLE= 12 LINES= 12

You then see the message:

HOLDING...

To display the report generated by this request, either issue a report request against the
HOLD file or issue the RETYPE command.

Tip: If you wish to view the information in the HOLD Master File before reporting against it,
you can issue the query command ? HOLD.

How to Query a HOLD Master FileSyntax:

If the HOLD format option you select creates a Master File, you can issue the following
command to display the fields, aliases, and formats in the HOLD Master File:

? HOLD

426 Information Builders

Creating a HOLD File

This command shows field names up to 32 characters. If a field name exceeds 32 characters,
a caret (>) in the 32nd position indicates a longer field name.

If you have renamed the HOLD file using AS filename, use the following syntax:

? HOLD filename

Tip: You must issue the ? HOLD query in the same session in which the HOLD file is created.

Reporting Against a HOLD Master FileExample:

In the following HOLD file, the formats shown are the values of the FORMAT attribute. You
can see the values of the ACTUAL attribute by displaying the HOLD Master File using TED
or any text editor. USAGE and ACTUAL formats for text fields specify only the length of the
first line of each logical record in the HOLD file. The USAGE format is the same as the field
format in the original Master File. The ACTUAL format is rounded up to a full (internal) word
boundary, as is done for alphanumeric fields.

The following request contains the query command ? HOLD, which displays the fields, aliases,
and formats in the associated Master File and creates a HOLD file.

TABLE FILE EMPLOYEE
SUM CURR_SAL AND ED_HRS
BY DEPARTMENT
LIST CURR_SAL AND ED_HRS AND BANK_ACCT
BY DEPARTMENT
BY LAST_NAME BY FIRST_NAME
ON TABLE HOLD
END

? HOLD

Creating Reports 427

10. Saving and Reusing Your Report Output

The output is:

12LINES=NUMBER OF RECORDS IN TABLE= 12

DEFINITION OF HOLD FILE: HOLD
FORMATALIASFIELDNAME
A10E01DEPARTMENT
D12.2ME02CURR_SAL
F6.2E03ED_HRS
A15E04LAST_NAME
A10E05FIRST_NAME
I5E06LIST
D12.2ME07CURR_SAL
F6.2E08ED_HRS
I9SE09BANK_ACCT

You can now issue the following report request against the HOLD file:

TABLE FILE HOLD
PRINT E07 AS 'SALARY OF,EMPLOYEE' AND LAST_NAME AND FIRST_NAME
BY HIGHEST E03 AS 'TOTAL,DEPT,ED_HRS'
BY E01
BY HIGHEST E08 AS 'EMPLOYEE,ED_HRS'
END

428 Information Builders

Creating a HOLD File

The output is:

TOTAL

DEPT EMPLOYEE SALARY OF

ED_HRS DEPARTMENT ED_HRS EMPLOYEE LAST_NAME FIRST_NAME
------ ---------- -------- --------- --------- ----------
231.00 MIS 75.00 $21,780.00 BLACKWOOD ROSEMARIE

 50.00 $18,480.00 JONES DIANE

 45.00 $27,062.00 CROSS BARBARA

 36.00 $13,200.00 SMITH MARY

 25.00 $9,000.00 GREENSPAN MARY

 .00 $18,480.00 MCCOY JOHN

120.00 PRODUCTION 50.00 $16,100.00 MCKNIGHT ROGER

 30.00 $26,862.00 IRVING JOAN

 25.00 $11,000.00 STEVENS ALFRED

 10.00 $9,500.00 SMITH RICHARD

 5.00 $21,120.00 ROMANS ANTHONY

 .00 $29,700.00 BANNING JOHN

Holding Report Output in FOCUS Format

How to:

Create HOLD Files in FOCUS Format

Reference:

Operating System Notes for HOLD Files in FOCUS Format

Controlling the FOCUS File Structure

Whether issued within a request or after the request has been executed, the HOLD command
can create a FOCUS data source and a corresponding Master File from the data extracted
by the report request. This feature enables you to create:

A FOCUS data source from any other supported data source type.

A subset of an existing FOCUS data source.

Creating Reports 429

10. Saving and Reusing Your Report Output

Tip: If you are working in an environment that supports SCAN, FSCAN, MODIFY, or Maintain,
and you create a HOLD file in FOCUS format, you can update, as well as report against, the
HOLD file. See your documentation on these facilities for details.

How to Create HOLD Files in FOCUS FormatSyntax:

In a report request, use

ON TABLE HOLD [AS filename] FORMAT FOCUS [INDEX field1 field2 ...]

After a report request is run, use

HOLD [AS filename] FORMAT FOCUS [INDEX field1 field2...]

where:

AS filename

Specifies a name for the HOLD file. If you do not specify a file name, HOLD becomes
the default. Since each subsequent HOLD command overwrites the previous HOLD file,
it is advisable to code a distinct file name in each request to direct the extracted data
to a separate file, thereby preventing it from being overwritten by the next HOLD command.

The name can be up to 64 characters long.

Note: If you use a name longer than eight characters on OS/390, an eight-character
member name is generated as described in the Describing Data manual. To relate the
long name to the short member name, the $ VIRT attribute is generated on the top line
in the Master File. The resulting HOLD file is a temporary data file. To allocate the long
Master File name to a permanent data file, issue the DYNAM ALLOCATE command with
the LONGNAME option prior to the HOLD request. The ddname in the command must
refer to an existing member of the MASTER PDS.

INDEX field1...

Enables you to index FOCUS fields. All fields specified after INDEX are specified as
FIELDTYPE=I in the Master File. Up to four fields can be indexed.

Note that once you use this format from Hot Screen, you cannot issue another HOLD
command while in the same Hot Screen session.

Operating System Notes for HOLD Files in FOCUS FormatReference:

In CMS, a USE command is issued and a new data source and Master File are created on
the disk that has WRITE permission and the most available space.

430 Information Builders

Holding Report Output in FOCUS Format

In z/OS, the HOLD file is dynamically allocated if it is not currently allocated. This means
the system may delete the file at the end of the session, even if you have not done so. Since
HOLD files are usually deleted, this is the desired default. However, if you want to save the
Master File, allocate it to ddname HOLDMAST as a permanent data set. The allocation can
be performed in the standard FOCUS CLIST. For example:

ALLOC F(HOLDMAST) DA('qualif.HOLDMAST') SHR REUSE

Note that ddname HOLDMAST must not refer to the same PDS referred to by the MASTER
and FOCEXEC ddnames.

Controlling the FOCUS File StructureReference:

The structure of the FOCUS data source varies according to the report request. The rules
are as follows:

Each aggregation command (SUM, COUNT, WRITE) creates a segment, with each new
BY field in the request becoming a key. In a request that uses multiple display commands,
the key to any newly created segment does not contain keys that are in the parent
segment.

If a PRINT or LIST command is used to create a segment, all the BY fields, together with
the internal FOCLIST field, form the key.

All fields specified after INDEX are indexed; that is, FIELDTYPE=I is specified in the Master
File. Up to four fields may be indexed.

If the data in the HOLD file is longer than a page (4K for FOCUS data sources or 16K for
XFOCUS data sources), it cannot be stored in a single segment. Data that is too long to
become a single segment will become a parent segment with unique child segments.
For a FOCUS data source, the fields will be grouped into normal FOCUS page size
segments and added as unique segments up to the total maximum of 32K of data. For
an XFOCUS data source, the root segment can hold the first 16K of data, and additional
data up to the 32K total, will be placed in a single unique segment. BY fields must all
occur in the portion of the data assigned to the root segment.

To control whether the ACCEPT and TITLE attributes are propagated to the Master File
associated with the HOLD file, use the SET HOLDATTR command. To control the FIELDNAME
attribute in the Master File of the HOLD file, use the SET ASNAMES command. For more
information on how to control the TITLE, ACCEPT, and FIELDNAME attributes in a HOLD
Master File, see Controlling Attributes in HOLD Master Files on page 434.

Creating Reports 431

10. Saving and Reusing Your Report Output

Note: In environments that support the MODIFY facility, if the DIRECTHOLD parameter is
set to ON, a Master File for the HOLD file and a sequential data source called FOC$HOLD
are created when the command HOLD FORMAT FOCUS is executed. The data in FOC$HOLD
is then loaded into the HOLD file using an internally generated MODIFY procedure. By default,
this setting is OFF and the HOLD file is created directly without using a sequential data
source and internal MODIFY procedure.

Creating a HOLD File in FOCUS FormatExample:

The following example creates a subset of the CAR data source.

TABLE FILE CAR
SUM SALES BY COUNTRY BY CAR BY MODEL
ON TABLE HOLD AS X1 FORMAT FOCUS
END

This request creates a single-segment FOCUS data source with a SEGTYPE of S3 (because
it has three BY fields) named X1.

The X1 Master File is created by the request:

FILE=X1, SUFFIX=FOC
 SEGMENT=SEG01 ,SEGTYPE=S03
 FIELDNAME=COUNTRY ,ALIAS=E01 ,USAGE=A10 ,$
 FIELDNAME=CAR ,ALIAS=E02 ,USAGE=A16 ,$
 FIELDNAME=MODEL ,ALIAS=E03 ,USAGE=A24 ,$
 FIELDNAME=SALES ,ALIAS=E04 ,USAGE=I6 ,$

Using PRINT to Create a FOCUS Data Source With a FOCLIST FieldExample:

This example creates a single-segment FOCUS data source with a SEGTYPE of S4 because
of the three BY fields and the FOCLIST FIELD.

TABLE FILE CAR
PRINT SALES BY COUNTRY BY CAR BY MODEL
ON TABLE HOLD AS X2 FORMAT FOCUS INDEX MODEL
END

The Master File created by this request is:

FILE=X2, SUFFIX=FOC
 SEGMENT=SEG01, SEGTYPE=S04
 FIELDNAME=COUNTRY ,ALIAS=E01 ,USAGE=A10 ,$
 FIELDNAME=CAR ,ALIAS=E02 ,USAGE=A16 ,$
 FIELDNAME=MODEL ,ALIAS=E03 ,USAGE=A24 ,FIELDTYPE=I,$
 FIELDNAME=FOCLIST ,ALIAS=E04 ,USAGE=I5 ,$
 FIELDNAME=SALES ,ALIAS=E05 ,USAGE=I6 ,$

432 Information Builders

Holding Report Output in FOCUS Format

Creating a Two-Segment FOCUS Data SourceExample:

The following request contains two SUM commands. The first, SUM SALES BY COUNTRY,
creates a segment with COUNTRY as the key and the summed values of SALES as a data
field. The second, SUM SALES BY COUNTRY BY CAR BY MODEL, creates a descendant
segment, with CAR and MODEL as the keys and SALES as a non-key field.

The COUNTRY field does not form part of the key to the second segment. COUNTRY is a key
in the path to the second segment. Any repetition of this value is redundant.

TABLE FILE CAR
SUM SALES BY COUNTRY
SUM SALES BY COUNTRY BY CAR BY MODEL
ON TABLE HOLD AS X3 FORMAT FOCUS
END

This creates a two-segment FOCUS data source:

The Master File for this newly-created FOCUS data source is:

FILE=X3, SUFFIX=FOC
 SEGMENT=SEG01, SEGTYPE=S01
 FIELDNAME=COUNTRY ,ALIAS=E01 ,USAGE=A10 ,$
 FIELDNAME=SALES ,ALIAS=E02 ,USAGE=I6 ,$
 SEGMENT=SEG02, SEGTYPE=S02,PARENT=SEG01
 FIELDNAME=CAR ,ALIAS=E03 ,USAGE=A16 ,$
 FIELDNAME=MODEL ,ALIAS=E04 ,USAGE=A24 ,$
 FIELDNAME=SALES ,ALIAS=E05 ,USAGE=I6 ,$

Creating Reports 433

10. Saving and Reusing Your Report Output

Creating a Three-Segment FOCUS Data SourceExample:

In this example, each display command creates one segment.

The key to the root segment is the BY field, COUNTRY, while the keys to the descendant
segments are the new BY fields. The last segment uses the internal FOCLIST field as part
of the key, since the display command is PRINT.

TABLE FILE CAR
SUM SALES BY COUNTRY BY CAR
SUM SALES BY COUNTRY BY CAR BY MODEL
PRINT SALES BY COUNTRY BY CAR BY MODEL BY BODY
ON TABLE HOLD AS X4 FORMAT FOCUS INDEX COUNTRY MODEL
END

The Master File is:

FILE=X4, SUFFIX=FOC
 SEGMENT=SEG01, SEGTYPE =S02
 FIELDNAME=COUNTRY ,ALIAS=E01 ,USAGE=A10 ,FIELDTYPE=I,$
 FIELDNAME=CAR ,ALIAS=E02 ,USAGE=A16 ,$
 FIELDNAME=SALES ,ALIAS=E03 ,USAGE=I6 ,$
 SEGMENT=SEG02, SEGTYPE =S01 ,PARENT=SEG01
 FIELDNAME=MODEL ,ALIAS=E04 ,USAGE=A24 ,FIELDTYPE=I,$
 FIELDNAME=SALES ,ALIAS=E05 ,USAGE=I6 ,$
 SEGMENT=SEG03, SEGTYPE =S02 ,PARENT=SEG02
 FIELDNAME=BODYTYPE ,ALIAS=E06 ,USAGE=A12 ,$
 FIELDNAME=FOCLIST ,ALIAS=E07 ,USAGE=I5 ,$
 FIELDNAME=SALES ,ALIAS=E08 ,USAGE=I6 ,$

Controlling Attributes in HOLD Master Files

In this section:

Controlling Field Names in a HOLD Master File

Controlling Fields in a HOLD Master File

Controlling the TITLE and ACCEPT Attributes in the HOLD Master File

The commands SET ASNAMES, SET HOLDLIST, and SET HOLDATTR enable you to control
the FIELDNAME, TITLE, and ACCEPT attributes in HOLD Master Files. These commands are
issued prior to the report request and remain in effect for the duration of the session, unless
you change them.

The SET ASNAMES command designates text specified in an AS phrase as the field name
in the HOLD Master File, and concatenates it to the beginning of the first field name
specified in an ACROSS phrase. See Controlling Field Names in a HOLD Master File on
page 435.

434 Information Builders

Controlling Attributes in HOLD Master Files

The SET HOLDLIST command restricts fields in HOLD files to those appearing in a request.
That is, non-displaying fields in a request (those designated as NOPRINT fields) are not
included in the HOLD file. See Controlling Fields in a HOLD Master File on page 439.

The SET HOLDATTR command propagates TITLE and ACCEPT attributes used in the original
Master File to the HOLD Master File. See Controlling the TITLE and ACCEPT Attributes in
the HOLD Master File on page 441.

In addition, the SET HOLDSTAT command enables you to include comments and DBA
information in the HOLD Master File. For more information about SET HOLDSTAT, see the
Describing Data manual. For details about SET commands, see the Developing Applications
manual.

Controlling Field Names in a HOLD Master File

How to:

Control Field Names in a HOLD Master File

Reference:

Usage Notes for Controlling Field Names in HOLD Files

When SET ASNAMES is set to ON or FOCUS, the literal specified in an AS phrase in a report
request is used as the field name in a HOLD Master File. This command also controls how
ACROSS fields are named in HOLD files.

How to Control Field Names in a HOLD Master FileSyntax:

SET ASNAMES = [ON|OFF|FOCUS]

where:

ON

Uses the literal specified in an AS phrase for the field name and controls the way ACROSS
fields are named in HOLD files of any format.

OFF

Does not use the literal specified in an AS phrase as a field name in HOLD files, and
does not affect the way ACROSS fields are named.

FOCUS

Uses the literal specified in an AS phrase as the field name and controls the way ACROSS
fields are named only in HOLD files in FOCUS format. FOCUS is the default value.

Creating Reports 435

10. Saving and Reusing Your Report Output

Usage Notes for Controlling Field Names in HOLD FilesReference:

If no AS phrase is specified for a field, the field name from the original Master File is
used. The TITLE attribute specified in the Master File is not used unless SET HOLDATTR
was previously issued.

To ensure that fields referenced more than once in a request have unique names in the
HOLD Master File, use SET ASNAMES.

All characters are converted to uppercase.

Special characters and blanks used in the AS phrase are preserved in the field name
that is created when SET ASNAMES is used. Use single quotation marks around the
non-standard field names when referring to them in the newly created Master File.

Text specified in an AS phrase that contains more than 66 characters is truncated to 66
characters in the Master File.

Aliases are not carried over into the HOLD Master File. A new set of aliases is supplied
automatically. These aliases are named E01 for the first field, E02 for the second, and
so forth.

Duplicate field names may occur in the newly created Master File as a result of truncation
or the way AS phrases have been specified. In this case, refer to the fields by their aliases
(E01, E02, and so forth).

When commas are used as delimiters to break lines in the column heading, only the
literal up to the first comma is used as the field name in the Master File. For example,

PRINT COUNTRY AS 'PLACE,OF,ORIGIN'

produces the field name PLACE in the HOLD Master File.

When ACROSS is used in a report request and the results are extracted to a HOLD file,
the columns generated by the ACROSS phrase all have the same field name in the HOLD
Master File. If SET ASNAMES is issued, each new column may have a unique field name.
This unique field name consists of the ASNAME value specified in the request's display
command, concatenated to the beginning of the value of the field used in the ACROSS
phrase. If several field names have the same letters, this approach does not work.

If an AS phrase is used for the fields in the ACROSS phrase, each new column has a
field name composed of the literal in the AS phrase concatenated to the beginning of
the value of the first field used in the ACROSS phrase.

436 Information Builders

Controlling Attributes in HOLD Master Files

Controlling Field Names in the HOLD Master FileExample:

In the following example, SET ASNAMES=ON causes the text in the AS phrase to be used
as field names in the HOLD1 Master File. The two fields in the HOLD1 Master File, NATION
and AUTOMOBILE, contain the data for COUNTRY and CAR.

SET ASNAMES=ON
TABLE FILE CAR
PRINT CAR AS 'AUTOMOBILE'
BY COUNTRY AS 'NATION'
ON TABLE HOLD AS HOLD1
END

The request produces the following Master File:

FILE=HOLD1, SUFFIX=FIX
 SEGMENT=HOLD1, SEGTYPE=S01,$
 FIELDNAME=NATION ,ALIAS=E01 ,USAGE=A10 ,ACTUAL=A12 ,$
 FIELDNAME=AUTOMOBILE ,ALIAS=E02 ,USAGE=A16 ,ACTUAL=A16 ,$

Providing Unique Field Names With SET ASNAMESExample:

The following request generates a HOLD Master File with one unique field name for SALES
and one for AVE.SALES. Both SALES and AVE.SALES would be named SALES, if SET ASNAMES
had not been used.

SET ASNAMES=ON
TABLE FILE CAR
SUM SALES AND AVE.SALES AS 'AVERAGESALES'
BY CAR
ON TABLE HOLD AS HOLD2
END

The request produces the following Master File:

FILE=HOLD2, SUFFIX=FIX
 SEGMENT=HOLD2, SEGTYPE=S01,$
 FIELDNAME=CAR ,ALIAS=E01 ,USAGE=A16 ,ACTUAL=A16 ,$
 FIELDNAME=SALES ,ALIAS=E02 ,USAGE=I6 ,ACTUAL=I04 ,$
 FIELDNAME=AVERAGESALES ,ALIAS=E03 ,USAGE=I6 ,ACTUAL=I04 ,$

Creating Reports 437

10. Saving and Reusing Your Report Output

Using SET ASNAMES With the ACROSS PhraseExample:

The following request produces a HOLD Master File with the literal CASH concatenated to
each value of COUNTRY.

SET ASNAMES=ON
TABLE FILE CAR
SUM SALES AS 'CASH'
ACROSS COUNTRY
ON TABLE HOLD AS HOLD3
END

The request produces the following Master File:

FILE=HOLD3, SUFFIX=FIX
 SEGMENT=HOLD3, SEGTYPE=S01,$
 FIELDNAME=CASHENGLAND ,ALIAS=E01 ,USAGE=I6 ,ACTUAL=I04 ,$
 FIELDNAME=CASHFRANCE ,ALIAS=E02 ,USAGE=I6 ,ACTUAL=I04 ,$
 FIELDNAME=CASHITALY ,ALIAS=E03 ,USAGE=I6 ,ACTUAL=I04 ,$
 FIELDNAME=CASHJAPAN ,ALIAS=E04 ,USAGE=I6 ,ACTUAL=I04 ,$
 FIELDNAME=CASHW GERMANY ,ALIAS=E05 ,USAGE=I6 ,ACTUAL=I04 ,$

Without the SET ASNAMES command, every field in the HOLD FILE is named COUNTRY.

To generate field names for ACROSS values that include only the field value, use the AS
phrase followed by two single quotation marks, as follows:

SET ASNAMES=ON
TABLE FILE CAR
SUM SALES AS ''
ACROSS COUNTRY
ON TABLE HOLD AS HOLD4
END

The resulting Master File looks like this:

FILE=HOLD4, SUFFIX=FIX
 SEGMENT=HOLD4, SEGTYPE=S0,$
 FIELDNAME=ENGLAND ,ALIAS=E01 ,USAGE=I6 ,ACTUAL=I04 ,$
 FIELDNAME=FRANCE ,ALIAS=E02 ,USAGE=I6 ,ACTUALI04 ,$
 FIELDNAME=ITALY ,ALIAS=E03 ,USAGE=I6 ,ACTUALI04 ,$
 FIELDNAME=JAPAN ,ALIAS=E04 ,USAGE=I6 ,ACTUALI04 ,$
 FIELDNAME=W GERMANY ,ALIAS=E05 ,USAGE=I6 ,ACTUALI04 ,$

438 Information Builders

Controlling Attributes in HOLD Master Files

Controlling Fields in a HOLD Master File

How to:

Control Fields in a HOLD File

You can use the SET HOLDLIST command to restrict fields in HOLD Master Files to those
appearing in a request.

How to Control Fields in a HOLD FileSyntax:

SET HOLDLIST = {PRINTONLY|ALL|ALLKEYS}

where:

PRINTONLY

Specifies that only those fields that would appear in the report are included in the
generated HOLD file. Non-displaying fields in a request (those designated as NOPRINT
fields) are not included in the HOLD file.

ALL

Specifies that all display fields referenced in a request appear in a HOLD file, including
calculated values. ALL is the default value. OLD may be used as a synonym for ALL.

Note: Vertical sort (BY) fields specified in the request with the NOPRINT option are not
included in the HOLD file even if HOLDLIST=ALL.

ALLKEYS

Propagates all fields, including NOPRINTed BY fields.

Note that SET HOLDLIST may also be issued from within a TABLE request. When used with
MATCH, SET HOLDLIST always behaves as if HOLDLIST is set to ALL.

Creating Reports 439

10. Saving and Reusing Your Report Output

Using HOLDLIST=ALLExample:

When HOLDLIST is set to ALL, the following TABLE request produces a HOLD file containing
all specified fields, including NOPRINT fields and values calculated with the COMPUTE
command.

SET HOLDLIST=ALL

TABLE FILE CAR
PRINT CAR MODEL NOPRINT
COMPUTE TEMPSEATS=SEATS+1;
BY COUNTRY
ON TABLE HOLD
END

? HOLD

The output is:

18LINE=NUMBER OF RECORDS IN TABLE= 18

DEFINITION OF HOLD FILE: HOLD
FORMATALIASFIELDNAME

A10E01COUNTRY
A16E02CAR
A24E03MODEL
I3E04SEATS
D12.2E05TEMPSEATS

Using HOLDLIST= PRINTONLYExample:

When HOLDLIST is set to PRINTONLY, the following TABLE request produces a HOLD file
containing only fields that would appear in report output:

SET HOLDLIST=PRINTONLY

TABLE FILE CAR
PRINT CAR MODEL NOPRINT
COMPUTE TEMPSEATS=SEATS+1;
BY COUNTRY
ON TABLE HOLD
END

? HOLD

440 Information Builders

Controlling Attributes in HOLD Master Files

The output is:

18LINES=NUMBER OF RECORDS IN TABLE= 18

DEFINITION OF HOLD FILE: HOLD
FORMATALIASFIELDNAME

A10E01COUNTRY
A16E02CAR
D12.2E03TEMPSEATS

Controlling the TITLE and ACCEPT Attributes in the HOLD Master File

How to:

Control TITLE and ACCEPT Attributes

The SET HOLDATTR command controls whether the TITLE and ACCEPT attributes in the
original Master File are propagated to the HOLD Master File. SET HOLDATTR does not affect
the way fields are named in the HOLD Master File.

Note that if a field in a data source does not have the TITLE attribute specified in the Master
File, but there is an AS phrase specified for the field in a report request, the corresponding
field in the HOLD file is named according to the AS phrase.

How to Control TITLE and ACCEPT AttributesSyntax:

SET HOLDATTR =[ON|OFF|FOCUS]

where:

ON

Uses the TITLE attribute as specified in the original Master File in HOLD files in any
format. The ACCEPT attribute is propagated to the HOLD Master File only for HOLD files
in FOCUS format.

OFF

Does not use the TITLE or ACCEPT attributes from the original Master File in the HOLD
Master File.

FOCUS

Uses the TITLE and ACCEPT attributes only for HOLD files in FOCUS format. FOCUS is
the default value.

Creating Reports 441

10. Saving and Reusing Your Report Output

Controlling TITLE and ACCEPT Attributes in a HOLD Master FileExample:

In this example, the Master File for the CAR data source specifies TITLE and ACCEPT
attributes:

FILENAME=CAR2, SUFFIX=FOC
SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME =COUNTRY, COUNTRY, A10, TITLE='COUNTRY OF ORIGIN',
 ACCEPT='CANADA' OR 'ENGLAND' OR 'FRANCE' OR 'ITALY' OR
 'JAPAN' OR 'W GERMANY',
 FIELDTYPE=I,$
SEGNAME=COMP, SEGTYPE=S1, PARENT=ORIGIN
 FIELDNAME=CAR, CARS, A16, TITLE='NAME OF CAR',$
.
.
.

Using SET HOLDATTR=FOCUS, the following request

SET HOLDATTR = FOCUS
TABLE FILE CAR2
PRINT CAR
BY COUNTRY ON TABLE HOLD FORMAT FOCUS AS HOLD5
END

produces this HOLD Master File:

FILE=HOLD5, SUFFIX=FOC
 SEGMENT=SEG01, SEGTYPE=S02
 FIELDNAME=COUNTRY ,USAGE=E01 ,ACTUAL=A10
 TITLE='COUNTRY OF ORIGIN',
 ACCEPT=CANADA ENGLAND FRANCE ITALY JAPAN 'W GERMANY',$
 FIELDNAME=FOCLIST ,USAGE=E02 ,ACTUAL=I5 ,$
 FIELDNAME=CAR ,USAGE=E03 ,ACTUAL=A16 ,
 TITLE='NAME OF CAR' ,$

442 Information Builders

Controlling Attributes in HOLD Master Files

Keyed Retrieval From HOLD Files

How to:

Control Keyed Retrieval for a HOLD File

Keyed retrieval is supported with any single-segment SUFFIX=FIX data source or HOLD file
that is sorted based on the key. Keyed retrieval can reduce the IOs incurred in reading extract
files, by using the SEGTYPE parameter in the Master File to identify which fields comprise
the logical key for sequential files. When FIXRETRIEVE is:

ON, the retrieval process stops when an equality or range test on the key holds true.

OFF, all of the records from the sequential file are read and screening conditions are
applied when creating the final report.

The ON TABLE HOLD command enables you to read one of the many supported data sources
and create extract files. You can then join these fixed-format sequential files to other data
sources to narrow your view of the data. The concept of a logical key in a fixed-format file
enables qualified keyed searches for all records that match IF/WHERE tests for the first n
KEY fields identified by the SEGTYPE attribute. Retrieval stops when the screening test
detects values greater than those specified in the IF/WHERE test.

When a Master File is created for the extract file, a SEGTYPE of either Sn or SHn is added,
based on the BY fields in the request. For example, PRINT field BY field creates a HOLD
Master File with SEGTYPE=S1. Using BY HIGHEST field creates a Master with SEGTYPE=SH1.

How to Control Keyed Retrieval for a HOLD FileSyntax:

SET FIXRET[RIEVE] = {ON|OFF}

where:

ON

Enables keyed retrieval. ON is the default setting.

OFF

Disables keyed retrieval.

Creating Reports 443

10. Saving and Reusing Your Report Output

Master File for Keyed Retrieval From a HOLD FileExample:

The following Master File describes a fixed-format sequential file with sorted values of
SEQ_NO, in ascending order from 1 to 100,000.

FILE=SORTED,SUFFIX=FIX,$
SEGNAME=ONE,SEGTYPE=S1,$
 FIELD=MYKEY,MK,I8,I8,$
 FIELD=MFIELD,MF,A10,A10,$

TABLE FILE SORTED
 PRINT MFIELD
 WHERE MYKEY EQ 100
END

In this instance, with FIXRETRIEVE=ON, retrieval stops when MYKEY reaches 101, vastly
reducing the potential number of IOs, as only 101 records are read out of a possible 100,000.

Selection Criteria for Keyed Retrieval From an Extract FileExample:

Selection criteria that include lists of equality values use keyed retrieval. For example,

{IF|WHERE} MYKEY EQ x OR y OR z

IF and WHERE tests can also include range tests. For example,

{IF|WHERE} MYKEY IS-FROM x TO y

The maximum number of vertical (BY) sort fields remains 32.

In using this feature, keep in mind that when adding unsorted records to a sorted HOLD file,
records that are out of sequence are not retrieved. For example, suppose that a sorted file
contains the following three records:

Key

1 1200

2 2340

3 4875

and you add the following record at the bottom of the file:

1 1620

With FIXRETRIEVE=ON, the new record with a key value of 1 is omitted, as retrieval stops
as soon as a key value of 2 is encountered.

444 Information Builders

Keyed Retrieval From HOLD Files

Using DBMS Temporary Tables as HOLD Files

In this section:

Column Names in the HOLD File

Primary Keys and Indexes in the HOLD File

How to:

Save Report Output as a Native Temporary Table Using Commands

Reference:

Temporary Table Properties for SAME_DB Persistence Values

You can create a report output file (that is, a HOLD file), as a native DBMS temporary table.
This increases performance by keeping the entire reporting operation on the DBMS server,
instead of downloading data to your computer and then back to the DBMS server.

For example, if you temporarily store report output for immediate use by another procedure,
storing it as a temporary table instead of creating a standard HOLD file avoids the overhead
of transmitting the interim data to your computer.

The temporary table columns are created from the following report elements

Display columns

Sort (BY) columns

COMPUTE columns

except for those for which NOPRINT is specified.

Creating Reports 445

10. Saving and Reusing Your Report Output

The temporary table that you create from your report will be the same data source type (that
is, the same DBMS) as the data source from which you reported. If the data source from
which you reported contains multiple tables, all must be of the same data source type and
reside on the same instance of the DBMS server.

You can choose between several types of table persistence.

You can create extract files as native DBMS tables with the following adapters:

DB2 (on z/OS, UNIX, and Windows)

Informix

Microsoft SQL Server

MySQL

Oracle

Teradata

How to Save Report Output as a Native Temporary Table Using CommandsSyntax:

The syntax to save report output as a native DBMS temporary table is

ON TABLE HOLD [AS filename] FORMAT SAME_DB [PERSISTENCE persistValue]

where:

filename

Specifies the name of the HOLD file. If you omit AS filename, the name of the temporary
table defaults to "HOLD".

Because each subsequent HOLD command overwrites the previous HOLD file, it is
recommended to specify a name in each request to direct the extracted data to a separate
file, thereby preventing an earlier file from being overwritten by a later one.

PERSISTENCE

Specifies the type of table persistence and related table properties. This is optional for
DBMSs that support volatile tables, and required otherwise. For information about support
for volatile tables for a particular DBMS, see Temporary Table Properties for SAME_DB
Persistence Values on page 448, and consult your DBMS vendor documentation.

446 Information Builders

Using DBMS Temporary Tables as HOLD Files

persistValue

Is one of the following:

VOLATILE

Specifies that the table is local to the DBMS session. A temporary synonym (a Master
File and Access File), is generated automatically. It expires when the server session
ends.

This is the default persistence setting for all DBMSs that support volatile tables.

For information about support for the volatile setting, and about persistence and
other table properties, for a particular DBMS, see Temporary Table Properties for
SAME_DB Persistence Values on page 448, and consult your DBMS vendor
documentation.

GLOBAL_TEMPORARY

Specifies that while the table exists, its definition will be visible to other database
sessions and users though its data will not be. A permanent synonym (a Master File
and Access File), is generated automatically.

For information about support for the global temporary setting, and about persistence
and other table properties, for a particular DBMS, see Temporary Table Properties
for SAME_DB Persistence Values on page 448, and consult your DBMS vendor
documentation.

PERMANENT

Specifies that a regular permanent table will be created. A permanent synonym (a
Master File and Access File), is generated automatically.

Creating Reports 447

10. Saving and Reusing Your Report Output

Temporary Table Properties for SAME_DB Persistence ValuesReference:

The following chart provides additional detail about persistence and other properties of
temporary tables of different data source types that are supported for use with HOLD format
SAME_DB.

GLOBAL_TEMPORARYVOLATILEDBMS

DB2 Release 7.1 and up for z/OS
only: a global temporary table is
created using the CREATE GLOBAL
TEMPORARY TABLE command. The
definition of a created global
temporary table is visible to other
sessions, but the data is not. The
data is deleted at the end of each
transaction (COMMIT or ROLLBACK
command). The table definition
persists after the session ends.

DB2 on UNIX, Windows, and DB2 for
z/OS: a volatile table is created
using the DECLARE GLOBAL
TEMPORARY TABLE command with
the ON COMMIT PRESERVE ROWS
option. Declared global temporary
tables persist and are visible only
within the current session
(connection). SESSION is the
schema name for all declared global
temporary tables.

DB2

The table's definition is visible to all
sessions; its data is visible only to
the session that inserts data into it.
The table's definition persists for the
same period as the definition of a
regular table.

This type of table is not supported
by Oracle.

Oracle

A global temporary table persists for
the same duration as a permanent
table. The definition is visible to all
sessions, but the data is visible only
to the session that inserted the
data. The global temporary table is
created with the ON COMMIT
PRESERVE ROWS option.

A volatile table definition and data
are visible only within the session
that created the table and inserted
the data. The volatile table is
created with the ON COMMIT
PRESERVE ROWS option.

Teradata

Column Names in the HOLD File
Each HOLD file column is assigned its name:

1. From the AS name specified for the column in the report request.

2. If there is no AS name specified, the name is assigned from the alias specified in the
synonym. (The alias is identical to the column name in the original relational table.)

448 Information Builders

Using DBMS Temporary Tables as HOLD Files

3. In all other cases, the name is assigned from the field name as it is specified in the
synonym.

Primary Keys and Indexes in the HOLD File
A primary key or an index is created for the HOLD table. The key or index definition is
generated from the sort (BY) keys of the TABLE command, except for undisplayed sort keys
(that is, sort keys for which NOPRINT is specified). To determine whether a primary key or
an index will be created:

1. If these sort keys provide uniqueness and do not allow nulls (that is, if in the synonym,
the MISSING attribute column is unselected or OFF), and if the DBMS supports primary
keys on the type of table being created, a primary key is created.

2. If these sort keys provide uniqueness but either

a. some of the columns allow nulls.

b. the DBMS does not support primary keys on the type of table being created then a
unique index is created.

3. If these sort keys do not provide uniqueness, a non-unique index is created.

4. If there are no displayed sort keys (that is, no sort keys for which NOPRINT has not been
specified), no primary key or index is created.

Creating SAVE and SAVB Files

How to:

Create a SAVE File

Create a SAVB File

The SAVE command, by default, captures report output in ALPHA format as a simple
sequential data source, without headings or subtotals. However, you can specify a variety
of other formats for SAVE files, which are compatible with many software products. For
example, you can specify SAVE formats to display report output in a Web page, a text
document, a spreadsheet or word processing application, or to be used as input to other
programming languages. For a list of supported formats, see Choosing Output File Formats
on page 455.

Regardless of format, the SAVE command does not create a Master File.

Creating Reports 449

10. Saving and Reusing Your Report Output

The SAVB command is a variation on the SAVE command. SAVB creates a data source
without a Master File, but numeric fields are stored in BINARY format. You can use the SAVB
file as input to a variety of applications. SAVB output is the same as the default output
created by the HOLD command.

How to Create a SAVE FileSyntax:

From a report request, use

ON TABLE SAVE [AS filename] [FORMAT fmt] [MISSING {ON|OFF}]

or

save_field SAVE [AS filename] [FORMAT fmt] [MISSING {ON|OFF}]

After a report is executed, use

SAVE [AS filename] [FORMAT fmt] [MISSING {ON|OFF}]

where:

save_field

Is the name of the last field in the request, excluding BY or ACROSS fields.

AS filename

Specifies a name for the SAVE file. If you do not specify a file name, SAVE is used as
the default. Since each subsequent SAVE command overwrites the previous SAVE file,
it is advisable to code a distinct file name in each request to direct the extracted data
to a separate file, thereby preventing it from being overwritten by the next SAVE command.

FORMAT fmt

Specifies the format of the SAVE file. ALPHA is the default format.

To display as or in a Web page:

HTML, HTMTABLE, DHTML

To use in a text document:

ALPHA, DOC, PDF, WP

To use in a spreadsheet application:

DIF, EXCEL, EXL2K, LOTUS, SYLK

To use in a database application:

COMMA, COM, COMT

For details about all available formats, see Choosing Output File Formats on page 455.

450 Information Builders

Creating SAVE and SAVB Files

MISSING

Ensures that fields with the MISSING attribute set to ON are carried over into the SAVE
file. MISSING OFF is the default attribute. See Handling Records With Missing Field Values
on page 807.

Creating a SAVE FileExample:

The following request extracts data from the EMPLOYEE data source and creates a SAVE
file.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY DEPARTMENT
ON TABLE SAVE
END

A description of the ALPHA (default SAVE format) file layout appears after the records are
retrieved.

The output is:

Creating Reports 451

10. Saving and Reusing Your Report Output

How to Create a SAVB FileSyntax:

From a request, use

ON TABLE SAVB [AS filename] [MISSING {ON|OFF}]

or

save_field SAVB [AS filename] [MISSING {ON|OFF}]

After a report is executed, use

SAVB [AS filename] [MISSING {ON|OFF}]

where:

save_field

Is the name of the last field in the request, excluding BY and ACROSS fields.

AS filename

Specifies a name for the SAVB file. If you do not specify a file name, SAVB is used as
the default. Since each subsequent SAVB command overwrites the previous SAVB file,
it is advisable to code a distinct file name in each request to direct the extracted data
to a separate file, thereby preventing it from being overwritten by the next SAVB command.

MISSING

Ensures that fields with the MISSING attribute set to ON are carried over into the SAVB
file. The default is MISSING OFF. See Handling Records With Missing Field Values on
page 807.

Creating a SAVB FileExample:

The following request extracts data from the SALES data source and creates a SAVB file.

TABLE FILE SALES
PRINT PROD_CODE AND AREA
BY DATE
WHERE CITY IS 'STAMFORD' OR 'UNIONDALE'
ON TABLE SAVB
END

A description of the BINARY file is appears after the records are retrieved.

452 Information Builders

Creating SAVE and SAVB Files

The output is:

Creating a PCHOLD File

How to:

Create a PCHOLD File

The PCHOLD command enables you to extract data from a Reporting server and return the
output to a FOCUS client. See the Overview and Operating Environments manual for
information about using FOCUS as a client to a Reporting server.

Note: If your environment supports the SET parameter SAVEMATRIX, you can preserve the
internal matrix of your last report in order to keep it available for subsequent HOLD, SAVE,
and SAVB commands when the request is followed by Dialogue Manager commands. For
details on SAVEMATRIX, see the Developing Applications manual.

How to Create a PCHOLD FileSyntax:

The syntax for PCHOLD in a report request is

ON TABLE {PCHOLD|HOLD AT CLIENT} [AS filename] [FORMAT fmt]

where:

PCHOLD|HOLD AT CLIENT

Downloads HOLD files to a browser or other client application. HOLD AT CLIENT is a
synonym for PCHOLD. The output is saved with a Master File. For details about the
behavior of PCHOLD, see Creating a HOLD File on page 423.

Creating Reports 453

10. Saving and Reusing Your Report Output

AS filename

Specifies a name for the PCHOLD file. If you do not specify a file name, PCHOLD becomes
the default. Since each subsequent PCHOLD command overwrites the previous PCHOLD
file, it is advisable to code a distinct file name in each request to direct the extracted
data to a separate file, thereby preventing it from being overwritten by the next PCHOLD
command.

FORMAT fmt

Specifies the format of the PCHOLD file. ALPHA is the default format.

To display as or in a Web page, choose:

HTML, HTMTABLE, DHTML

To display as a printed document, choose:

PDF, PS

To use in a text document, choose:

ALPHA, DOC, WP

To use in a spreadsheet application, choose:

DIF, EXCEL, EXL2K [PIVOT], LOTUS

To use for additional reporting, choose:

ALPHA, BINARY

For details about all available formats, see Choosing Output File Formats on page 455.

454 Information Builders

Creating a PCHOLD File

Choosing Output File Formats

FORMAT INGRES

FORMAT INTERNAL

FORMAT LOTUS

FORMAT PDF

FORMAT PDF OPEN/CLOSE

FORMAT POSTSCRIPT (PS)

FORMAT PPT

FORMAT REDBRICK

FORMAT SQL

FORMAT SQLDBC

FORMAT SQLINF

FORMAT SQLMSS

FORMAT SQLODBC

FORMAT SQLORA

FORMAT SQLSYB

FORMAT SYLK

FORMAT TAB

FORMAT TABT

FORMAT WP

FORMAT XFOCUS

Reference:

FORMAT ALPHA

FORMAT BINARY

FORMAT COMMA

FORMAT COM

FORMAT COMT

FORMAT DB2

FORMAT DFIX

FORMAT DHTML

FORMAT DIF

FORMAT DOC

FORMAT EXCEL

FORMAT EXL2K

FORMAT EXL2K FORMULA

FORMAT EXL2K PIVOT

FORMAT EXL97

FORMAT FOCUS

FORMAT HTML

FORMAT HTMTABLE

FORMAT INGRES

You can select from a wide range of output formats to preserve your report output for use
in any of the following ways:

To display as or in a Web page, as a printed document, or in a text document.

To process in another application, such as a spreadsheet, a database, a word processor,
or a 3GL program.

To send to another location, such as a browser or PC.

To extract a subset of the original data source in order to generate multi-step reports.

Creating Reports 455

10. Saving and Reusing Your Report Output

For details on each of the supported formats, including the commands that support them
(HOLD, PCHOLD, SAVE) and the operating environments in which they are available, see the
reference topics for the following formats.

SQLORA

SQLSYB

SYLK

TAB

TABT

WP

XFOCUS

POSTSCRIPT
(PS)

PPT

REDBRICK

SQL

SQLDBC

SQLINF

SQLMSS

SQLODBC

HTML

HTMTABLE

INGRES

INTERNAL

LOTUS

PDF

DFIX

DHTML

DIF

DOC

EXCEL

EXL2K

EXL2K
FORMULA

EXL2K PIVOT

EXL97

FOCUS

ALPHA

BINARY

COMMA

COM

COMT

DB2

FORMAT ALPHAReference:

Description: Saves report output as fixed-format character data and can be created as a
HOLD file.

ALPHA is the default SAVE format. The output file contains data only.

Text fields are supported in ALPHA-formatted files. See Using Text Fields in Output Files on
page 472.

To control missing data characters that are propagated to fields with the MISSING=ON
attribute, use the SET HNODATA command. For more information, see the Developing
Applications manual.

Use: For display in a text document. For further reporting in FOCUS, WebFOCUS, or Developer
Studio. As a transaction file for modifying a data source.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

456 Information Builders

Choosing Output File Formats

FORMAT BINARYReference:

Description: Saves report data and stores numeric fields as binary numbers. When created
as a HOLD file, also creates a Master File.

BINARY is the default format for HOLD files. When created in BINARY format:

The HOLD file is a sequential single-segment data source. The HOLD Master File is a
subset of the original Master File, and may also contain fields that have been created
using the COMPUTE or DEFINE commands or generated in an ACROSS phrase.

By default, fields with format I remain four-byte binary integers. Format F fields remain
in four-byte floating-point format. Format D fields remain in eight-byte double-precision
floating-point, and format P fields remain in packed decimal notation and occupy eight
bytes (for fields less than or equal to eight bytes long) or 16 bytes (for packed decimal
fields longer than eight bytes). Alphanumeric fields (format A) are stored in character
format.

Every data field in the sequential extract record is aligned on the start of a full four-byte
word. Therefore, if the format is A1, the field is padded with three bytes of blanks on the
right. This alignment makes it easier for user-coded subroutines to process these data
fields. (Under some circumstances, you may wish to prevent the padding of integer and
packed decimal fields. Do so with HOLD FORMAT INTERNAL. See Saving Report Output
in INTERNAL Format on page 478.)

The output file contains data only.

Use: For further reporting in FOCUS, WebFOCUS, or Developer Studio. As a transaction file
for modifying a data source.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT COMMAReference:

Description: Saves the data values as a variable-length text file, with fields separated by
commas and with character values enclosed in double quotation marks. All blanks within
fields are retained. This format is the industry standard comma-delimited format.

This format does not have the safety feature of the double quote added within a text field
containing a double quote.

The extension or file type for this format is PRN. This format type does not create a Master
File.

Creating Reports 457

10. Saving and Reusing Your Report Output

Note:

Smart date fields and dates formatted as I or P fields with date format options are treated
as numeric, and are not enclosed in double quotation marks in the output file. Dates
formatted as alphanumeric fields with date format options are treated as alphanumeric,
and enclosed in double quotation marks.

Continental decimal notation (CDN=ON|SPACE|QUOTE|QUOTEP) is not supported. A comma
within a number is interpreted as two separate columns by a destination application such
as Microsoft Access.

The output file contains data only.

Use: For further processing in a database application. This format type can be imported into
applications such as Excel or Lotus.

Supported with the commands: HOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT COMReference:

Description: Saves the data values as a variable-length text file with fields separated by
commas and with character values enclosed in double quotation marks. Leading blanks are
removed from numeric fields, and trailing blanks are removed from character fields. To issue
a request against this data source, the setting PCOMMA=ON is required.

This format also includes a built-in safety feature, which allows embedded quotes within
character fields. A second double quote (") is inserted adjacent to the existing one. For
example, if you input Joe "Smitty" Smith, the output is Joe ""Smitty"" Smith.

The extension or file type for this format is CSV. A Master File is created for this format type
when the command used to create the output file is HOLD. The SUFFIX in the generated
Master File is COM.

Note:

Smart date fields and dates formatted as I or P fields with date format options are treated
as numeric, and are not enclosed in double quotation marks in the output file. Dates
formatted as alphanumeric fields with date format options are treated as alphanumeric,
and enclosed in double quotation marks.

Continental decimal notation (CDN=ON|SPACE|QUOTE|QUOTEP) is not supported. A comma
within a number is interpreted as two separate columns by a destination application such
as Microsoft Access.

To create a variable-length comma- or tab-delimited HOLD file that differentiates between
a missing value and a blank string or zero value, use the SET NULL=ON command. For
more information, see the Developing Applications manual.

458 Information Builders

Choosing Output File Formats

Use: For further processing in a database application. This format type can be imported into
applications such as Excel or Lotus.

Supported with the commands: HOLD, SAVE, PCHOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT COMTReference:

Description: Saves the column headings in the first row of the output file. It produces a
variable-length text file with fields separated by commas, and with character values enclosed
in double quotation marks. Leading blanks are removed from numeric fields, and trailing
blanks are removed from character fields. This format is required by certain software packages
such as Microsoft Access.

This format also includes a built-in safety feature, which allows embedded quotes within
character fields. A second double quote (") is inserted adjacent to the existing one. For
example, if you input Joe "Smitty" Smith, the output is Joe ""Smitty"" Smith.

The extension or file type for this format is CSV. A Master File is created for this format type
when the command used to create the output file is HOLD. The SUFFIX in the generated
Master File is COMT.

Note:

Smart date fields and dates formatted as I or P fields with date format options are treated
as numeric, and are not enclosed in double quotation marks in the output file. Dates
formatted as alphanumeric fields with date format options are treated as alphanumeric,
and enclosed in double quotation marks.

Continental decimal notation (CDN=ON|SPACE|QUOTE|QUOTEP) is not supported. A comma
within a number is interpreted as two separate columns by a destination application such
as Microsoft Access.

To create a variable-length comma- or tab-delimited HOLD file that differentiates between
a missing value and a blank string or zero value, use the SET NULL=ON command. For
more information, see the Developing Applications manual.

Use: For further processing in a database application. This format type can be imported into
applications such as Excel or Lotus.

Supported with the commands: HOLD, SAVE, PCHOLD.

Available in: FOCUS, Developer Studio, WebFOCUS.

Creating Reports 459

10. Saving and Reusing Your Report Output

FORMAT DB2Reference:

Description: Creates a DB2 table, if you have the DB2 Data Adapter and permission to
create tables.

Use: For further processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT DFIXReference:

Description: Creates a delimited output file. You can specify the delimiter, whether
alphanumeric fields should be enclosed within a special character such as a double quotation
mark, and whether the file should be generated with a header record containing the field
names.

For more information, see Creating a Delimited Sequential File on page 473.

Use: For importing data to Windows-based applications such as MS Access and Excel.

Supported with the command: HOLD, PCHOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT DHTMLReference:

Description: Provides HTML output that has most of the features normally associated with
output formatted for printing such as PDF or PostScript output. You can create an HTML file
(.htm) or a Web Archive file (.mht). The type of output file produced is controlled by the value
of the HTMLARCHIVE parameter. HTMLARCHIVE=ON creates a Web Archive file.

Some of the features supported by format DHTML are:

Absolute positioning. DHTML precisely places text and images inside an HTML report,
allowing you to use the same StyleSheet syntax to lay out HTML as you use for PDF or
PS output.

On demand paging. On demand paging is available with SET HTMLARCHIVE=OFF.

PDF StyleSheet features. For example, the following features are supported: grids,
background colors, OVER, bursting, coordinated compound reports.

Note:

The font map file for DHTML reports is dhtml.fmp.

Legacy compound reports are not supported.

Use: For display as a Web page.

460 Information Builders

Choosing Output File Formats

Supported with the commands: HOLD, PCHOLD, SAVE .

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT DIFReference:

Description: Captures the entire report output, excluding headings, footings, subheads,
and subfoots, and creates a character file that can be easily incorporated into most
spreadsheet packages.

For example, running a TABLE request with HEADING/FOOTING and ON TABLE HOLD FORMAT
DIF does not display the report output with headings and footings. As a workaround, use
another format (such as HTML, PDF, or EXL2K).

Note: Microsoft Excel SR-1 is no longer supported for HOLD FORMAT DIF. To open these
reports, use either Microsoft Excel SR-2 or Microsoft Excel 2000.

Use: For display or processing in a spreadsheet application.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT DOCReference:

Description: Captures the entire report output, including headings, footings, and subtotals,
and creates a text file with layout and line breaks that can be easily incorporated into most
word processing packages. DOC format uses a form-feed character to indicate page control
information.

Note: A request that contains ON TABLE HOLD FORMAT DOC results in a blank first page
in the report when displayed in Microsoft XP Office. To eliminate this, include SET
PAGE=NOPAGE in your request.

Use: For display in a text document.

Supported with the commands: HOLD, PCHOLD, SAVE.

The PCHOLD variation transfers the data from a Web server to a browser.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT EXCELReference:

Description: Captures report output as a Microsoft Excel spreadsheet file, including data
and column titles, but without report headings, footings, subheadings, or subfootings. If the
report request contains an ACROSS phrase and specifies FORMAT EXCEL, column titles are
not included in the output. If you wish to have the ACROSS column titles appear, use HOLD
FORMAT EXL2K.

Creating Reports 461

10. Saving and Reusing Your Report Output

Text and varchar (AnV) fields are not supported with FORMAT EXCEL. To include them, use
HOLD FORMAT EXL2K. To use FORMAT EXL2K, you must have Excel 2000 installed.

Leading zeros do not appear for FORMAT EXCEL.

Since only single-line (single-cell) column titles are supported in format EXCEL reports, any
additional column title rows are treated as data. For example, if you have a report with a
multi-line (multi-cell) column title and you sort the column, the second (and so on) column
title rows are sorted with the data. To avoid this, only select the data instead of the entire
column when you select sorting options in Excel.

Note:

Microsoft Excel SR-1 is no longer supported for HOLD FORMAT EXCEL. To open these
reports, use either Microsoft Excel SR-2 or Microsoft Excel 2000.

Use: For display or processing in a spreadsheet application.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

In FOCUS, the recommended transfer mechanism is FTP in binary mode. In CMS, the file
type of the resulting file is XLS. On a PC, the extension should be .xls.

FORMAT EXL2KReference:

Description: Generates fully styled reports in Excel 2000 HTML format. You must have
Excel 2000 installed to use this output format.

ACROSS column titles are supported for EXL2K output format.

For EXL2K output format, a report can include 65,536 rows and/or 256 columns. Rows and
columns in excess of these limits are dropped from the report.

Use: For display or processing in a spreadsheet application.

Supported with the commands: HOLD, PCHOLD, SAVE.

For details, and for information about working with EXL2K files, see Working With Styled
Output Formats on page 629.

Available in: WebFOCUS, Developer Studio.

FORMAT EXL2K FORMULAReference:

Description: Specifies that the report will be displayed as an Excel 2000 spreadsheet, with
FOCUS totals and other calculated values translated to active Excel formulas. For details,
see Working With Styled Output Formats on page 629.

Use: For display or processing in a spreadsheet application.

462 Information Builders

Choosing Output File Formats

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, FOCUS, Developer Studio.

FORMAT EXL2K PIVOTReference:

Description: Generates fully styled reports in Excel 2000 HTML format, with added pivoting
capabilities. Requires Excel 2000 on your PC.

Use: For display or processing in a spreadsheet application.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, FOCUS, Developer Studio.

FORMAT EXL97Reference:

Description: Enables you to view and save reports in Excel 97 that include full styling. For
details on working with Excel formats, see Working With Styled Output Formats on page 629.

Leading zeros do not display for FORMAT EXL97.

Use: For display or processing in a spreadsheet application.

Supported with the command: HOLD, PCHOLD, SAVE.

Available in: FOCUS, WebFOCUS, Developer Studio.

FORMAT FOCUSReference:

Description: Creates a FOCUS data source. Four files result: a HOLD data file, a HOLD
Master File, and two work files. See Holding Report Output in FOCUS Format on page 429.

Text fields are supported for FOCUS output files. See Using Text Fields in Output Files on
page 472.

Use: For further processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT HTMLReference:

Description: Creates a complete HTML document that can be viewed in a Web browser.

For more information, see Chapter 10, Styling Reports.

Use: For display as a Web page.

Supported with the commands: HOLD, PCHOLD, SAVE.

Creating Reports 463

10. Saving and Reusing Your Report Output

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT HTMTABLEReference:

Description: Creates an output file that contains only an HTML table. The output produced
is not a complete HTML document.

Internal Cascading Style Sheets (CSS) are supported for FORMAT HTMTABLE. The CSS code
is placed immediately before the TABLE command.

Use: For embedding reports and graphs in an existing HTML document.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT INGRESReference:

Description: Creates an Ingres table, if you have the Ingres Data Adapter and permission
to create tables.

Use: For further processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS when used as a client to the WebFOCUS
Reporting Server.

FORMAT INTERNALReference:

Description: Saves report output without padding the values of integer and packed fields.
See Saving Report Output in INTERNAL Format on page 478.

Use: For accurate processing by 3GL programs.

Supported with the command: HOLD, SAVB.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT LOTUSReference:

Description: Captures all the columns of the report in a character file that LOTUS 1-2-3 can
then import. All alphanumeric fields are enclosed in quotation marks. Columns are separated
by commas.

Use: For display and processing in a spreadsheet application.

Supported with the commands: HOLD, PCHOLD, SAVE (WebFOCUS only).

Available in: WebFOCUS, Developer Studio, FOCUS.

464 Information Builders

Choosing Output File Formats

In VM/CMS, the LOTUS file has a file type of PRN and allocates a scratch data set to the
file HOLD.

FORMAT PDFReference:

Description: Saves the report output in Adobe Portable Document Format (PDF), which
enables precise placement of output (all formatting options such as headings, footings, and
titles) correctly aligned on the physical page, so the report looks exactly as it does when
printed.

If you have a wide PDF report, it is automatically paneled. However, the PANEL parameter
has no effect on FORMAT PDF.

A PDF object is a page, hyperlink, or image. The Portable Document Format (PDF) limits the
number of objects that a PDF document can contain.FOCUS imposes the following object
limits for each PDF report:

LimitObject

10,000Pages

900Images

500Hyperlinks per page

100Total pages with hyperlinks

44,500Total hyperlinks

PDF format retains all formatting options, such as a headings, footings, and titles.

The following fonts are supported: Courier (fixed width), Times (proportional width), and
Helvetica (proportional width). PDF format maps all fonts to Courier, Helvetica, or Times.
The font styles that can be used are Normal (default), Bold, Italic, Underline, and combinations
of these.

The following StyleSheet features are supported with PDF: PAGESIZE, ORIENTATION, UNITS,
TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, POSITION, SQUEEZE, HGRID,
VGRID, BACKCOLOR. Note when you use BACKCOLOR with PDF reports, extra space is added
to the top, bottom, right, and left of each cell of data in the report. This is for readability and
to prevent data truncation.

Use: For display as a printed document. For information about compound reports and styling
options, see Working With Styled Output Formats on page 629.

Supported with the commands: HOLD, PCHOLD, SAVE (WebFOCUS only).

Creating Reports 465

10. Saving and Reusing Your Report Output

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT PDF OPEN/CLOSEReference:

Description: Saves multiple reports into one PDF report.

Use: For combining multiple reports into a single PDF file, also known as a compound report.

Supported with the command: PCHOLD.

Available in: WebFOCUS, Developer Studio, FOCUS

FORMAT POSTSCRIPT (PS)Reference:

Description: Creates an output file in PostScript format, which supports headings, footings,
and totals.

PS is an abbreviation for POSTSCRIPT. In CMS, the file type is PS.

PostScript format supports headings, footings, and totals. PS supports ISO Latin font
encoding.

Use: For display as a printed document. For information about compound reports and styling
options, see Chapter 10, Styling Reports.

Supported with the command: HOLD, PCHOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT PPTReference:

Description: Creates an output file in PowerPoint format in which each page of report output
becomes a separate slide in the file with all styling applied.

Use: For use in a slide presentation.

Supported with the command: HOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT REDBRICKReference:

Description: Creates a Red Brick table, if you have the Redbrick Data Adapter and permission
to create tables.

Use: For further processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS when used as a client to the WebFOCUS
Reporting Server.

466 Information Builders

Choosing Output File Formats

FORMAT SQLReference:

Description: Creates a DB2 for VM table, if you have the adapter for DB2 for VM and
permission to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT SQLDBCReference:

Description: Creates a Teradata table, if you have the Teradata Data Adapter and permission
to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT SQLINFReference:

Description: Creates an Informix table, if you have the Informix Data Adapter and permission
to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS when used as a client to the WebFOCUS
Reporting Server.

FORMAT SQLMSSReference:

Description: Creates a Microsoft SQL Server table, if you have the Microsoft SQL Data
Adapter and permission to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS when used as a client to the WebFOCUS
Reporting Server.

Creating Reports 467

10. Saving and Reusing Your Report Output

FORMAT SQLODBCReference:

Description: Creates an SQLODBC table if you have the current ODBC Data Adapter and
permission to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS when used as a client to the WebFOCUS
Reporting Server.

FORMAT SQLORAReference:

Description: Creates an Oracle table, if you have the Oracle Data Adapter and permission
to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT SQLSYBReference:

Description: Creates a Sybase table, if you have the Sybase Data Adapter and permission
to create tables.

Use: For processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS when used as a client to the WebFOCUS
Reporting Server.

FORMAT SYLKReference:

Description: Captures all the columns of the report request in a character file for Microsoft's
spreadsheet program Multiplan. The generated file cannot have more than 9,999 rows.

Use: For display and processing in a spreadsheet application.

Supported with the command: HOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

468 Information Builders

Choosing Output File Formats

FORMAT TABReference:

Description: Creates an output file in tab-delimited format. The TAB format includes a built-
in safety feature, which allows embedded quotes within character fields. A second double
quote (") is inserted adjacent to the existing one. For example, if you input Joe "Smitty"
Smith, the output is Joe ""Smitty"" Smith. The TAB format also includes the following
features:

All trailing blanks are stripped from alpha [An] fields.

All leading blanks are stripped from numeric [/Dx.y, /Fx.y, /Px.y, and /In] fields.

There is a 32K record length limit in the output file.

A Master File is created when the HOLD command is used to create the output file. The
Master File behaves exactly as in FORMAT ALPHA, except for the inclusion of double
quotes.

Note: To create a variable-length comma- or tab-delimited HOLD file that differentiates
between a missing value and a blank string or zero value, use the SET NULL=ON command.
For more information, see the Developing Applications manual.

Use: For importing data to Windows-based applications such as MS Access and Excel.

Supported with the command: HOLD, SAVE, PCHOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT TABTReference:

Description: Creates an output file in tab-delimited format that includes column headings
in the first row. The TABT format includes a built-in safety feature, which allows embedded
quotes within character fields. A second double quote (") is inserted adjacent to the existing
one. For example, if you input Joe "Smitty" Smith, the output is Joe ""Smitty"" Smith. The
TABT format also includes the following features:

The first row contains field names.

All trailing blanks are stripped from alpha [An] fields.

All leading blanks are stripped from numeric [/Dx.y, /Fx.y, /Px.y, and /In] fields.

There is a 32K record length limit in the output file.

A Master File is created when the HOLD command is used to create the output file. The
Master File behaves exactly as in FORMAT ALPHA, except for the inclusion of double
quotes.

Creating Reports 469

10. Saving and Reusing Your Report Output

Note:

Blank field names display as blank column titles. This may result in an error when
attempting to use the file as input to various applications.

To create a variable-length comma- or tab-delimited HOLD file that differentiates between
a missing value and a blank string or zero value, use the SET NULL=ON command. For
more information, see the Developing Applications manual.

Use: For importing data to Windows-based applications such as MS Access and Excel.

Supported with the command: HOLD, SAVE, PCHOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT WPReference:

Description: Captures the entire report output, including headings, footings, and subtotals,
and creates a text file that can easily be incorporated into most word processing packages.

Text fields are supported in WP format. See Using Text Fields in Output Files on page 472.

To control whether a carriage control character is included in column 1 of each page of the
report output, use:

[ON TABLE] HOLD AS filename FORMAT WP [CC|NOCC]

NOCC excludes carriage control characters. The position reserved for those characters
remains in the file, but is blank. CC includes carriage control characters and, in z/OS, creates
the HOLD file with RECFM VBA. To include page control information in the WP file, you can
also specify the TABPAGENO option in a heading or the SET PAGE=OFF command. The
character 1 in the column 1 indicates the start of a new page.

The following rules summarize FORMAT WP carriage control options:

The CC option always inserts the carriage control character.

The NOCC option always omits the carriage control character.

When you issue HOLD FORMAT WP without the CC or NOCC option:

SET PAGE NUM=OFF and SET PAGE NUM=TOP always insert the carriage control
character.

SET PAGE NUM=NOPAGE always omits the carriage control character.

SET PAGE NUM=ON inserts the carriage control character if TABPAGENO is included
in the heading and omits the carriage control character if TABPAGENO is not included
in the heading.

470 Information Builders

Choosing Output File Formats

Tip: HOLD FORMAT WP does not change the number of lines per page. In order to do so,
issue one or a combination of the commands SET PRINT=OFFLINE, SET SCREEN=PAPER,
or SET SCREEN=OFF.

In z/OS, the WP file is created with a record format of VB when the carriage control character
is omitted and with a record format of VBA when the carriage control character is inserted.

The maximum record length for HOLD FORMAT WP is 358 characters, 356 of which can
represent data.

If you need the report width to remain fixed across releases for later processing of the output
file, you can set the width you need using the SET WPMINWIDTH command. This parameter
specifies the minimum width of the output file. It will be automatically increased if the width
you set cannot accommodate the fields propagated to the output file in the request. On
z/OS, The LRECL of the output file will be four bytes more than the report width because
the file is variable length and needs an additional four bytes to hold the actual length of
each record instance. In other operating environments, the length of the record is the value
of WPMIDWIDTH.

FORMAT WP retains headings, footings, and subtotals.

Use: For display in a text document.

Supported with the commands: HOLD, PCHOLD, SAVE.

Available in: WebFOCUS, Developer Studio, FOCUS.

FORMAT XFOCUSReference:

Description: Creates an XFOCUS data source.

Use: For further processing in a database application.

Supported with the command: HOLD.

Available in: WebFOCUS, Developer Studio, FOCUS.

Creating Reports 471

10. Saving and Reusing Your Report Output

Using Text Fields in Output Files

Reference:

Rules for Text Fields in Output Files

Text fields can be propagated to HOLD and SAVE files that have the following formats: ALPHA,
WP, HTML, EXL2K, PDF, and FOCUS or XFOCUS. They can also be propagated to SAVB files.
However, although a Master File is generated for format ALPHA, you cannot issue a TABLE
request against a HOLD file of format ALPHA that contains text fields.

Rules for Text Fields in Output FilesReference:

You can include as many text fields in the file as needed. However, you must specify text
fields after non-text fields in the display list (PRINT..., SUM..., and so forth).

You can specify only one text field in the display list, and no non-text fields, in a request
that includes an ACROSS phrase.

The following rules apply to missing data for text fields in HOLD and SAVE files:

A blank line is valid data. An end-of-text mark indicates the end of the field.

If there is no text for a field, a single period (.) followed by blanks appears in the HOLD
or SAVE file.

If MISSING=ON during data extraction, a period (.) is written out to the HOLD or SAVE
file.

If MISSING=OFF during data extraction, a blank is written out to the HOLD or SAVE file.

See Handling Records With Missing Field Values on page 807.

In environments that support FIXFORM, due to limitations in the use of text fields with
FIXFORM, the following restrictions apply:

When you use the command FIXFORM FROM HOLD, the HOLD file may not contain more
than one text field, and the text field must be the last field in the Master File.

When HOLD files are read using FIXFORM, the interpretation of missing text depends on
whether the field's designation is MISSING=ON in the Master File, conditional ©) in the
FIXFORM format description, or some combination of the two.

472 Information Builders

Using Text Fields in Output Files

Applying Text Field Rules in HOLD FilesExample:

The following request extracts data to a HOLD file named CRSEHOLD:

TABLE FILE COURSES
PRINT COURSE_CODE DESCRIPTION
ON TABLE HOLD AS CRSEHOLD
END

This produces the following data in the HOLD file CRSEHOLD:

101 This course provides the DP professional with the skills
needed to create, maintain, and report from FOCUS databases.
%$
200 Anyone responsible for designing FOCUS databases will benefit
from this course, which provides the skills needed to design large,
complex databases and tune existing ones.
%$
201 This is a course in FOCUS efficiencies.
%$

The first record of the HOLD file contains data for COURSE_CODE 101, followed by the
DESCRIPTION field. The data for this text field extends into the next record, beginning at
Column 1, and continues to the end of the HOLD record. It is immediately followed by the
end-of-text mark (%$) on a line by itself. The next record contains new data for the next
COURSE_CODE and DESCRIPTION.

If the report uses two text fields, the first record contains data for the first text field. After
the end-of-text mark is written, the next text field appears. This formatting applies to all file
formats except WP, in which the report is saved exactly as it appears on the screen.

Creating a Delimited Sequential File

How to:

Create a Delimited Sequential File

Reference:

Usage Notes for HOLD FORMAT DFIX

You can use the HOLD FORMAT DFIX command to create an alphanumeric sequential file
delimited by any character or combination of characters. You can also specify whether to
enclose alphanumeric values in quotation marks or some other enclosure and whether to
include a header record that lists the names of the fields.

Creating Reports 473

10. Saving and Reusing Your Report Output

A Master File and an Access File are created to describe the delimited sequential file that
is generated. The SUFFIX value in the Master File is DFIX. The Access File specifies the
delimiter, the enclosure character (if any), and whether there is a header record. The Master
and Access Files are useful if you will later read the sequential file using WebFOCUS.

How to Create a Delimited Sequential FileSyntax:

ON TABLE HOLD [AS filename] FORMAT DFIX
 DELIMITER delimiter [ENCLOSURE enclosure] [HEADER {YES|NO}]

where:

filename

Is the name of the file to be created. If you do not specify a name, the default name is
HOLD.

delimiter

Consists of up to 30 printable or non-printable non-null characters. For a non-printable
character, enter the hexadecimal value that represents the character. If you use a mixture
of printable and non-printable characters, you must enter them all as hexadecimal values.
To create a tab delimited file, you can specify the delimiter value as TAB or as its
hexadecimal equivalent (0x09 on ASCII platforms or 0x05 on EBCDIC platforms).

Note that numeric digits and symbols used in numbers, such as a period (.), plus sign
(+), or minus sign (-) cannot be used in the delimiter sequence.

enclosure

Consists of up to four printable characters used to enclose each alphanumeric value in
the file. Most alphanumeric characters can be used as all or part of the enclosure
sequence. However, numeric digits and symbols used in numbers, such as a period (.),
plus sign (+), or minus sign (-) cannot be used in the enclosure sequence. Also note
that, in order to specify a single quotation mark as the enclosure character, you must
enter four consecutive single quotation marks. The most common enclosure is one
double quotation mark.

HEADER {YES|NO}

Specifies whether to include a header record that contains the names of the fields in
the delimited sequential file generated by the request.

Usage Notes for HOLD FORMAT DFIXReference:

Missing data is indicated by no data. So, with enclosure, a missing alphanumeric field
is indicated by two enclosure characters, while a missing numeric field is indicated by
two delimiters.

Text fields are not supported with HOLD FORMAT DFIX.

474 Information Builders

Creating a Delimited Sequential File

While HOLD FORMAT DFIX creates a single segment file, you can manually add segments
to the resulting Master and Access File. In the Access File, you can specify a separate
delimiter and/or enclosure for each segment.

The FILETYPE of the generated sequential file on z/VM is FOCTEMP.

Creating a Pipe-Delimited FileExample:

The following request against the CENTORD data source creates a sequential file named
PIPE1 with fields separated by the pipe character (|). Alphanumeric values are not enclosed
in quotation marks, and there is no header record:

TABLE FILE CENTORD
SUM QUANTITY LINEPRICE BY REGION BY YEAR
ON TABLE HOLD AS PIPE1 FORMAT DFIX DELIMITER |
END

The PIPE1 Master File specifies the SUFFIX value as DFIX:

FILENAME=PIPE1 , SUFFIX=DFIX , $
 SEGMENT=PIPE1, SEGTYPE=S2, $
 FIELDNAME=REGION, ALIAS=E01, USAGE=A5, ACTUAL=A05, $
 FIELDNAME=YEAR, ALIAS=E02, USAGE=YY, ACTUAL=A04, $
 FIELDNAME=QUANTITY, ALIAS=E03, USAGE=I8C, ACTUAL=A08, $
 FIELDNAME=LINEPRICE, ALIAS=E04, USAGE=D12.2MC, ACTUAL=A12, $

The PIPE1 Access File specifies the delimiter:

SEGNAME=PIPE1, DELIMITER=|, HEADER=NO, $

The PIPE1 sequential file contains the following data. Each data value is separated from the
next value by a pipe character:

EAST|2000|3907|1145655.77
EAST|2001|495922|127004359.88
EAST|2002|543678|137470917.05
NORTH|2001|337168|85750735.54
NORTH|2002|370031|92609802.80
SOUTH|2000|3141|852550.45
SOUTH|2001|393155|99822662.88
SOUTH|2002|431575|107858412.0
WEST|2001|155252|39167974.18
WEST|2002|170421|42339953.45

The following version of the HOLD command specifies both the delimiter and an enclosure
character (“):

ON TABLE HOLD AS PIPE1 FORMAT DFIX DELIMITER | ENCLOSURE "

The Master File remains the same, but the Access File now specifies the enclosure character:

SEGNAME=PIPE1, DELIMITER=|, ENCLOSURE=", HEADER=NO, $

Creating Reports 475

10. Saving and Reusing Your Report Output

In the delimited file that is created, each data value is separated from the next by a pipe
character, and alphanumeric values are enclosed within double quotation marks:

"EAST"|2000|3907|1145655.77
"EAST"|2001|495922|127004359.88
"EAST"|2002|543678|137470917.05
"NORTH"|2001|337168|85750735.54
"NORTH"|2002|370031|92609802.80
"SOUTH"|2000|3141|852550.45
"SOUTH"|2001|393155|99822662.88
"SOUTH"|2002|431575|107858412.01
"WEST"|2001|155252|39167974.18
"WEST"|2002|170421|42339953.45

This version of the HOLD command adds a header record to the generated file:

ON TABLE HOLD AS PIPE1 FORMAT DFIX DELIMITER | ENCLOSURE " HEADER YES

The Master File remains the same, but the Access File now specifies that the generated
sequential file should contain a header record with column names as its first record:

SEGNAME=PIPE1, DELIMITER=|, ENCLOSURE=", HEADER=YES, $

In the delimited file that is created, each data value is separated from the next by a pipe
character, and alphanumeric values are enclosed within double quotation marks. The first
record contains the column names:

"REGION"|"YEAR"|"QUANTITY"|"LINEPRICE"
"EAST"|2000|3907|1145655.77
"EAST"|2001|495922|127004359.88
"EAST"|2002|543678|137470917.05
"NORTH"|2001|337168|85750735.54
"NORTH"|2002|370031|92609802.80
"SOUTH"|2000|3141|852550.45
"SOUTH"|2001|393155|99822662.88
"SOUTH"|2002|431575|107858412.01
"WEST"|2001|155252|39167974.18
"WEST"|2002|170421|42339953.45

Creating a Tab-Delimited FileExample:

The following request against the CENTORD data source creates a sequential file named
TAB1 with fields separated by a tab character:

TABLE FILE CENTORD
SUM QUANTITY LINEPRICE BY REGION BY YEAR
ON TABLE HOLD AS TAB1 FORMAT DFIX DELIMITER TAB
END

476 Information Builders

Creating a Delimited Sequential File

As the tab character is not printable, the TAB1 Access File specifies the delimiter using its
hexadecimal value.

The following is the Access File in an EBCDIC environment:

SEGNAME=TAB1, DELIMITER=0x05, HEADER=NO, $

The following is the Access File in an ASCII environment:

SEGNAME=TAB1, DELIMITER=0x09, HEADER=NO, $

Missing Data in the HOLD FileExample:

The following request against the CENTORD data source creates missing alphanumeric and
numeric values in the resulting comma-delimited HOLD file:

DEFINE FILE CENTORD
AREA/A5 MISSING ON = IF REGION EQ 'EAST' THEN MISSING ELSE REGION;
MQUANTITY/I9 MISSING ON = IF REGION EQ 'WEST' THEN MISSING ELSE 200;
END

TABLE FILE CENTORD
SUM QUANTITY MQUANTITY LINEPRICE BY AREA BY YEAR
WHERE AREA NE 'NORTH' OR 'SOUTH'
 ON TABLE HOLD AS MISS1 FORMAT DFIX DELIMITER , ENCLOSURE "
END

In the MISS1 HOLD file, the missing alphanumeric values are indicated by two enclosure
characters in a row (““) and the missing numeric values are indicated by two delimiters in
a row (,,):

"",2000,3907,600,1145655.77
"",2001,495922,343000,127004359.88
"",2002,543678,343000,137470917.05
"WEST",2001,155252,,39167974.18
"WEST",2002,170421,,42339953.45

Creating Reports 477

10. Saving and Reusing Your Report Output

Saving Report Output in INTERNAL Format

How to:

Suppress Field Padding in HOLD Files

Reference:

Usage Notes for Suppressing Padded Fields in HOLD Files

HOLD files pad binary integer and packed decimal data values to a full word boundary. For
example, a three-digit integer field (I3), is stored as four bytes in a HOLD file. In order for
third generation programs, such as COBOL, to be able to read HOLD files in an exact manner,
you may need to save the fields in the HOLD file without any padding.

To suppress field padding in the HOLD file, you must reformat the fields in the request in
order to override the default ACTUAL formats that correspond to the USAGE formats in the
Master File:

Reformat the integer and packed fields that you do not want to be padded in the HOLD
file to the correct display lengths.

Specify HOLD FORMAT INTERNAL for the report output.

How to Suppress Field Padding in HOLD FilesSyntax:

SET HOLDLIST = PRINTONLY
TABLE FILE filename
display_command fieldname/[In|Pn.d]
.
.
ON TABLE HOLD AS name FORMAT INTERNAL
END

where:

PRINTONLY

Causes your report request to propagate the HOLD file with only the specified fields
displaying in the report output. If you do not issue this setting, an extra field containing
the padded field length is included in the HOLD file. See Controlling Fields in a HOLD
Master File on page 439.

fieldname/[In|Pn.d]

Specify correct lengths in the formats for integer and packed fields where you wish to
suppress padding. These formats override the ACTUAL formats used for the display
formats in the Master File. See Usage Notes for Suppressing Padded Fields in HOLD Files
on page 479.

478 Information Builders

Saving Report Output in INTERNAL Format

Note that floating point double-precision (D) and floating point single-precision (F) are
not affected by HOLD FORMAT INTERNAL.

FORMAT INTERNAL

Saves the HOLD file without padding for specified integer and packed decimal fields.

For an illustration, see Creating a HOLD File With HOLD FORMAT INTERNAL on page 480.

Usage Notes for Suppressing Padded Fields in HOLD FilesReference:

Integer fields (I) of one, two, three, or four bytes produce four-byte integers without HOLD
FORMAT INTERNAL.

For packed decimal fields (Pn.d), n is the total number of digits and d is the number of
digits to the right of the decimal point. The number of bytes is derived by dividing n by 2
and adding 1.

The syntax is

bytes = INT (n/2) + 1

where:

INT (n/2)

Is the greatest integer after dividing by 2.

HOLD FORMAT INTERNAL does not affect floating point double-precision (D) and floating
point single-precision (F) fields. D remains at eight bytes, and F at four bytes.

Alphanumeric fields automatically inherit their length from their source Master File, and
are not padded to a full word boundary.

If a format override is not large enough to contain the data values, the values are
truncated. Truncation may cause the data in the HOLD file to be incorrect in the case of
an integer. For packed data and integers, truncation occurs for the high order digits so
the remaining low order digits resemble the digits from the correct values.

To avoid incorrect results, be sure that the format you specify is large enough to contain
the data values.

If you use the HOLDMISS=ON setting to propagate missing values to the HOLD file, short
packed fields and fields with formats I1, I2, and I3 are not large enough to hold the
missing value.

Creating Reports 479

10. Saving and Reusing Your Report Output

Creating a HOLD File Without HOLD FORMAT INTERNALExample:

In this example, the values of ACTUAL for RETAIL_COST, DEALER_COST, and SEATS are all
padded to a full word. Alphanumeric fields also occupy full words.

TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST DEALER_COST SEATS
ON TABLE HOLD AS DJG
END

The request creates the following Master File:

FILE=DJG, SUFFIX=FIX
 SEGMENT=DJG, SEGTYPE=S0
 FIELDNAME=CAR ,ALIAS=E01 ,USAGE=A16 ,ACTUAL=A16 ,$
 FIELDNAME=COUNTRY ,ALIAS=E02 ,USAGE=A10 ,ACTUAL=A12 ,$
 FIELDNAME=RETAIL_COST ,ALIAS=E03 ,USAGE=D7 ,ACTUAL=D08 ,$
 FIELDNAME=DEALER_COST ,ALIAS=E04 ,USAGE=D7 ,ACTUAL=D08 ,$
 FIELDNAME=SEATS ,ALIAS=E05 ,USAGE=I3 ,ACTUAL=I04 ,$

Creating a HOLD File With HOLD FORMAT INTERNALExample:

In this example, DEALER_COST and RETAIL_COST are defined in the Master File as D fields,
but the request overrides RETAIL_COST as an I2 field and DEALER_COST as a P3 field.

SET HOLDLIST=PRINTONLY
TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST/I2 DEALER_COST/P3 SEATS/I1
ON TABLE HOLD AS HINT3 FORMAT INTERNAL
END

This creates the following Master File:

FILE=HINT3, SUFFIX=FIX
 SEGMENT=HINT3, SEGTYPE=S0
 FIELDNAME=CAR ,ALIAS=E01 ,USAGE=A16 ,ACTUAL=A16 ,$
 FIELDNAME=COUNTRY ,ALIAS=E02 ,USAGE=A10 ,ACTUAL=A10 ,$
 FIELDNAME=RETAIL_COST ,ALIAS=E03 ,USAGE=I6 ,ACTUAL=I02 ,$
 FIELDNAME=DEALER_COST ,ALIAS=E04 ,USAGE=P4 ,ACTUAL=P02 ,$
 FIELDNAME=SEATS ,ALIAS=E05 ,USAGE=I4 ,ACTUAL=I01 ,$

The ACTUAL formats for the overridden fields are I2, P2, and I1. DEALER_COST has an
ACTUAL of P2 because P3, the format override, means 3 display digits that can be stored
in 2 actual digits. Note that the alphanumeric field is also not padded.

480 Information Builders

Saving Report Output in INTERNAL Format

Creating a Structured HOLD File

How to:

Activate Structured HOLD Files for a Request

Create a Structured HOLD File

Specify Options for Generating Structured HOLD Files

Reference:

Elements Included in a Structured HOLD File

Elements Not Included in a Structured HOLD File

Structural and Behavioral Notes

Structured HOLD Files facilitate migration of data sources and reports between operating
environments.

Other HOLD formats capture data from the original sources and may retain some implicit
structural elements from the request itself. However, they do not propagate most of the
information about the original data sources accessed and their inter-relationships to the
HOLD Master File or data source. Structured HOLD files, however, extract the data to a
structure that parallels the original data sources. Subsequent requests against the HOLD
file can use these retained data relationships to recreate the same types of relationships
in other environments or in other types of data sources.

A Structured HOLD File can be created in ALPHA, BINARY, or FOCUS format:

A Structured HOLD file created in either ALPHA or BINARY format is a flat file that saves
the segment instances that contain the data that satisfy the conditions of the TABLE
request. Multiple segments are generated based on the original structure read by the
TABLE request. Segments are identified by assigning a RECTYPE for differentiation. Child
segments in the original data source become a unique segment in the HOLD file

A Structured HOLD file in FOCUS format uses normal FOCUS segments to retain the
original structure.

In all cases the HOLD file contains all of the original segment instances required to provide
the complete report based on the TABLE request itself. Regardless of the display command
used in the original request (PRINT, LIST, SUM, COUNT), the Structured HOLD File is created
as if the request used PRINT. Aggregation is ignored.

The HOLD file contains either all of the fields in the structure identified by the request that
are used to satisfy the request, or all of the display fields and BY fields. The file does not
contain DEFINE fields not specifically referenced in the request. It does contain all fields
needed to evaluate any DEFINE fields referenced in the request.

Creating Reports 481

10. Saving and Reusing Your Report Output

Structured HOLD files are only supported for TABLE and TABLEF commands. They can be
created anywhere a HOLD file is supported. You must activate Structured HOLD files in a
specific request by issuing the ON TABLE SET EXTRACT command in the request prior to
creating the Structured HOLD File.

How to Activate Structured HOLD Files for a RequestSyntax:

ON TABLE SET EXTRACT {ON|*|OFF}

where:

ON

Activates Structured HOLD Files for this request and extracts all fields mentioned in the
request.

*

Activates Structured HOLD Files for this request and indicates that a block of extract
options follows. For example, you can exclude specific fields from the Structured HOLD
File. For information, see How to Specify Options for Generating Structured HOLD Files
on page 483.

OFF

Deactivates Structured HOLD files for this request. OFF is the default value.

How to Create a Structured HOLD FileSyntax:

Before issuing the HOLD command, activate Structured HOLD Files for the request by issuing
the ON TABLE SET EXTRACT command described in How to Activate Structured HOLD Files
for a Request on page 482. Then issue the HOLD command to create the Structured HOLD
File:

[ON TABLE] {HOLD|PCHOLD} [AS name] FORMAT {ALPHA|BINARY|FOCUS}

where:

name

Is the name of the HOLD file. If omitted, the name becomes HOLD by default.

FORMAT

Is ALPHA, BINARY or FOCUS.

Note: You can issue a SET command to set the default HOLD format to either ALPHA or
BINARY:

SET HOLDFORMAT=ALPHA
SET HOLDFORMAT=BINARY

482 Information Builders

Creating a Structured HOLD File

How to Specify Options for Generating Structured HOLD FilesSyntax:

To specify options for creating the extract, such excluding specific fields, use the * option
of the SET EXTRACT command:

ON TABLE SET EXTRACT *
EXCLUDE = (fieldname1, fieldname2, fieldname3 , ..., fieldnamen),$
FIELDS={ALL|EXPLICIT},$
ENDEXTRACT
ON TABLE HOLD AS name FORMAT {ALPHA|BINARY|FOCUS}

where:

EXCLUDE=(fieldname1, fieldname2, fieldname3,..., fieldnamen)

Excludes the specified fields from the HOLD file.

,$

Is required syntax for delimiting elements in the extract block.

ALL

Includes all real fields and all DEFINE fields that are used in running the request.

EXPLICIT

Includes only those real fields and DEFINE fields that are in the display list or the BY
sort field listing. DEFINE fields that are not explicitly referenced, and fields that are used
to evaluate DEFINEs, are not included.

ENDEXTRACT

Ends the extract block.

Creating a Structured HOLD File in ALPHA FormatExample:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME JOBCODE ED_HRS
BY DEPARTMENT
BY HIGHEST SALARY
ON TABLE SET EXTRACT ON
ON TABLE HOLD FORMAT ALPHA
END

Creating Reports 483

10. Saving and Reusing Your Report Output

This request produces the following HOLD Master File:

FILENAME=HOLD , SUFFIX=FIX , $
 SEGMENT=EMPINFO, SEGTYPE=S0, $
 FIELDNAME=RECTYPE, ALIAS=R, USAGE=A3, ACTUAL=A3, $
 FIELDNAME=LAST_NAME, ALIAS='LN', USAGE=A15, ACTUAL=A15, $
 FIELDNAME=FIRST_NAME, ALIAS='FN', USAGE=A10, ACTUAL=A10, $
 FIELDNAME=DEPARTMENT, ALIAS='DPT', USAGE=A10, ACTUAL=A10, $
 FIELDNAME=ED_HRS, ALIAS='OJT', USAGE=F6.2, ACTUAL=A06, $
 SEGMENT=PAYINFO, SEGTYPE=S0, PARENT=EMPINFO, $
 FIELDNAME=RECTYPE, ALIAS=1, USAGE=A3, ACTUAL=A3, $
 FIELDNAME=SALARY, ALIAS='SAL', USAGE=D12.2M, ACTUAL=A12, $
 FIELDNAME=JOBCODE, ALIAS='JBC', USAGE=A3, ACTUAL=A03, $

Note the RECTYPE field generated for ALPHA or BINARY Structured HOLD files. Each record
in the HOLD file begins with the RECTYPE to indicate the segment to which it belonged in
the original structure. The root segment has RECTYPE=R. The RECTYPEs for other segments
are sequential numbers assigned in top to bottom, left to right order.

Following are the first several records in the HOLD file:

R STEVENS ALFRED PRODUCTION 25.00
1 11000.00A07
1 10000.00A07
R SMITH MARY MIS 36.00
1 13200.00B14
R JONES DIANE MIS 50.00
1 18480.00B03
1 17750.00B02
R SMITH RICHARD PRODUCTION 10.00
1 9500.00A01
1 9050.00B01

Creating a Structured HOLD File in FOCUS FormatExample:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME JOBCODE ED_HRS
BY DEPARTMENT
BY HIGHEST SALARY
ON TABLE SET EXTRACT ON
ON TABLE HOLD FORMAT FOCUS
END

484 Information Builders

Creating a Structured HOLD File

This request produces the following HOLD Master File:

FILENAME=HOLD , SUFFIX=FOC , $
 SEGMENT=EMPINFO, SEGTYPE=S0, $
 FIELDNAME=LAST_NAME, ALIAS='LN', USAGE=A15, $
 FIELDNAME=FIRST_NAME, ALIAS='FN', USAGE=A10, $
 FIELDNAME=DEPARTMENT, ALIAS='DPT', USAGE=A10, $
 FIELDNAME=ED_HRS, ALIAS='OJT', USAGE=F6.2, $
 SEGMENT=PAYINFO, SEGTYPE=S0, PARENT=EMPINFO, $
 FIELDNAME=SALARY, ALIAS='SAL', USAGE=D12.2M, $
 FIELDNAME=JOBCODE, ALIAS='JBC', USAGE=A3, $

Reconstituting a Structured HOLD FileExample:

The following request reconstitutes the original FOCUS data source from the Structured
HOLD File created in Creating a Structured HOLD File in ALPHA Format on page 483:

TABLE FILE HOLD
PRINT LAST_NAME FIRST_NAME JOBCODE ED_HRS
BY DEPARTMENT
BY HIGHEST SALARY
ON TABLE SET EXTRACT ON
ON TABLE HOLD AS RECONST FORMAT FOCUS
END

This request produces the following Master File:

FILENAME=RECONST , SUFFIX=FOC , $
 SEGMENT=EMPINFO, SEGTYPE=S0, $
 FIELDNAME=LAST_NAME, ALIAS='LN', USAGE=A15, $
 FIELDNAME=FIRST_NAME, ALIAS='FN', USAGE=A10, $
 FIELDNAME=DEPARTMENT, ALIAS='DPT', USAGE=A10,
 FIELDNAME=ED_HRS, ALIAS='OJT', USAGE=F6.2, $
 SEGMENT=PAYINFO, SEGTYPE=S0, PARENT=EMPINFO, $
 FIELDNAME=SALARY, ALIAS='SAL', USAGE=D12.2M, $
 FIELDNAME=JOBCODE, ALIAS='JBC', USAGE=A3, $

The following request prints the report output:

TABLE FILE RECONST
PRINT LAST_NAME FIRST_NAME JOBCODE ED_HRS
BY DEPARTMENT
BY HIGHEST SALARY
END

Creating Reports 485

10. Saving and Reusing Your Report Output

The output is:

DEPARTMENT SALARY LAST_NAME FIRST_NAME JOBCODE ED_HRS
---------- ------ --------- ---------- ------- ------
MIS $27,062.00 CROSS BARBARA A17 45.00
 $25,775.00 CROSS BARBARA A16 45.00
 $21,780.00 BLACKWOOD ROSEMARIE B04 75.00
 $18,480.00 JONES DIANE B03 50.00
 MCCOY JOHN B02 .00
 $17,750.00 JONES DIANE B02 50.00
 $13,200.00 SMITH MARY B14 36.00
 $9,000.00 GREENSPAN MARY A07 25.00
 $8,650.00 GREENSPAN MARY B01 25.00
PRODUCTION $29,700.00 BANNING JOHN A17 .00
 $26,862.00 IRVING JOAN A15 30.00
 $24,420.00 IRVING JOAN A14 30.00
 $21,120.00 ROMANS ANTHONY B04 5.00
 $16,100.00 MCKNIGHT ROGER B02 50.00
 $15,000.00 MCKNIGHT ROGER B02 50.00
 $11,000.00 STEVENS ALFRED A07 25.00
 $10,000.00 STEVENS ALFRED A07 25.00
 $9,500.00 SMITH RICHARD A01 10.00
 $9,050.00 SMITH RICHARD B01 10.00

Excluding Fields From Structured HOLD FilesExample:

This request excludes the SALARY field used for sequencing.

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME JOBCODE ED_HRS
BY DEPARTMENT
BY HIGHEST SALARY
ON TABLE SET EXTRACT *
EXCLUDE=(SALARY),$
ENDEXTRACT
ON TABLE HOLD FORMAT FOCUS
END

This request produces the following HOLD Master File:

FILENAME=HOLD , SUFFIX=FOC , $
 SEGMENT=EMPINFO, SEGTYPE=S0, $
 FIELDNAME=LAST_NAME, ALIAS='LN', USAGE=A15, $
 FIELDNAME=FIRST_NAME, ALIAS='FN', USAGE=A10, $
 FIELDNAME=DEPARTMENT, ALIAS='DPT', USAGE=A10, $
 FIELDNAME=ED_HRS, ALIAS='OJT', USAGE=F6.2, $
 SEGMENT=PAYINFO, SEGTYPE=S0, PARENT=EMPINFO, $
 FIELDNAME=JOBCODE, ALIAS='JBC', USAGE=A3, $

486 Information Builders

Creating a Structured HOLD File

Elements Included in a Structured HOLD FileReference:

Structured HOLD files contain all original segment instances required to complete the TABLE
or TABLEF request. Regardless of the display command used in the original request (PRINT,
LIST, SUM, or COUNT), the structured HOLD file will be created as if the command was
PRINT.

Specifically, the extract file contains the following elements:

All real fields named in the request such as display objects, sort fields, and fields used
in selection criteria (WHERE/IF tests).

Note that fields referenced multiple times in a request are included only once in the
HOLD file.

Fields used in FILTER FILE condition.

Prefix operators are ignored except for ALL. (which just affects the amount of data collected
and does not imply a calculation).

Field based reformatting (FIELD1/FIELD2=) causes the original field and the format field
to be included.

A GROUP field if referenced explicitly or when all of its members are referenced in the
request.

Note: If a group member is specifically excluded (EXCLUDE) or not referenced, its GROUP
is not added to the extract Master File (this applies to nested and overlapping groups as
well). If a GROUP and its elements are all named in a request, the GROUP is not added
as a real field in the extract HOLD file.

For FIELDS=ALL, all DEFINE fields used in the request become real fields in the structured
HOLD File and are included along with other fields used in the DEFINE expression (including
other DEFINE fields). Use EXCLUDE to reduce the number of fields included in the EXTRACT
output.

For FIELDS=EXPLICIT, display objects and sort fields are included. DEFINE fields become
real fields if referenced in the request, but fields used to create them will not be included
unless referenced explicitly. This reduces the number of fields returned in the request.

Elements Not Included in a Structured HOLD FileReference:

Prefix operators on WHERE fields are evaluated in data selection but not included in the
extract output.

Prefix operators on display objects are ignored (except ALL).

Using Structured HOLD File syntax in MATCH, MORE, and GRAPH requests produces error
messages and exits the procedure.

Creating Reports 487

10. Saving and Reusing Your Report Output

WHERE/IF TOTAL tests are not supported in Structured HOLD File requests and result in
cancellation of the request.

Reformatting of real fields is ignored (only the real field is included).

Computed fields are not included, but fields used in COMPUTE expressions are included
in the extract file.

Structural and Behavioral NotesReference:

Structured HOLD File requests are subject to the same limitations on number and size
of fields as any other TABLE request.

Structural Notes

The following SET parameters are turned off or ignored in Structured HOLD File requests:

AUTOINDEX

AUTOPATH

AUTOSTRATEGY

EXTHOLD

EXTSORT

HOLDATTR

All SET and ON TABLE SET commands used to control output format are ignored in
creating the extract file.

Alternate views are respected and reflected in the structure of the extract file.

Indexed views specified in the request are respected and reflected in the structure of
the output file.

If a request would generate a file containing two independent orphan segments because
the parent segment is specifically excluded, a dummy system segment is created in the
to act as parent of the two unrelated segments. There is only one instance of data for
that segment. Both orphan segments refer to that system segment as parent. If the
parent is missing because it was not mentioned in the request, it is activated during the
request and included as the parent the segments.

In the event that two unique (U) segments are included without the parent segment, the
unique segments are converted to segments with SEGTYPE S0 that reference the system
segment as parent.

JOIN and JOIN WHERE structures are supported.

488 Information Builders

Creating a Structured HOLD File

SQL Optimization Notes

SQL optimization for aggregation must be turned off for EXTRACT requests.

BY/ACROSS/FOR Notes

BY and ACROSS sort fields become additional display objects.

BY. . .ROWS and ACROSS . . .COLUMNS function only as implicit WHEREs to limit field
values included.

FOR fields are included.

RECAP fields are excluded (like COMPUTEs).

Summarization fields referencing previously identified fields are ignored in creating
Structured HOLD Files. These include: SUMMARIZE, RECOMPUTE, SUBTOTAL, SUB-TOTAL
ACROSS-TOTAL, ROW-TOTAL and COLUMN-TOTAL.

Formatting Notes

Structured HOLD File processing ignores all formatting elements, including: IN, OVER,
NOPRINT, SUP-PRINT, FOLD-LINE, SKIP-LINE, UNDER-LINE, PAGE-BREAK, TABPAGENO,
AS, and column title justification. However, fields referenced within formatting commands,
such as HEADING, FOOTING, SUBHEAD, and SUBFOOT, and any WHEN expressions
associated with them, are included.

All STYLE and STYLESHEET commands are ignored in producing extract output.

AnV and AnW fields are supported. TX fields are exported in FOCUS files only.

In the event that the FIELDNAME and ALIAS are the same for a real field and that field
is redefined as itself (possibly with a different format), two fields are created in the HOLD
Master File with identical field names and aliases. In this situation, the second version
of the field can never be accessed if referenced by name. You can use FIELDS=EXPLICIT
to include only the second version of the field. The following DEFINE illustrates and
example of creating a duplicate field name and alias:

DEFINE FILE CAR
COUNTRY/A25=COUNTRY;
END

DBA Notes

DBA controls on source files are respected when running Structured HOLD File requests
with the exception of RESTRICT=NOPRINT, where fields named in a request are not
displayed (such fields cannot be exported and should be specifically EXCLUDED).

DBA restrictions do not carry over to the HOLD Master File.

Creating Reports 489

10. Saving and Reusing Your Report Output

Reconstituting Extract Files

To reconstitute a FOCUS or flat file from a Structured HOLD file, you use the same syntax
used to generate the Structured HOLD File. The ON TABLE SET EXTRACT syntax must be
used to preserve multipath structures.

All reconstituted FOCUS segments are SEGTYPE=S0, as neither KEY nor INDEX information
is retained. An INDEX can be reinserted using REBUILD INDEX.

490 Information Builders

Creating a Structured HOLD File

FOCUS

Styling Reports11
Topics:

A styled report is a report produced as
format HTML, PDF, PostScript, Excel
2000, or Excel 97 that uses different
default and/or user-specified formats
from a standard FOCUS report. You can
specify various characteristics of your
report and format report components
individually using a StyleSheet, or you
can let the report be created using the
default styles associated with these
output formats.

Introduction to Styled Reports

Choosing an Output Format

Styling Reports With StyleSheets

Creating a Styled Report

Styling the Page Layout

Specifying Font Format in a Report

A StyleSheet enables you to format and
produce attractive reports that highlight
key information.

Identifying Report Components

Reusing FOCUS StyleSheet
Declarations With Macros

You can use a StyleSheet to:
FOCUS StyleSheet Attribute
InheritanceFormat report components

individually.
Conditionally Formatting in a
StyleSheetFormat data that meets specified

conditions.

Create macros that enable you to
streamline your formatting
specifications.

Some advanced features of styled
reports work differently depending on
which format you choose for your report
output. For detailed information about
working with each type of styled output
format, see Working With Styled Output
Formats on page 629.

Creating Reports 491

Introduction to Styled Reports

In this section:

Choosing a Type of Style Sheet

A StyleSheet describes how you want your report to look. You can create a StyleSheet within
a report request or as a separate file. Either way, it consists of a series of declarations.
Each declaration identifies a report component whose characteristics you wish to define
(such as a heading, column, or grand total) and describes the desired characteristics of that
component.

For HTML reports, you can also use external Cascading Style Sheets and enable internal
Cascading Style Sheets. For details, see Cascading Style Sheets on page 605.

Unless otherwise noted, all StyleSheet references in this document refer to FOCUS
StyleSheets.

Style sheets enable you to create extremely detailed formats for every line, column, or value
in your report. In most cases, you will want to use the formatting facilities judiciously to
make important information stand out. FOCUS has its own StyleSheets and also supports
Cascading Style Sheets for HTML reports, as described in Cascading Style Sheets on page
605.

For some types of formatting you can choose between using a style sheet or report syntax.
Style sheets enable you to centralize and reuse formatting logic. This provides you with
several advantages:

Productivity. By using just a few lines of code"a single style sheet"you can format
dozens of reports, reducing the development time of each report.

Easy maintenance. You can change formatting for dozens of reports at one time by
editing a single style sheet.

Consistent appearance. Your enterprise can guarantee a consistent look for its reports
by assigning the same style sheets to them.

Rapid reformatting. You can change a report's appearance quickly and easily by
switching the style sheet assigned to it.

Prioritizing. You can focus on your first priority"report content"because you can quickly
address report presentation by applying an existing style sheet.

You can apply several formatting techniques to save yourself time and effort. Most of these
techniques enable you to use code provided for you by FOCUS, or to leverage code that you
write yourself:

492 Information Builders

Introduction to Styled Reports

Inheritance and overrides. Each report component inherits attributes from its "parent"
report component. This powerful feature lets you define common formatting in a single
declaration for a parent component, and lets descendant components automatically
inherit the formatting, while enabling you to override the inherited values when you wish.
By designing your StyleSheet to take advantage of inheritance, you can write less code
and quickly update formatting for multiple report components.

For example, if you declare all the report's data to be blue, all data in all columns will be
displayed as blue; if you also declare all vertical sort (BY) columns to be orange, this will
override the blue for sort columns, which will be displayed as orange; and if you also
declare the EMP_ID sort column green, this will override the orange and be displayed as
green. For more information, see FOCUS StyleSheet Attribute Inheritance on page 581.

Macros. If you are going to specify the same attribute and value in several declarations
in a StyleSheet, you can create a macro that enables you to apply the attribute repeatedly
throughout the StyleSheet without coding it each time. Then, if you need to change the
value, you can change it once"in the macro"and have the change applied automatically
throughout the StyleSheet.

Samples. FOCUS comes with several sample StyleSheets, which you can apply to a
report. You can also use a sample as a template, first copying it and then customizing
the copy.

Defaults. Many FOCUS StyleSheet attributes have default values. Instead of explicitly
specifying every attribute, you can omit some and accept their defaults. For example,
you can accept the default font instead of specifying a font. You can find each attribute's
default value documented where its syntax is described.

For example, if there are several parts of a report that you wish to emphasize (such as titles
of important columns, data values that exceed a threshold, and sort headings), and you
want all of these to be bold and purple, you can define a macro that sets font style to bold
and color to purple, and then apply the macro to all of these report components.

Creating Reports 493

11. Styling Reports

Specifying Formatting for the Order Revenue ReportExample:

This report displays the order number, order date, and total order revenue for Century
Corporation for the third quarter of 2001:

The report is formatted by a FOCUS StyleSheet and by formatting commands in the report
procedure itself. The procedure is shown below, followed by the StyleSheet file, OrderRev:

 TABLE FILE CENTORD
1.HEADING
1. " "
1. "C e n t u r y C o r p o r a t I o n"
1. " "
1. "Order Revenue - 2001 Q3"
1. " "
1. "page <TABPAGENO"
1. " "
2. SUM ORDER_DATE/MtDY ORDER_NUM LINEPRICE AS 'Order,Total:'
 BY LOWEST 9 ORDER_DATE NOPRINT
 WHERE (ORDER_DATE GE '2000/10/01') AND (ORDER_DATE LE '2000/12/31');
3. ON TABLE SET SQUEEZE ON
4. ON TABLE SET STYLESHEET OrderRev

 ON TABLE HOLD FORMAT PDF
 END

494 Information Builders

Introduction to Styled Reports

OrderRev Style Sheet

5. TYPE=Report, GRID=Off, UNITS=Inches, TOPGAP=0.06, BOTTOMGAP=0.06, $
6. TYPE=Data, FONT='Times', $
7. TYPE=Data, BACKCOLOR=Aqua, COLOR=Navy,
7. WHEN=LinePrice GT 500000, $
7. TYPE=Data, COLUMN=LINEPRICE, BACKCOLOR=Aqua, COLOR=Navy, STYLE=Bold,
7. WHEN=LinePrice GT 500000, $
8. TYPE=Title, FONT='Helvetica', $
9. TYPE=Heading, FONT='Helvetica', STYLE=Bold, SIZE=14, JUSTIFY=Center,
9. BACKCOLOR=Dark Turquoise, COLOR=White, $
9. TYPE=Heading, LINE=6, BACKCOLOR=White, COLOR=Dark Turquoise, $
9. TYPE=Heading, LINE=7, BACKCOLOR=White, $

1. Adds a page heading to the report.

2. Reformats the order date from (for example) 2001/10/03 to Oct. 3, 01.

3. Aligns the heading with the report(tm)s margins instead of the page(tm)s margins.

4. Identifies a StyleSheet file to format the report.

5. Increases spacing between report lines.

6. Uses a proportional serif font for the report(tm)s data.

7. Highlights each order that totals more than $500,000 by applying a navy font and an
aqua background, and by bolding the order total.

8. Uses a proportional sans serif font for the report(tm)s column titles.

9. Formats the report(tm)s heading by centering it, applying a larger sans serif font, coloring
most of it with a dark turquoise background and white lettering, and applying the inverse
coloring to the page number (the sixth line of the heading).

This is only a summary of what these formatting instructions do; you can find complete
explanations in the topics that describe each formatting feature.

The formatting logic that you apply to your own reports may be briefer or more extensive
than this example, depending on the report and on what formatting you choose to apply.

Choosing a Type of Style Sheet
You can choose between two types of style sheets to format a report:

FOCUS StyleSheets (often abbreviated to "StyleSheets"), the native FOCUS style sheet
language. These provide you with the flexibility to format reports in many display formats,
including HTML, PDF, Excel 2000, and PostScript. You can choose between saving the
StyleSheet as a separate file, which you can assign to multiple reports, or saving it within
one report request.

Creating Reports 495

11. Styling Reports

If you are generating a report in HTML format, you can boost its performance, and increase
the number of formatting options available to it, by having the FOCUS StyleSheet
dynamically generate an "internal" Cascading Style Sheet (CSS). (CSS is the standard
style sheet language designed for HTML documents; the internal CSS generated by FOCUS
is internal to the report output, instead of being saved as a separate file.)

External Cascading Style Sheets, the standard style sheet language designed for
HTML documents. You can apply an external Cascading Style Sheet to any FOCUS report
in HTML format. (An external Cascading Style Sheet is one that is saved as a separate
file, instead of within the document it formats, and so is "external" to the document.)

How do you choose between the two types of style sheets? Consider choosing:

A FOCUS StyleSheet if you want to display a report in different display formats, such
as PDF and Excel 2000. FOCUS StyleSheets support many kinds of display formats, but
Cascading Style Sheets work for reports in HTML format only.

An external Cascading Style Sheet for any of the following reasons:

Your enterprise already uses Cascading Style Sheets to format HTML documents,
and it wants reports to conform to these same presentation guidelines.

You want to apply the same formatting to other kinds of HTML documents in your
enterprise.

Choosing an Output Format

Reference:

Sample FOCUS StyleSheet Files

You can choose from several different formats when you create a styled report. Some formats
are designed to be used with specific applications; in order to be used with those applications,
they must be transferred to a PC using FTP. For example, you can choose:

HTML format. You can display your report as an HTML page, which is optimized for
display in a Web browser. HTML supports most style sheet options, especially when used
with an internal Cascading Style Sheet. An HTML report opens in your Web browser.

Note: SET STYLMODE=FIXED turns off your browser(tm)s HTML formatting for that report.
The resulting report appears in a fixed font without colors and other Web capabilities.

Print format-PDF (the Adobe® Acrobat® Portable Document Format) and PostScript
(PS).

496 Information Builders

Choosing an Output Format

You can display your report as a PDF document, which is useful when you want the report
to look the same whether displayed on screen or in print. PDF (Adobe Acrobat's Portable
Document Format) is most often used to distribute and share electronic documents using
the web. It is especially useful if you want a report to maintain its presentation and layout
regardless of a user's browser or printer type. PDF prints and displays a document
consistently, regardless of the application software, hardware, and operating system
used to create or display the document. The report opens in Adobe® Acrobat® or Acrobat
Reader. To display a PDF report, a computer must have Adobe Acrobat Reader installed.
For free downloads of Acrobat Reader, go to http://www.adobe.com.

Limit: Adobe Acrobat's PDF format limits the number of pages, hyperlinks, and images
in a document. For information about what limits this creates for a FOCUS report in PDF
format, see Saving and Reusing Your Report Output on page 421.

You can display your report as a PostScript (PS) document, which is a print-oriented page
description language most often used to send a report directly to a printer. While used
less frequently as an online display format, you can display PS report output on your
monitor before printing it.

To display rather than print a PostScript report, a computer must have a third-party
PostScript application installed, such as GSview (a graphical interface for Ghostscript).

If you are sending a PS report to a printer, you can select the size of the paper on which
to print the output. The PostScript code that is generated works on PS printers that
support Language Level 2 or above. It is ignored, without harmful effects, on Level 1
printers.

You can also select page orientation and choose among a wide range of paper sizes and
combine several reports into one. PDF and PostScript reports require font metric files
and font map files to be accessible to FOCUS. FOCUS comes with a set of basic fonts,
and you can add other fonts as needed. For details on working with PDF and PostScript
reports, see Working With PostScript and PDF Reports on page 687.

Spreadsheet formats. You can display your report as an Excel 2000 or 97 spreadsheet,
where you can work with the data in Excel. You can create Excel 2000 HTML-based format
(with variations for Excel 2000 PivotTable and Excel 2000 FORMULA), or Excel 97
HTML-based format. Note that Excel 97 format produces the same report output as HTML
format. It is useful if you want your Web browser to open the file in Excel rather than
display it as an HTML page. These formats supply the following tools:

Excel 2000 Worksheet (format EXL2K). The Excel 2000 format supports most
StyleSheet attributes, allowing for full report formatting. The computer on which the
report is being displayed must have Microsoft Excel 2000 or higher installed.

In addition, FOCUS supports two Excel 2000 variations: EXL2K FORMULA and EXL2K
PIVOT. When either of these formats is specified, additional processing is done. For
information on using these options, see Working With Excel 2000 and Excel 97 Reports
on page 635.

Creating Reports 497

11. Styling Reports

Excel 2000 FORMULA (EXL2K FORMULA). If you display a report using the format
variation EXL2K FORMULA, the resulting spreadsheet will contain Excel formulas that
calculate and display the results of any type of summed information (such as column
totals, row totals, and sub-totals).

Excel 2000 PivotTable (format EXL2K PIVOT). Generates a fully functional Excel
PivotTable, an Excel tool for analyzing complex data.

Excel 97 spreadsheet (format EXL97). Excel 97 is an HTML-based display format
that opens in Excel 97 or higher and supports report formatting. The computer on
which the report is being displayed must have Microsoft Excel 97 or higher installed.

Sample FOCUS StyleSheet FilesReference:

Several sample StyleSheet files are shipped with FOCUS. You can apply any of these sample
StyleSheets directly to a report, or you can use them as templates to create your own
customized StyleSheets. If you use them as templates, be sure to make a copy of the original
file and edit the copy, leaving the original unchanged.

Following are the sample StyleSheets available. On VM, they have FILETYPE FOCSTYLE. On
z/OS, they are members in a data set allocated to ddname FOCSTYLE:

File/Member NameFOCUS StyleSheet

CLASSICElegant Look

CORPORATFormal Corporate Presentation

BOYSCOUTGold and brown backgrounds for selected components

CITRUSOrange and yellow backgrounds for selected components

DEFLTBold headings

DEFLT1Gray backgrounds for selected components

DEFLT2Dark pink and gray backgrounds for selected components

DEFLT3Blue and gray backgrounds for selected components

DEFLTBLUBlue and gray backgrounds for selected components

ELEPHANTLight pink backgrounds for selected components

FUCHSIAPurple and fuchsia backgrounds for selected components

498 Information Builders

Choosing an Output Format

File/Member NameFOCUS StyleSheet

MARBLEBrown and pink backgrounds for selected components

OLIVEYellow and purple backgrounds for selected components

PAPERDark gray and green backgrounds for selected components

SALESDark blue and light gray backgrounds for selected components

SLATELight yellow and blue backgrounds for selected components

SPORTSSporty look with sports team colors such as orange and blue

TEALLight green and gray backgrounds for selected components

USARed, White, and Blue

WOODBrown and yellow backgrounds for selected components

Styling Reports With StyleSheets

In this section:

What Is a StyleSheet?

What Is a Style?

Comparison of Reports With and Without StyleSheets

Creating a StyleSheet

StyleSheet Syntax

Improving FOCUS StyleSheet Readability

Adding a Comment to a FOCUS StyleSheet

Checking StyleSheet Syntax

To use a StyleSheet, follow these steps:

1. Decide which StyleSheet to use. If one already exists with the formatting you need, go
on to the next step. FOCUS comes with default styles that you can use if you want the
whole report printed with the same default format. If you want to customize certain formats
in your report, create a StyleSheet that describes those formats.

Creating Reports 499

11. Styling Reports

Note: You can change some formatting features, such as the page parameters, with a
SET command without creating a StyleSheet.

2. Activate the StyleSheet you have chosen, or create a StyleSheet in a report request.

3. Create a PostScript, HTML, PDF (Acrobat's Portable Document Format), Excel 2000, or
Excel 97 file that contains the formatted report.

Use FTP to transfer this file to Windows, if necessary.

4. Print the report on a PostScript printer or open it in the appropriate application. This step
is highly dependent on the equipment and software at your site. See your system
administrator for instructions.

What Is a StyleSheet?
A StyleSheet is a group of declarations, in a text file or in a report request, that describe
how you want your report to look. These declarations:

Identify a report component.

Describe the desired characteristics of that component.

You can create a StyleSheet using any text editor, including TED, the FOCUS text editor.

FOCUS uses the same default style for all report components if you do not create a
StyleSheet.

With a StyleSheet, you only have to define the styles of those components to be displayed
differently from the default style. Any component not specifically formatted in your StyleSheet
either uses the default style or inherits a style from a higher-level component. Inheritance
is discussed in FOCUS StyleSheet Attribute Inheritance on page 581.

When you create a styled report, your page layout differs from a standard FOCUS report.
This variation is a function of the page layout parameters FOCUS uses for the two kinds of
reports:

For unstyled reports, FOCUS uses the parameters LINES, PAPER, PANEL, and WIDTH to
define the page layout.

For styled reports, FOCUS uses the parameters PAGESIZE, ORIENTATION, UNITS,
TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, and SQUEEZE. Any of these
parameters that you do not specifically set-either in a report request, in a StyleSheet, or
with a SET command-inherits default values.

500 Information Builders

Styling Reports With StyleSheets

What Is a Style?

Reference:

Reproducing StyleSheet Examples

A style is a description of the physical characteristics of a report component; it consists of
four basic attributes:

A font (typeface) such as Helvetica, Courier, or Times.

A size for the font such as 12-point or 14-point.

A text style or combination of text styles such as bold, italic, or bold+italic.

A color.

You can also define such attributes as background colors, grids, borders, and images in a
StyleSheet declaration.

Reproducing StyleSheet ExamplesReference:

The sample reports use the default page size specification for PDF and PS reports, LETTER,
which represents 8.5 x 11 inch pages. They have been scaled down to accommodate the
size of this manual.

If the fonts you have on your system do not include the ones used in the examples, substitute
suitable and available fonts before you run the examples.

Comparison of Reports With and Without StyleSheets
In a non-styled FOCUS report request, you can set values for the maximum number of lines
on the output page (LINES), the number of lines on the printed page (PAPER), and the
maximum number of characters in a report panel (PANEL). FOCUS then uses the typeface
and size defined by your printer setup for all data in the report.

In a styled report, you can specify measurement units such as inches or points, and you
can control column width or spacing. You can also change typefaces, type size, and type
style for any part of the report.

Creating Reports 501

11. Styling Reports

In a PostScript or PDF report, you can also set margins on the top, bottom and sides of the
report, and you can set the page size for letters, envelopes, and many other types of paper.
The following table compares your options with and without StyleSheets:

Without StyleSheetsWith StyleSheets

FOCUS uses the default font
specified in your printer setup for
the entire report.

You can use different font sizes
and fonts. You can selectively
apply text styles such as bold or
italic.

Text font

The ink and paper in your printer
determine the colors in your
report.

You can select a color for the text
or background.

Colors

FOCUS uses a single style for the
entire report.

You can assign different styles to
individual report components.

Individual
components

Report format does not change
with changes in report values.

You can apply different styles to
the same component based on
report values.

Conditional
styling

FOCUS bases column widths on
the column title or the field format
specified either in the Master File
or the report request.

You can have column widths
based on the column content, the
field format specified in the
Master File, or specify a width.

Column widths

You can specify the starting
position of individual columns in
the report request.

You can specify the starting
position of individual columns and
arrange columns in any order
regardless of the sequence
established in the report request.
In addition, you can indicate how
much space to leave before and
after individual columns.

Column
placement

You can specify the number of
lines per page within the limits of
your printer setup.

You can select from a wide range
of page sizes for PostScript and
PDF reports.

Page size

FOCUS uses the default
orientation specified in your
printer setup.

You can select either portrait or
landscape for PostScript, PDF,
and EXL2K reports.

Page
orientation

502 Information Builders

Styling Reports With StyleSheets

Without StyleSheetsWith StyleSheets

FOCUS uses the default page
margins specified in your printer
setup.

You can specify the top, bottom,
left, and right margins, measured
in inches, centimeters, or points
for PostScript and PDF reports.

Page margins

You can justify column titles.You can justify individual report
components.

Justification

Creating a StyleSheet

How to:

Create a StyleSheet in a Report Request

Activate an Existing StyleSheet File

There are two ways to create a StyleSheet:

You can create a StyleSheet file in a report request. This is useful when you are applying
that set of styles to only one report. See How to Create a StyleSheet in a Report Request
on page 504.

You can create a separate StyleSheet file. In order to use a StyleSheet file, you must
activate it. This option is useful when you want to create a StyleSheet template that you
can apply to any report. In addition, you can create a StyleSheet on one platform and
then port it to, and run it on, other platforms. See How to Activate an Existing StyleSheet
File on page 505.

You can take advantage of most StyleSheet options without ever having to create a
StyleSheet.

You can select a StyleSheet, page size, orientation, and margins at the FOCUS command
level (if you want to apply them to your entire FOCUS session), or in a report request (if you
want to apply them to one report).

You need to create a StyleSheet file if you wish to:

Style report components individually.

Apply different styles to the same component based on report values.

Creating Reports 503

11. Styling Reports

How to Create a StyleSheet in a Report RequestSyntax:

ON TABLE SET STYLE *
.
.
.
ENDSTYLE

where:

STYLE *

Indicates the beginning of an inline StyleSheet.

ENDSTYLE

Indicates the end of an inline StyleSheet.

Note: You can omit the keyword ENDSTYLE, but only if it is immediately followed by the
keyword END in the report request.

Creating a StyleSheet Within a Report RequestExample:

In the following report request, the StyleSheet syntax appears in bold.

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME
BY DEPARTMENT
ON TABLE HOLD FORMAT PS
ON TABLE SET STYLE *
TYPE=REPORT, FONT=TIMES, SIZE=10, $
TYPE=REPORT, COLUMN=EMP_ID, RIGHTGAP=1, $
ENDSTYLE
END

504 Information Builders

Styling Reports With StyleSheets

The request produces the following report, in which the font for the entire report and the
amount of space to the right of the EMP_ID field have been changed:

How to Activate an Existing StyleSheet FileSyntax:

The syntax for the SET command is:

SET STYLE[SHEET] = styoption

and the syntax in a report request is

TABLE FILE file
request
ON TABLE SET STYLE styoption
END

where:

styoption

Is one of the following options:

ON uses default styles. This is the default setting. With this setting in effect, FOCUS
uses the page layout settings for UNITS, TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE, and ignores the settings for
LINES, PAPER, PANEL, and WIDTH. Each display format has its own set of defaults. For
example, HTML defaults to a proportional font, while PDF defaults to a monospace font.

OFF uses default styles. In this case, FOCUS uses the settings for LINES, PAPER, PANEL,
and WIDTH, and ignores the settings for UNITS, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, TOPMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE. The report is
printed in fixed-width Courier typeface with .250-inch margins. You can use this setting
to print traditional-looking FOCUS reports on PostScript printers.

Creating Reports 505

11. Styling Reports

Note: To disable StyleSheets entirely so that no StyleSheet is activated, use the ONLINE-
FMT setting discussed in Creating a Styled Report on page 508.

stysheet is the one- to eight-character name of a StyleSheet file. This setting activates
the named StyleSheet. FOCUS uses the page layout settings for UNITS, TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE,
and ignores the settings for LINES, PAPER, PANEL, and WIDTH.

StyleSheet Syntax
A StyleSheet consists of a series of declarations that describe how your report will look.
Each declaration:

Identifies a report component or subcomponent.

Describes the formatting to apply to that component.

Optionally, if the component is a heading, footing, or column, specifies a position on the
page for the component and a justification.

Optionally, specifies the distance between columns, column sequence, and column width.

Optionally, specifies a condition that must be true in order to apply the style. This
technique is called conditional styling.

In your StyleSheet, include declarations for only those components whose format to change.
Within each declaration, include only those formatting attributes to change.

Each declaration in a StyleSheet consists of attribute=value pairs separated by commas,
and terminated with a comma and dollar sign (,$). The attributes that select a component
or subcomponent must come first in each declaration. You can specify all other attributes
in any order. The syntax is:

TYPE=value1, attribute2=value2, ... ,$

Note:

You can use uppercase, lowercase, or mixed-case in the StyleSheet file.

Page layout parameters automatically apply to the whole report. Therefore, declarations
that set page parameters do not require a TYPE attribute. For example, the following
declarations are equivalent:

TYPE=REPORT, ORIENTATION=LANDSCAPE ,$
ORIENTATION=LANDSCAPE,$

See Styling the Page Layout on page 509 for a complete description of page parameters.

Each declaration must begin on a new line.

506 Information Builders

Styling Reports With StyleSheets

A declaration can use more than one line. The terminating dollar sign indicates where
the declaration ends.

You can describe a single report element in more than one declaration.

You can include blank spaces between the attributes, values, equal signs (=), commas,
and dollar sign. You can also include blank lines. FOCUS can interpret declarations with
or without blank spaces or lines.

You can include comments, either on a declaration line after the terminating dollar sign,
or on a separate comment line that begins with a dollar sign.

The attributes in the StyleSheet file identify report components, manipulate them, and define
styles for formatting them.

Improving FOCUS StyleSheet Readability
There are many ways to structure your StyleSheet declarations in order to make the StyleSheet
easy to read. You can do any one, or a combination, of the following:

Begin a declaration in any column using blank spaces or tabs.

Include blank lines between declarations.

Create declarations in all uppercase, all lowercase, or mixed case.

Use more than one declaration to format a single report component.

Include blank spaces or tabs in between the attribute, equal sign (=), value, comma, and
dollar sign ($).

Split a single declaration across a line. The declaration will continue to be processed
until the dollar sign terminates it. For example, you can split a declaration like this:

TYPE=HEADING, FONT=ARIAL,
SIZE=14, STYLE=BOLD, $

Split an attribute=value pair across a line. Use the backslash (\) character as continuation
syntax at the end of the first line if you are splitting an attribute or value in a declaration
across a line. For example:

TYPE=TITLE, COLUMN=N2, STY\
LE=BOLD+ITALIC, COLOR=BLUE, $

Adding a Comment to a FOCUS StyleSheet
You can add comments to a StyleSheet to give context to a declaration. Comments do not
affect StyleSheet behavior.

Creating Reports 507

11. Styling Reports

You can add a comment:

On a declaration line. Add the desired text after the dollar sign ($). For example,

TYPE=HEADING, STYLE=BOLD, COLOR=BLUE, SIZE=14, $ Sample comment

On its own line. Begin the line with either a dollar sign ($), or a hyphen and an asterisk
(-*), followed by the desired text. For example,

-* This is a sample comment
$ This is another sample comment

Note: You can add comments anywhere in your request, not only in StyleSheets.

Checking StyleSheet Syntax

How to:

Check StyleSheet Syntax

You can check the syntax of a StyleSheet from the FOCUS prompt with the CHECK STYLE
command.

How to Check StyleSheet SyntaxSyntax:

CHECK STYLE filename

where:

filename

Is the name of the StyleSheet file.

FOCUS reports any syntax errors in the StyleSheet file. It does not verify whether the specified
fonts are available or whether the font names are spelled correctly.

Creating a Styled Report

How to:

Create a Styled Report

In order to create a report that was formatted using a StyleSheet, you must generate an
output file containing the formatted report.

508 Information Builders

Creating a Styled Report

How to Create a Styled ReportSyntax:

Create a HOLD or SAVE file containing the report output in PostScript format. You can issue
the HOLD or SAVE command either from the FOCUS command line or in a TABLE request.
The syntax is

[ON TABLE] {HOLD|SAVE} FORMAT format [AS filename]

where:

filename

Assigns a 1- to 8-character file name or ddname to the report output. The default file
name is HOLD.

format

Can be one of the following:

HTML for HTML output.

PDF for PDF output.

PS or POSTSCRIPT for PostScript output.

EXL2K for Excel 2000 output. You can also use EXL2K PIVOT for Excel 2000 output with
a pivot table or EXL2K FORMULA for Excel 2000 output with formulas.

EXL97 for Excel 97 output.

When you generate stylized report output that is too wide to fit in the defined print area of
a single page, StyleSheet formatting divides the output across multiple pages or panels.
The pages are automatically numbered with decimal notation indicating the panel number
(1.1, 1.2, and so on).

Styling the Page Layout

In this section:

Selecting Page Size, Orientation, and Color

Setting Page Margins

Displaying Current Settings: The ? SET STYLE Query

In a styled report, FOCUS uses page parameters to format the page layout. These parameters
have default values that remain in effect unless you change them.

Creating Reports 509

11. Styling Reports

Selecting Page Size, Orientation, and Color

How to:

Set Page Size

Set Page Orientation

Control the Paper Source Used by a PostScript Printer

Set Page Color

Reference:

Page Size, Orientation, and Color Attributes

You can select the page size, page orientation (portrait or landscape), and page color for
your report. The default page size is letter (8.5 x 11 inches), but you can select from many
other sizes, including legal and envelopes.

In a PostScript report, you can use the SET PSPAGESETUP command to include PostScript
code that automatically tells a PostScript printer to set its paper source to the size of paper
specified by PAGESIZE.

Page Size, Orientation, and Color AttributesReference:

Applies toDescriptionAttribute

PDF

PS

Sets page size.PAGESIZE

PDF

PS

EXL2K

Sets page orientation.ORIENTATION

HTML report with internal Cascading
Style Sheet

Sets page color.PAGECOLOR

510 Information Builders

Styling the Page Layout

How to Set Page SizeSyntax:

This syntax applies to a PDF or PS report.

[TYPE=REPORT,] PAGESIZE={size|LETTER}, $

where:

TYPE=REPORT

Applies the page size to the entire report. Not required, as it is the default.

size

Is the page size. If printing a report, the value should match the size of the paper.
Otherwise, the report may be cropped or printed with extra blank space.

Valid values are:

DescriptionValue

8.5 x 11 inches. This value is the default.LETTER

8.5 x 14 inches.LEGAL

11 x 17 inches.TABLOID

17 x 11 inches.LEDGER

17 x 22 inches.C

22 x 34 inches.D

34 x 44 inches.E

5.5 x 8.5 inches.STATEMENT

7.5 x 10.5 inches.EXECUTIVE

8.5 x 13 inches.FOLIO

10 x 14 inches.10x14

297 x 420 millimeters.A3

210 x 297 millimeters.A4

148 x 210 millimeters.A5

250 x 354 millimeters.B4

Creating Reports 511

11. Styling Reports

DescriptionValue

182 x 257 millimeters.B5

215 x 275 millimeters.QUARTO

3.875 x 8.875 inches.ENVELOPE-9

4.125 x 9.5 inches.ENVELOPE-10

4.5 x 10.375 inches.ENVELOPE-11

4.5 x 11 inches.ENVELOPE-12

5 x 11.5 inches.ENVELOPE-14

3.875 x 7.5 inches.ENVELOPE-MONARCH

3.625 x 6.5 inches.ENVELOPE-PERSONAL

110 x 220 millimeters.ENVELOPE-DL

324 x 458 millimeters.ENVELOPE-C3

229 x 324 millimeters.ENVELOPE-C4

162 x 229 millimeters.ENVELOPE-C5

114 x 162 millimeters.ENVELOPE-C6

114 x 229 millimeters.ENVELOPE-C65

250 x 353 millimeters.ENVELOPE-B4

176 x 250 millimeters.ENVELOPE-B5

176 x 125 millimeters.ENVELOPE-B6

110 x 230 millimeters.ENVELOPE-ITALY

14.875 x 11 inches.US-STANDARD-FANFOLD

8.5 x 12 inches.GERMAN-STANDARD-FANFOLD

8.5 x 13 inches.GERMAN-LEGAL-FANFOLD

512 Information Builders

Styling the Page Layout

How to Set Page OrientationSyntax:

This syntax applies to a PDF, PS, or EXL2K report.

[TYPE=REPORT,] ORIENTATION={PORTRAIT|LANDSCAPE}, $

where:

TYPE=REPORT

Applies the page orientation to the entire report. Not required, as it is the default value.

PORTRAIT

Displays the report across the narrower dimension of a vertical page, producing a page
that is longer than it is wide. PORTRAIT is the default value.

LANDSCAPE

Displays the report across the wider dimension of a horizontal page, producing a page
that is wider than it is long.

How to Control the Paper Source Used by a PostScript PrinterSyntax:

The SET PSPAGESETUP command includes PostScript code that automatically tells a
PostScript printer to set its paper source to the size of paper specified by the PAGESIZE
parameter

SET PSPAGESETUP = {ON|OFF}

or

ON TABLE SET PSPAGESETUP {ON|OFF}

where:

ON

Includes PostScript code that tells a PostScript printer to set its paper source to the
size of paper specified by the PAGESIZE parameter.

Caution: If you send a job to a printer that does not have the requested paper size
loaded, the printer may stop and instruct its operator to load the specified paper. To
ensure control over your printing, it is best to set paper size in individual requests so
that you can load paper as required.

OFF

Does not include code to coordinate the printer's paper source with the PAGESIZE
parameter. OFF is the default value.

Creating Reports 513

11. Styling Reports

How to Set Page ColorSyntax:

This syntax applies to an HTML report with an internal Cascading Style Sheet.

[TYPE=REPORT,] ... PAGECOLOR=color, ... , $

where:

TYPE=REPORT

Applies the color to the entire report. Not required, as it is the default value.

color

Is a supported color. For a list of supported colors, see Color Values in a Report on page
522.

Setting Page ColorExample:

This request sets the page color of an HTML report with internal Cascading Style Sheet to
silver.

SET HTMLCSS = ON
TABLE FILE CENTORD
ON TABLE SUBHEAD
"SELECTED PRODUCT INVENTORY"
SUM QTY_IN_STOCK/D12 BY PROD_NUM BY SNAME BY STATE
WHERE PROD_NUM EQ '1004'
WHERE SNAME EQ 'eMart'
WHERE STATE EQ 'CA'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, PAGECOLOR=SILVER, GRID=OFF, $
ENDSTYLE
END

The output is:

514 Information Builders

Styling the Page Layout

Setting Page Margins

How to:

Set the Unit of Measurement

Set Margin Size

Reference:

Page Margin Attributes

You can set the page margins for your report. This includes the top, bottom, left, and right
margins. You can also change the default unit of measurement (inches) to either centimeters
or points. The unit of measurement applies to page margins, column width, and column
position.

Page Margin AttributesReference:

Applies toDescriptionAttribute

PDF

PS

HTML report with internal
Cascading Style Sheet

Sets unit of measurement.

Used when specifying margin size or
other page characteristics. If you
change the current unit of
measurement, the new value is applied
to all instances in which unit of
measurement is used.

UNITS

PDF

PS

HTML report with internal
Cascading Style Sheet

Sets size of top, bottom, left, and right
margin.

TOPMARGIN
BOTTOMMARGIN
LEFTMARGIN
RIGHTMARGIN

How to Set the Unit of MeasurementSyntax:

This syntax applies to a PDF, PS, or HTML report with internal Cascading Style Sheet.

To set a unit of measurement:

In a StyleSheet, add the following attribute:

UNITS = units

Creating Reports 515

11. Styling Reports

Outside of a report request, use:

SET UNITS = units

Within a report request, use

ON TABLE SET UNITS units

where:

units

Is the unit of measure. Values can be:

INCHES which specifies the unit of measure as inches. This is the default value.

CM which specifies the unit of measure as centimeters.

PTS which specifies the unit of measure as points. Points is a common measurement
scale for typefaces.

How to Set Margin SizeSyntax:

This syntax applies to a PDF, PS, or HTML report with an internal Cascading Style Sheet.

[TYPE=REPORT,] [TOPMARGIN={value|.25},] [BOTTOMMARGIN={value|.25},]
 [LEFTMARGIN={value|.25},] [RIGHTMARGIN={value|.25},] $

where:

TYPE=REPORT

Applies the margin size to the entire report. Not required, as it is the default.

TOPMARGIN

Sets the top boundary of the report content.

BOTTOMMARGIN

Sets the bottom boundary of the report content.

LEFTMARGIN

Sets the left boundary of the report content.

RIGHTMARGIN

Sets the right boundary of the report content.

value

Is the size of the specified margin. The report content appears inside the margin. If
printing a report, specify a value compatible with the printer's print area. For example,
if the print area has 0.25 inch margins all around, set the margins to 0.25 inches or
larger.

516 Information Builders

Styling the Page Layout

The default value for all margins is 0.25 inches.

Displaying Current Settings: The ? SET STYLE Query

How to:

Display Current Settings

Use the ? SET STYLE query to display the current settings for the STYLESHEET parameter
and all page parameters.

How to Display Current SettingsSyntax:

The syntax is:

? STYLE

For example:

? style
ONLINE-FMT STANDARD
OFFLINE-FMT STANDARD

STYLESHEET ON
SQUEEZE OFF
PAGESIZE Letter
ORIENTATION PORTRAIT
UNITS INCHES
LABELPROMPT OFF
LEFTMARGIN .250
RIGHTMARGIN .250
TOPMARGIN .250
BOTTOMMARGIN .250
STYLEMODE FULL
TARGETFRAME
FOCEXURL
BASEURL

Note: OFFLINE-FMT is not currently supported. ONLINE-FMT and FOCEXURL apply to
WebFOCUS.

Creating Reports 517

11. Styling Reports

Specifying Font Format in a Report

In this section:

Specifying Fonts for Reports

How to:

Specify Font Size in a Report

Specify Bold or Italic Font Style in a Report

Specify Font Color in a Report

Specify Background Color in a Report

Reference:

Usage Notes for Changing Font Size

Color Values in a Report

Using StyleSheet attributes, you can enhance the appearance of a report by specifying the
font, its size, and its color. You can also specify the background color of the report.
Specifications for background color or font format can be made for a report as a whole, or
for headings, footings, and columns designated individually.

How to Specify Font Size in a ReportSyntax:

To specify a font size, use the following syntax within a StyleSheet.

TYPE = type, [subtype,] SIZE=pts, $

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

subtype

Is any additional attribute, such as COLUMN, ACROSS, or ITEM, that is needed to identify
the report component that you are formatting. See Identifying Report Components on
page 525 for more information about how to specify different report components.

pts

Is the size of the font in points. The default value is 10, which corresponds to the HTML
default font size 3. For more information on the correlation between point size and HTML
font size, see Usage Notes for Changing Font Size on page 519.

518 Information Builders

Specifying Font Format in a Report

Usage Notes for Changing Font SizeReference:

Point size is fixed, except in an HTML report. Relative point size uses a different scale than
HTML font size. The following table lists the point size and corresponding HTML font size:

Corresponding HTML Font SizeSize in Points

18 or smaller

29

310

411

512

613

714 or larger

How to Specify Bold or Italic Font Style in a ReportSyntax:

To specify a font style, use the following syntax within a StyleSheet.

TYPE=type, [subtype,] STYLE=[+|-]txtsty[{+|-}txtsty], $

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

subtype

Is any additional attribute, such as COLUMN, ACROSS, or ITEM, that is needed to identify
the report component that you are formatting. See Identifying Report Components on
page 525 for more information about how to specify different report components.

txtsty

Is one of the following values: NORMAL, BOLD, ITALIC. The default value is NORMAL.

+

Enables you to specify a combination of font styles. You can add additional font styles
to an attribute that already has one or more font styles applied to it.

-

Enables you to remove a font style from an attribute.

Creating Reports 519

11. Styling Reports

Adding and Removing Inherited Font Style in a ReportExample:

In the following report request, the font styles bold and italic are specified for the entire
report. The inherited italics are removed from the heading, and both styles are removed from
the column titles.

The report request is:

TABLE FILE GGSALES
HEADING
"Sales Report by Category"
SUM UNITS DOLLARS BY CATEGORY
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, STYLE=BOLD+ITALIC, $
TYPE=HEADING, STYLE=-ITALIC, $
TYPE=TITLE, STYLE=-BOLD-ITALIC, $
TYPE=REPORT, GRID=OFF, $
ENDSTYLE
END

The output is:

How to Specify Font Color in a ReportSyntax:

To specify a color for the font of a report or a report component, use the following syntax
within a StyleSheet.

TYPE=type, [subtype,] COLOR={color|RGB(r g b)},$

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

subtype

Is any additional attribute, such as COLUMN, ACROSS, or ITEM, that is needed to identify
the report component that you are formatting. See Identifying Report Components on
page 525 for more information about how to specify different report components.

520 Information Builders

Specifying Font Format in a Report

color

Is one of the preset color values such as GREY or GOLD. If the display or output device
does not support colors, it substitutes shades of gray. The default value is BLACK. For
a complete list of available color values, see Color Values in a Report on page 522.

RGB

Specifies the font color using a mixture of red, green, and blue.

(r g b)

Is the desired intensity of red, green, and blue, respectively. The values are on a scale
of 0 to 255, where 0 is the least intense and 255 is the most intense. Note that using
the three color components in equal intensities results in shades of gray.

How to Specify Background Color in a ReportSyntax:

Use the following StyleSheet syntax to specify a color for the background of a report.

Note that when using BACKCOLOR in a PDF report, extra space is added to the top, bottom,
right, and left of each cell of data in the report. This is for readability and to prevent truncation.

TYPE=type, [subtype,] BACKCOLOR={color|RGB(r g b)]}, $

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

subtype

Is any additional attribute, such as COLUMN, ACROSS, or ITEM, that is needed to identify
the report component that you are formatting. See Color Values in a Report on page 522
for more information about how to specify different report components.

color

Is the background color, which fills the space of the specified report component. The
default value is NONE. If you are creating a report in HTML format, background colors
will only appear in Web browsers that support them. Netscape Navigator 3.0 and higher
and Microsoft Internet Explorer 3.0 and higher support background colors.

RGB

Specifies the font color using a mixture of red, green, and blue.

(r g b)

Is the desired intensity of red, green, and blue, respectively. The values are on a scale
of 0 to 255, where 0 is the least intense and 255 is the most intense. Note that using
the three color components in equal intensities results in shades of gray.

Creating Reports 521

11. Styling Reports

Color Values in a ReportReference:

The following chart lists all available color values that can be utilized with the syntax.

COLOR=color, BACKCOLOR=color, or PAGECOLOR=color

where color is one of the following values:

MEDIUM FOREST GREEN (OLIVE)AQUA (CYAN)
MEDIUM GOLDENRODAQUAMARINE
MEDIUM ORCHIDBLACK
MEDIUM SLATE BLUEBLUE VIOLET
MEDIUM SPRING GREENCADET BLUE
MEDIUM TURQUOISECORAL
MEDIUM VIOLET REDCORNFLOWER BLUE
MIDNIGHT BLUECYAN (AQUA)
NAVY (NAVY BLUE)DARK GREEN
OLIVE (MEDIUM FOREST GREEN)DARK OLIVE GREEN
ORANGEDARK ORCHID
ORANGE REDDARK SLATE BLUE (PURPLE)
ORCHIDDARK SLATE GREY
PALE GREENDARK TURQUOISE
PINKDIM GREY (GRAY, GREY)
PLUMFIREBRICK
PURPLE (DARK SLATE BLUE)FOREST GREEN (GREEN)
REDFUCHSIA (MAGENTA)
SALMONGOLD
SEA GREENGOLDENROD
SIENNAGRAY (DIM GREY, GREY)
SILVERGREEN (FOREST GREEN)
SKY BLUEGREEN YELLOW
SLATE BLUEGREY (DIM GREY, GRAY)
STEEL BLUE (TEAL)INDIAN RED
TANKHAKI
TEAL (STEEL BLUE)LIGHT BLUE
THISTLELIGHT GREY
TURQUOISELIGHT STEEL BLUE
VIOLETLIME
VIOLET REDLIME GREEN
WHEATMAGENTA (FUCHSIA)
WHITEMAROON
YELLOWMEDIUM AQUAMARINE
YELLOW GREENMEDIUM BLUE

Note that some colors may not appear as specified in the Excel formats, because FOCUS
has no control over how Excel renders colors.

522 Information Builders

Specifying Font Format in a Report

Specifying Fonts for Reports

How to:

Specify Fonts in a Report

Specify the Default Browser Fonts for HTML Reports

You can specify your own fonts in a report by using the FONT attribute in a StyleSheet. If
you are specifying a font for an HTML report, the user's Web browser must support the font.
If the Web browser does not support the font, it reverts to its default behavior of using the
default proportional font.

How to Specify Fonts in a ReportSyntax:

To specify a font for your report, use the following syntax within a StyleSheet.

TYPE=type, [subtype,] FONT='font[,font]',$

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

subtype

Is any additional attribute, such as COLUMN, ACROSS, or ITEM, that is needed to identify
the report component that you are formatting. See Identifying Report Components on
page 525 for more information about how to specify different report components.

font

Is the name of the font. You must enclose the value in single quotes. If you are creating
an HTML report, you can specify more than one font within the single quotes to
accommodate more than one browser.

Note: In an HTML report, specifying different fonts for several different report components
significantly increases the size of the source code.

Specifying Multiple Fonts in an HTML ReportExample:

To control how a report looks on more than one platform, you can specify both a common
Windows font and a common UNIX font in a request. The Web browser searches for the first
font in the list. If the browser does not find this font, it searches for the next one in the list.
If none of the fonts are identified, the browser uses the default proportional font.

Creating Reports 523

11. Styling Reports

In this example, the Web browser first searches for the Arial font. If the browser does not
find Arial, it searches for the Helvetica font. If neither font is identified, the browser uses
the default proportional font.

TYPE=REPORT, FONT='ARIAL,HELVETICA',$

How to Specify the Default Browser Fonts for HTML ReportsSyntax:

A browser assigns specific fonts as the default proportional and default monospace fonts.
To specify a default browser font for an HTML report, you use the reserved names, DEFAULT-
PROPORTIONAL and DEFAULT-FIXED in the StyleSheet of your report. The browser displays
the report accordingly.

To select the default fixed or proportional font of the browser, use the following syntax. Note
that you must specify TYPE to indicate which report components you wish to affect.

FONT={DEFAULT-PROPORTIONAL|DEFAULT-FIXED},$

where:

DEFAULT-PROPORTIONAL

Specifies the default proportional font of the Web browser.

DEFAULT-FIXED

Specifies the default monospace font of the Web browser.

Specifying Default Browser FontsExample:

In this example, the Web browser uses the default monospace font for the entire report
except the report heading and column headings. For these headings, the Web browser uses
the default proportional font.

TABLE FILE GGSALES
HEADING
"Sales Report"
ON TABLE HOLD FORMAT HTML
SUM UNITS DOLLARS BY CATEGORY BY PRODUCT
ON TABLE SET STYLE *
TYPE=REPORT,FONT=DEFAULT-FIXED,$
TYPE=TITLE,FONT=DEFAULT-PROPORTIONAL,$
TYPE=HEADING,FONT=DEFAULT-PROPORTIONAL,$
TYPE=REPORT, GRID=OFF, $
ENDSTYLE
END

524 Information Builders

Specifying Font Format in a Report

The output is:

Identifying Report Components

In this section:

Identifying an Entire Report, Column, or Row

Identifying Data

Identifying Totals and Subtotals

Identifying a Heading, Footing, Title, or FML Free Text

Identifying a Column or Row Title

Identifying a Heading or Footing

Identifying a Page Number, Underline, or Skipped Line

The basic concept behind StyleSheets is that a report consists of several components, each
of which has a specific name. A StyleSheet file consists of style declarations for those
components whose styles you want to change, along with the formatting that you want to
apply to those components. Any component that you do not specifically format in your
StyleSheet either retains the default style or inherits a style from a higher level component.
Inheritance is discussed in FOCUS StyleSheet Attribute Inheritance on page 581.

Creating Reports 525

11. Styling Reports

In a StyleSheet, you identify a report component with the TYPE attribute. The following chart
lists all report components:

Report ComponentTYPE

The entire report. See Identifying an Entire Report, Column, or Row on
page 527.

REPORT

Default page numbers. See Identifying a Page Number, Underline, or
Skipped Line on page 565.

Note: Styles created for page number lines do not apply to page
numbers created by the TABPAGENO variable in TABLE requests. You
can format TABPAGENO page numbers by defining a style for the
heading or footing that contains it.

PAGENUM

A heading on the first page of a report, generated by ON TABLE
SUBHEAD. See Identifying a Heading or Footing on page 554.

TABHEADING

A footing on or after the last page of a report, generated by ON TABLE
SUBFOOT. See Identifying a Heading or Footing on page 554.

TABFOOTING

Headings at the top of each report page. See Identifying a Heading or
Footing on page 554.

HEADING

Footings at the bottom of each report page. See Identifying a Heading
or Footing on page 554.

FOOTING

Headings before a particular sort field, generated by ON sortfield
SUBHEAD. See Identifying a Heading or Footing on page 554.

SUBHEAD

Footings after a particular sort field, generated by ON sortfield
SUBFOOT. See Identifying a Heading or Footing on page 554.

SUBFOOT

Report data. See Identifying Data on page 537.DATA

Column titles. See Identifying a Column or Row Title on page 549.TITLE

ACROSS field names (that is, field names used in ACROSS phrases).
See Identifying a Heading, Footing, Title, or FML Free Text on page 548

ACROSSTITLE

ACROSS field values (that is, values of the ACROSS field). These
values become column titles in the report. See Identifying Data on
page 537.

ACROSSVALUE

526 Information Builders

Identifying Report Components

Report ComponentTYPE

Totals generated by SUBTOTAL, SUB-TOTAL, RECOMPUTE, and
SUMMARIZE. See Identifying Totals and Subtotals on page 542.

SUBTOTAL

The last total on a report, which can either be a column total generated
by COLUMN-TOTAL or a grand total generated by SUBTOTAL, SUB-
TOTAL, RECOMPUTE, or SUMMARIZE. See Identifying Totals and
Subtotals on page 542.

GRANDTOTAL

Lines generated by ON field name RECAP or ON field name COMPUTE.
See Identifying Totals and Subtotals on page 542.

RECAP

Underlines generated by ON field name UNDER-LINE. See Identifying
a Page Number, Underline, or Skipped Line on page 565.

UNDERLINE

Skipped lines generated by ON field name SKIP-LINE. See Identifying
a Page Number, Underline, or Skipped Line on page 565.

SKIPLINE

FML free text. See Identifying a Heading, Footing, Title, or FML Free
Text on page 548.

FREETEXT

Within certain components, you can select specific subcomponents. For example, within a
heading, you can isolate a particular line or a particular field. You identify subcomponents
with selection attributes (also called qualifiers). For example, to choose the third column for
the entire report, use the parameters:

TYPE=REPORT

COLUMN=3

Identifying an Entire Report, Column, or Row

How to:

Identify the Entire Report

Identify an Entire Column

Identify an Entire Financial Modeling Language (FML) Row

Identify an Entire Total or Subtotal Row

You can apply formatting to an:

Entire report. For more information, see How to Identify the Entire Report on page 529.

Creating Reports 527

11. Styling Reports

Entire column within a report, both its title and data (including ROW-TOTAL columns).
For more information, see How to Identify an Entire Column on page 529.

Entire row within a report"either an FML (Financial Modeling Language) row, or a total
or subtotal row"comprising the row's labeling text and its data. For more information,
see How to Identify an Entire Financial Modeling Language (FML) Row on page 533, and
How to Identify an Entire Total or Subtotal Row on page 534.

You can also identify an entire horizontal sort (ACROSS) title or value row in a StyleSheet,
although each of these rows contains only a single kind of information. For details, see
How to Identify a Column Title on page 550.

The following illustrates where the REPORT component and the COLUMN and ACROSSCOLUMN
attributes appear in a report, and which TYPE values you use to identify them. Although in
this example the value for COLUMN is B1 and the value for ACROSSCOLUMN is N2, these
are not the only values you can use to identify these components.

TABLE FILE CENTORD
SUM LINEPRICE LINE_COGS AS 'Line Cost of,Goods Sold'
BY PLANT AS 'Plant'
ACROSS YEAR
WHERE YEAR EQ 2000 OR 2001
HEADING
"Cost Analysis"
FOOTING CENTER
"**End of Report**"
ON TABLE SET PAGE-NUM OFF
END

528 Information Builders

Identifying Report Components

Note: Since this request simply illustrates where the components appear in a report, it
omits a StyleSheet.

How to Identify the Entire ReportSyntax:

To select the entire report, use the syntax:

TYPE = REPORT

How to Identify an Entire ColumnSyntax:

TYPE=REPORT, coltype=column

where:

coltype

Specifies the type of column. It can be:

COLUMN specifies a sort column (generated by BY), a display column (generated by PRINT,
LIST, SUM, or COUNT), a computed column (generated by COMPUTE), or a column of
row totals (generated by ROW-TOTAL).

ACROSSCOLUMN specifies every instance of a column that is repeated across a horizontal
sort (ACROSS) row.

column

Specifies one or more columns. If you are identifying an ACROSSCOLUMN, the only valid
identifiers are Nn and Pn.

Options for identifying columns in a StyleSheet are:

DescriptionIdentifier

Identifies a column by its position in the report. To determine this
value, count vertical sort (BY) fields, display fields, and ROW-TOTAL
fields, from left to right, including NOPRINT fields. For an example,
see How to Identify a Column of Data on page 540.

Nn

Identifies a column by its position in the report. To determine the
value of n, count vertical sort (BY) fields, display fields, and ROW-
TOTAL fields from left to right. Do not count NOPRINT fields.

Pn

Creating Reports 529

11. Styling Reports

DescriptionIdentifier

Identifies a display column by its position in the report. To determine
the value of n, count only display fields from left to right, including
NOPRINT fields. Do not count vertical sort (BY) fields or ROW-TOTAL
fields.

To select all display fields use C*.

Cn

Identifies a vertical sort (BY) column by its position in the report. To
determine the value of n, count only vertical sort (BY) fields, including
NOPRINTs, from left to right.

To select all BY fields use B*.

Bn

Identifies a column by its field name.

When a field occurs more than once, use field(n) to select a particular
occurrence or field(*) to select all occurrences of the field.

field

Identifies a column of row totals generated using ROW-TOTAL. When
used with ACROSS and multiple display commands, ROWTOTAL
generates multiple total columns. Use ROWTOTAL(n) to select a
particular total column. Use ROWTOTAL(field) to select the row total
column for a particular field.

Use ROWTOTAL(*) to select all row total columns in the report.

ROWTOTAL

Note: Within a StyleSheet, all columns must be specified in the same way, either by
field name or positional reference.

Identifying an Entire ColumnExample:

The following illustrates how to identify an entire column, which consists of the column data
and the column title, in a report. The relevant StyleSheet declaration is highlighted in the
request.

530 Information Builders

Identifying Report Components

Note: To produce the same results you can, alternatively, use the values P1, B1, or the
field name (PRODNAME) for the COLUMN attribute in the StyleSheet declaration.

TABLE FILE CENTINV
HEADING
"Excess Stock Report"
SUM QTY_IN_STOCK
BY PRODNAME
WHERE QTY_IN_STOCK GT 10000
FOOTING CENTER
"**End of Report**"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
TYPE=REPORT, COLUMN=N1, STYLE=ITALIC,$
ENDSTYLE
END

The output is:

Creating Reports 531

11. Styling Reports

Identifying an Entire Horizontal (ACROSS) ColumnExample:

The following illustrates how to identify a horizontal (ACROSS) column. When you identify
and format an ACROSSCOLUMN, all data values and the column title sort. The relevant
StyleSheet declarations are highlighted in the request.

Note: To produce the same results you can alternatively use the values P1 and P2,
respectively, for the ACROSSCOLUMN attribute.

TABLE FILE CENTORD
SUM LINEPRICE LINE_COGS AS 'Line Cost of,Goods Sold'
BY PLANT AS 'Plant'
ACROSS YEAR
WHERE YEAR EQ 2000 OR 2001
HEADING
"Cost Analysis"
FOOTING CENTER
"**End of Report**"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
TYPE=REPORT, ACROSSCOLUMN=N1, STYLE=ITALIC,$
TYPE=REPORT, ACROSSCOLUMN=N2, STYLE=BOLD,$
ENDSTYLE
END

532 Information Builders

Identifying Report Components

The output is:

How to Identify an Entire Financial Modeling Language (FML) RowSyntax:

TYPE=REPORT, LABEL=label

where:

Rn

Is an implicit row label. To determine the value of n, count the number of rows up to and
including the desired row.

label

Is an explicit row label.

Creating Reports 533

11. Styling Reports

Identifying an Entire FML RowExample:

The following illustrates how to identify an entire FML row, consisting of the row label and
the row data. The relevant StyleSheet declarations are highlighted in the request.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' LABEL COH OVER
1020 AS 'DEMAND DEPOSITS' LABEL DD OVER
1030 AS 'TIME DEPOSITS' LABEL TD OVER
BAR OVER
RECAP TOTCASH = R1 + R2 + R3; AS 'TOTAL CASH'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=REPORT, LABEL=COH, STYLE=ITALIC, $
TYPE=REPORT, LABEL=DD, STYLE=ITALIC, $
TYPE=REPORT, LABEL=TD, STYLE=ITALIC, $
ENDSTYLE
END

The output is:

How to Identify an Entire Total or Subtotal RowSyntax:

TYPE=type, [BY=sortcolumn]

where:

type

Identifies a subtotal or total. Select from:

GRANDTOTAL which is a grand total (generated by COLUMN-TOTAL, SUBTOTAL, SUB-TOTAL,
RECOMPUTE, or SUMMARIZE).

SUBTOTAL which is a subtotal (generated by SUBTOTAL, SUB-TOTAL, RECOMPUTE, or
SUMMARIZE).

534 Information Builders

Identifying Report Components

RECAP which is a subtotal calculation (generated by ON sortfield RECAP or ON sortfield
COMPUTE).

BY

When there are several subtotal commands, each associated with a different vertical
sort (BY) column, this enables you to identify which of the subtotal commands you wish
to format.

sortcolumn

Specifies the vertical sort (BY) column associated with one of a report's several subtotal
commands. Use the field name to identify the sort column.

Identifying an Entire Total RowExample:

The following illustrates how to identify an entire COLUMN-TOTAL row in a StyleSheet. The
relevant StyleSheet declaration is highlighted in the request.

TABLE FILE SALES
SUM RETURNS DAMAGED AND ROW-TOTAL AND COLUMN-TOTAL
BY PROD_CODE
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=GRANDTOTAL, STYLE=BOLD, SIZE=12, $
ENDSTYLE
END

Creating Reports 535

11. Styling Reports

The output is:

Identifying a Row TotalExample:

The following illustrates how to identify a row total. The relevant StyleSheet declaration is
highlighted in the request. Note that if you want to format an instance of row-total, you can
add a WHEN statement to your StyleSheet. For details, see Conditionally Formatting in a
StyleSheet on page 585.

TABLE FILE SALES
SUM RETURNS DAMAGED AND ROW-TOTAL
BY PROD_CODE AS 'PRODUCT,CODE'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PS
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=REPORT, COLUMN=ROWTOTAL, STYLE=BOLD, $
ENDSTYLE
END

536 Information Builders

Identifying Report Components

The output is:

Identifying Data

How to:

Identify All Data

Identify a Column of Data

Identify a Row of Horizontal Sort (ACROSS) Data

You can identify and format many categories of data in a report, including:

All of a report's data. For more information, see How to Identify All Data on page 538.

Columns of data, including sort columns and display columns. For more information,
see How to Identify a Column of Data on page 540.

Sort rows (that is, ACROSS field values). For more information, see How to Identify a
Row of Horizontal Sort (ACROSS) Data on page 541.

Totals and subtotals. For more information, see Identifying Totals and Subtotals on page
542.

Creating Reports 537

11. Styling Reports

The following illustrates where the DATA and ACROSSVALUE components appear in a report,
and which TYPE values you use to identify them.

TABLE FILE CENTORD
HEADING CENTER
"UNITS SOLD IN 2002 BY PLANT"
SUM QUANTITY AND ROW-TOTAL AS '2002 TOTAL'
ACROSS QUARTER
BY PLANTLNG AS 'PLANT'
WHERE YEAR EQ 2002
ON TABLE COLUMN-TOTAL AS 'TOTAL UNITS'
ON TABLE SET PAGE-NUM OFF
END

Note: Since this request simply illustrates where the components appear in a report, it
omits a StyleSheet.

How to Identify All DataSyntax:

To identify all report data in a StyleSheet"except for column totals, grand totals, subtotals,
and horizontal sort (ACROSS) values, which need to be identified separately"use this attribute
and value:

TYPE = DATA

538 Information Builders

Identifying Report Components

Identifying All Data in a ReportExample:

The following illustrates how to identify all of the data in a report. The relevant StyleSheet
declaration is highlighted in the request.

TABLE FILE CENTORD
HEADING CENTER
"UNITS SOLD IN 2002 BY PLANT"
SUM QUANTITY AND ROW-TOTAL AS '2002 TOTAL'
ACROSS QUARTER
BY PLANTLNG AS 'PLANT'
WHERE YEAR EQ 2002
ON TABLE COLUMN-TOTAL AS 'TOTAL UNITS'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA, STYLE=BOLD, $
ENDSTYLE
END

In the output, the titles and grand total are not bolded because they are not data values:

Creating Reports 539

11. Styling Reports

How to Identify a Column of DataSyntax:

TYPE=DATA, COLUMN=column

where:

column

Specifies one or more columns that you wish to format. For a list of values, see How to
Identify an Entire Column on page 529.

Identifying a Column of DataExample:

The following illustrates how to identify a column of data. The relevant StyleSheet declaration
is highlighted in the request.

Note that when identifying a column using Nn, NOPRINT columns are counted. Even though
the Product Name field is the first column in this report, it is identified with N2 because of
the NOPRINT column.

TABLE FILE CENTORD
PRINT QUANTITY LINEPRICE LINE_COGS
BY ORDER_NUM NOPRINT
BY PRODNAME
WHERE ORDER_NUM EQ '48045'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
TYPE=DATA, COLUMN=N2, STYLE=ITALIC,$
ENDSTYLE
END

The output is:

540 Information Builders

Identifying Report Components

How to Identify a Row of Horizontal Sort (ACROSS) DataSyntax:

TYPE=ACROSSVALUE, [ACROSS={fieldname|Nn}]

where:

ACROSS

If you have a request with multiple ACROSS fields, you can identify each field using the
ACROSS identifier. You only need to include the ACROSS identifier if you have multiple
ACROSS fields in your request.

fieldname

Specifies a horizontal sort row by its field name.

Nn

Specifies a horizontal sort row by its position in the sequence of horizontal sort rows.

Identifying a Row of Horizontal Sort (ACROSS) DataExample:

The following illustrates how to identify a row of horizontal data values. The relevant
StyleSheet declaration is highlighted in the request.

TABLE FILE CENTORD
HEADING
"Units Sold"
SUM QUANTITY
BY PRODNAME
ACROSS PLANT AS 'Manufacturing Plant'
WHERE PRODTYPE EQ 'Digital'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, SIZE=12, $
TYPE=ACROSSVALUE, ACROSS=PLANT, STYLE=BOLD, $
ENDSTYLE
END

Creating Reports 541

11. Styling Reports

The output is:

Note: To produce the same results you can alternatively use the value N1 for the ACROSS
attribute in the StyleSheet declaration. For example, TYPE=ACROSSVALUE, ACROSS=N1,
STYLE=BOLD, $.

Identifying Totals and Subtotals

How to:

Identify a Grand Total, Subtotal, or Subtotal Calculation

Within a StyleSheet, you can identify a report's grand totals, subtotals, subtotal calculations
(generated by ON sortfield RECAP or ON sortfield COMPUTE), column totals, and row totals
in order to format them. For details on identifying row totals, see Identifying an Entire Report,
Column, or Row on page 527.

542 Information Builders

Identifying Report Components

The following example illustrates where these components are in a report, and which TYPE
values you use to identify them.

TABLE FILE EMPLOYEE
SUM DED_AMT AND GROSS
BY DEPARTMENT BY PAY_DATE
ON DEPARTMENT RECAP DEPT_NET/D8.2M = GROSS-DED_AMT;
WHEN PAY_DATE GT 820101
ON DEPARTMENT SUBTOTAL
END

Note: Since this request simply illustrates how to identify different types of totals and
subtotals, it omits a StyleSheet.

How to Identify a Grand Total, Subtotal, or Subtotal CalculationSyntax:

TYPE=type, [BY=sortfield] [coltype=column]

where:

type

Identifies a subtotal or total. Select from:

GRANDTOTAL which is a grand total (generated by COLUMN-TOTAL, SUBTOTAL, SUB-TOTAL,
RECOMPUTE, or SUMMARIZE).

SUBTOTAL which is a subtotal (generated by SUBTOTAL, SUB-TOTAL, RECOMPUTE, or
SUMMARIZE).

Creating Reports 543

11. Styling Reports

RECAP which is a subtotal calculation (generated by ON sortfield RECAP or ON sortfield
COMPUTE).

BY

If you have requests with multiple BY fields, and two or more have subtotal commands
associated with them, you can identify each field using the BY identifier. This is helpful
when you want to format each subtotal differently or when you want to format only one
subtotal.

You need to include the BY identifier only if you have multiple BY fields in your request.

sortfield

Specifies the BY field associated with one of a report's several subtotal commands.
Use the fieldname for the value (BY=fieldname).

coltype

Identifies a specific column for formatting. When you include the COLUMN or
ACROSSCOLUMN identifier in your declaration, only the subtotal values receive the
formatting; the labeling text will not. Values can be:

COLUMN which is a display column (generated by PRINT, LIST, SUM, or COUNT) or a
computed column (generated by COMPUTE).

ACROSSCOLUMN where every instance of a display or computed column that is repeated
across a horizontal sort (ACROSS) row.

If there are several columns being totaled or subtotaled by one command, and you do
not specify a column in the StyleSheet, the formatting will be applied to the totals or
subtotals for all of the columns. It will also be applied to the labeling text for the total
and subtotal values.

column

Specifies the column whose totals or subtotals you wish to format. For a list of values,
see How to Identify an Entire Column on page 529.

Identifying Subtotals and the Grand TotalExample:

The following illustrates how to identify subtotals and the grand total in a report request. In
this example, only subtotal values in the QUANTITY and LINE_COGS fields are formatted,
so the COLUMN attribute is included in the StyleSheet declarations.

The grand total in this request is generated by COLUMN-TOTAL.

544 Information Builders

Identifying Report Components

Since there are two SUBTOTAL commands associated with two of the three BY fields (PLANT
and ORDER_NO), the BY attribute is also included in each declaration to ensure the formatting
is applied to the correct value.

TABLE FILE CENTORD
SUM QUANTITY LINE_COGS AS 'Line Cost of, Goods Sold'
BY PLANT AS 'Plant'
BY ORDER_NUM AS 'Order,Num'
BY PRODNAME
ON PLANT SUBTOTAL AS 'Total:'
ON ORDER_NUM SUBTOTAL AS 'Total:'
WHERE ORDER_NUM EQ '35774' OR '48041'
WHERE PLANT EQ 'BOS'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
TYPE=SUBTOTAL, BY=PLANT, COLUMN=LINE_COGS, STYLE=BOLD+ITALIC, COLOR=BLUE,$
TYPE=SUBTOTAL, BY=ORDER_NUM, COLUMN=QUANTITY, STYLE=BOLD, SIZE=11,$
TYPE=GRANDTOTAL, COLUMN=QUANTITY, STYLE=ITALIC, SIZE=11,$ENDSTYLE
END

Creating Reports 545

11. Styling Reports

The output is:

Note:

To style the entire grand total row, remove the COLUMN attribute from the StyleSheet
declaration.

To produce the same results, you can alternatively use the values N5, P5, or C3 for the
COLUMN attribute in the StyleSheet declaration.

To style an entire subtotal row, remove the COLUMN and BY attributes from the StyleSheet
declaration.

To produce the same results you can, alternatively, use the values COLUMN=N6,
COLUMN=P6, or COLUMN=C3 for the COLUMN=LINE_COGS attribute.

To produce the same results you can, alternatively, use the values COLUMN=N4,
COLUMN=P4, or COLUMN=C1 for the COLUMN=QUANTITY attribute.

546 Information Builders

Identifying Report Components

Identifying a Subtotal Calculation (RECAP/COMPUTE)Example:

The following illustrates how to identify a subtotal calculation created with a RECAP or
COMPUTE phrase. In this example, the subtotal calculation is generated with ON PLANT
RECAP QTY/F6=QUANTITY. The relevant StyleSheet declaration is highlighted in the request.

Note: If there are multiple RECAP or COMPUTE fields in your request, you can distinguish
them by adding BY=fieldname to the StyleSheet declaration.

TABLE FILE CENTORD
SUM QUANTITY LINEPRICE LINE_COGS AS 'Line Cost of, Goods Sold'
BY PLANT AS 'Plant' BY ORDER_NUM
ON PLANT RECAP QTY/F6=QUANTITY;
WHERE PLANT EQ 'BOS'
WHERE ORDER_NUM GT '60000' AND ORDER_NUM LT '70000'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=RECAP, STYLE=BOLD+ITALIC, $
ENDSTYLE
END

The output is:

Creating Reports 547

11. Styling Reports

Styling Multiple RECAP Statements in a MatrixExample:

You can style multiple RECAP commands in a matrix when the RECAP statements are placed
after the last ACROSS value:

TABLE FILE GGSALES
SUM UNITS
BY PRODUCT
ACROSS REGION
RECAP
TTL1/I8=C1+C2+C3+C4;
TTL2/D12.2=TTL1*1.25;
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=DATA, COLUMN=TTL1 (*), COLOR=BLUE, BACKCOLOR=SILVER, STYLE=BOLD, $
TYPE=DATA, COLUMN=TTL2 (*), COLOR=RED, BACKCOLOR=AQUA, STYLE=BOLD, $
ENDSTYLE
END

The output is:

Identifying a Heading, Footing, Title, or FML Free Text
A report's data is framed by headings, footings, and titles; these provide context for the
data. You can identify and format many categories of headings, footings, and titles in a
report, including:

Report, page, and sort headings.

Report, page, and sort footings.

548 Information Builders

Identifying Report Components

Column titles.

Horizontal sort (ACROSS) titles and values.

Free text in Financial Modeling Language (FML) reports.

You can also use a StyleSheet to create a report title that:

Overrides the default report title (FOCUS Report) that appears in your browser's title bar
in an HTML report.

Replaces the default worksheet tab name with the name specified in an EXL2K report.

Identifying a Column or Row Title

How to:

Identify a Column Title

Identify a Horizontal Sort Title or Value

Identify Free Text in an FML Report

Create a Custom Report Title

Within a StyleSheet, you can identify a report's column titles and horizontal sort (ACROSS)
values to format. The following example illustrates where column titles and horizontal sort
values are stored in a report, and which TYPE values you use to identify them.

TABLE FILE EMPLOYEE
SUM GROSS AND DED_AMT
ACROSS DEPARTMENT BY PAY_DATE
END

Creating Reports 549

11. Styling Reports

Note: Since this request simply illustrates how to identify column titles and horizontal sort
values in a report, it omits a StyleSheet.

How to Identify a Column TitleSyntax:

TYPE=TITLE, [COLUMN=column]

where:

COLUMN

Is used to specify one or more column titles. If you omit this attribute and value, the
formatting will be applied to all of the report's column titles.

column

Specifies the column whose title you wish to format. For column values, see How to
Identify an Entire Column on page 529.

How to Identify a Horizontal Sort Title or ValueSyntax:

TYPE={ACROSSTITLE|ACROSSVALUE}, [ACROSS=column]

where:

ACROSSTITLE

Specifies a horizontal sort (ACROSS) title.

ACROSSVALUE

Specifies a horizontal sort (ACROSS) value.

Although horizontal sort values are not technically titles, they often function as titles
that categorize the column titles appearing beneath them.

ACROSS

Is used to specify titles or values for a specific horizontal sort field. If you omit this
attribute and value, the formatting will be applied to the titles or values of all of the
report's horizontal sort fields.

column

Specifies the horizontal sort (ACROSS) field whose title or values you wish to format.
For values you can assign to this attribute, see How to Identify a Row of Horizontal Sort
(ACROSS) Data on page 541.

550 Information Builders

Identifying Report Components

Identifying Column Titles and Horizontal Sort (ACROSS) ValuesExample:

The following illustrates how to identify vertical sort titles, horizontal sort titles, and horizontal
sort values. The vertical sort titles (TYPE=TITLE) are Manufacturing Plant, Quantity Sold and
Product Cost; the horizontal sort title (TYPE=ACROSSTITLE) is Year; and the horizontal sort
values (TYPE=ACROSSVALUE) are 1999, 2000, and 2001. The StyleSheet declarations that
identify these components are highlighted in the request.

TABLE FILE CENTORD
SUM QUANTITY AS 'Quantity,Sold' LINE_COGS/I9 AS 'Product,Cost'
BY PLANT
ACROSS YEAR
WHERE YEAR EQ '2000' OR '2001' OR '2002'
HEADING
"Plant Production Cost Analysis"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
TYPE=TITLE, STYLE=BOLD, $
TYPE=ACROSSTITLE, STYLE=BOLD, $
TYPE=ACROSSVALUE, STYLE=BOLD+ITALIC, COLOR=BLUE, $
TYPE=ACROSSVALUE, COLUMN=N4, STYLE=BOLD, COLOR=RED, $
ENDSTYLE
END

The output is:

Creating Reports 551

11. Styling Reports

How to Identify Free Text in an FML ReportSyntax:

TYPE=FREETEXT, LABEL={Rn|label}

where:

Rn

Is an implicit row label. To determine the value of n, count the number of rows up to and
including the desired row.

label

Is an explicit row label.

Identifying Free Text in an FML ReportExample:

The following illustrates how to identify free text in an FML report. In this example, the free
text are the rows "CASH ACCOUNTS" and "OTHER CURRENT ASSETS." The relevant
StyleSheet declarations are highlighted:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
" --- CASH ACCOUNTS ---" LABEL CA OVER
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
" " OVER
" --- OTHER CURRENT ASSETS ---" LABEL OCA OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=FREETEXT, LABEL=CA, STYLE=BOLD, SIZE=12, $
TYPE=FREETEXT, LABEL=OCA, STYLE=BOLD, SIZE=12, $
ENDSTYLE
END

552 Information Builders

Identifying Report Components

The output is:

How to Create a Custom Report TitleSyntax:

Add the following declaration to your StyleSheet

TYPE=REPORT, TITLETEXT='title', $

where:

title

Is the text for your title.

The maximum amount of characters for:

The worksheet tab name in an EXL2K report is128. Any text that exceeds 128
characters will be truncated.

The browser title for an HTML report is 95. This is a limit imposed by the browser.

Text specified in the title is placed in the file as is and is not encoded. Special
characters, such as <, >, &, and so on, should not be used as they have special
meaning in HTML and may produce unpredictable results.

Note: The words "Microsoft Internet Explorer" are always appended to any HTML
report title.

For an example of using this technique, see Working With Excel 2000 and Excel 97 Reports
on page 635.

Creating Reports 553

11. Styling Reports

Identifying a Heading or Footing

How to:

Identify a Heading or Footing

Identify an Individual Line in a Heading or Footing

Identify a Text String in a Heading or Footing

Identify an Embedded Field in a Heading or Footing

Insert the Total Page Count

Display the Total Number of Pages Within Each Sort Group

Within a StyleSheet, you can identify a report's headings and footings, and the individual
lines, text strings, and fields within them, in order to format them.

You can use the <TABLASTPAGE system variable to insert the total number of pages in a
heading or footing. For example, if you want to add a footing in your report that reads "Page
1 of 5", you can use the <TABLASTPAGE system variable in conjunction with the <TABPAGENO
system variable to do so.

You can also the <BYLASTPAGE system variable to display the number of pages of output
within each sort group when a report uses the REPAGE option to reset the page numbers
for each sort group. If the REPAGE option is not used in the report, the total number of pages
in the report (<TABLASTPAGE variable) is used for <BYLASTPAGE.

554 Information Builders

Identifying Report Components

The following example illustrates where a report heading (TABHEADING), a page heading
(HEADING), a sort heading (SUBHEAD), a sort footing (SUBFOOT), and a report footing
(TABFOOTING) are stored in a report, and which TYPE values you use to identify them.

TABLE FILE EMPLOYEE
PRINT CURR_SAL HIRE_DATE
BY LAST_NAME
BY FIRST_NAME
ON TABLE SUBHEAD
"CONFIDENTIAL INFORMATION"
"SWIFTY INFORMATION GROUP - EMPLOYEE LIST BY DEPARTMENT"
HEADING CENTER
"</1>EMPLOYEE LIST FOR DEPARTMENT: <DEPARTMENT"
ON LAST_NAME SUBHEAD
"ID: <EMP_ID"
ON LAST_NAME SUBFOOT
"** REVIEW SALARY FOR <FIRST_NAME <LAST_NAME"
FOOTING
"CONFIDENTIAL INFORMATION"
ON TABLE SUBFOOT
"</1>***END OF REPORT***"
END

The output is:

Note: Since this request simply illustrates how to identify different types of headings and
footings, it omits a StyleSheet.

How to Identify a Heading or FootingSyntax:

TYPE=headfoot, [BY=sortcolumn]

Creating Reports 555

11. Styling Reports

where:

headfoot

Identifies a heading or footing. Select from:

TABHEADING which is a report heading. This appears once at the beginning of the report
and is generated by ON TABLE SUBHEAD.

TABFOOTING which is a report footing. This appears once at the end of the report and
is generated by ON TABLE SUBFOOT.

HEADING which is a page heading. This appears at the top of every report page and is
generated by HEADING.

FOOTING which is a page footing. This appears at the bottom of every report page and
is generated by FOOTING.

SUBHEAD which is a sort heading. This appears at the beginning of a vertical (BY) sort
group (generated by ON sortfield SUBHEAD).

SUBFOOT which is a sort footing. This appears at the end of a vertical (BY) sort group
(generated by ON sortfield SUBFOOT).

BY

When there are several sort headings or sort footings, each associated with a different
vertical sort (BY) column, you can identify which sort heading or sort footing you wish to
format.

If there are several sort headings or sort footings associated with different vertical sort
(BY) columns, and you omit this attribute and value, the formatting will be applied to all
of the sort headings or footings.

sortcolumn

Specifies the vertical sort (BY) column associated with one of the report's sort headings
or sort footings.

How to Identify an Individual Line in a Heading or FootingSyntax:

TYPE=type, LINE=line_#

where:

type

Identifies a type of heading or footing. Select from HEADING, FOOTING, TABHEADING,
TABFOOTING, SUBHEAD, or SUBFOOT. For details, see How to Identify a Heading or
Footing on page 555.

line_#

Identifies a line by its position in the heading or footing.

556 Information Builders

Identifying Report Components

Identifying an Individual Line in a HeadingExample:

The following example illustrates how to format individual lines in a heading. Heading line
1 (Sales Quantity Analysis) is formatted in bold, point size 11. Heading line 2
(**Confidential**) is formatted in bold and red. The relevant StyleSheet declarations are
highlighted in the request.

TABLE FILE CENTORD
HEADING
"Sales Quantity Analysis"
"**Confidential**"
" "
SUM QUANTITY
ACROSS YEAR
BY PLANT
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, LINE=1, SIZE=11, STYLE=BOLD,$
TYPE=HEADING, LINE=2, COLOR=RED, STYLE=BOLD,$
TYPE=HEADING, JUSTIFY=CENTER,$
ENDSTYLE
END

The output is:

Creating Reports 557

11. Styling Reports

How to Identify a Text String in a Heading or FootingSyntax:

TYPE=type, [LINE=line_#], [OBJECT=TEXT], ITEM=item_#

where:

type

Identifies a type of heading or footing. Select from HEADING, FOOTING, TABHEADING,
TABFOOTING, SUBHEAD, or SUBFOOT. For details, see Identifying a Heading or Footing
on page 554.

line_#

Identifies a line by its position in the heading or footing. You need to include the LINE
attribute only if you have a multi-line heading or footing.

TEXT

Formats only text strings and Dialogue Manager variables (also known as &variables).
It is not necessary to use OBJECT=TEXT in your declaration unless you are styling both
text strings and embedded fields in the same heading or footing.

item_#

Identifies an item by its position in a line.

If you need to apply formatting to several parts of a continuous text string that appears
on one line, you can break the header or footer into multiple parts using spot markers.
Place the spot marker after the text string you wish to specify. The <+0> spot marker
will not add any additional spaces to your heading or footing. When using spot markers,
text is divided as follows:

For an example, see How to Identify a Text String in a Heading or Footing on page 558.

The position value also depends on whether you are using the OBJECT attribute or not.
If you are using:

OBJECT=TEXT, count only text strings from left to right.

No OBJECT, count text strings and embedded field values from left to right.

558 Information Builders

Identifying Report Components

Identifying a Text String in a Heading Using Spot MarkersExample:

The following illustrates how to apply different formats to text strings in a heading using
spot markers. The spot markers used in this example are <+0>, since they do not add any
spaces. The relevant StyleSheet declarations are highlighted in the request.

TABLE FILE CENTORD
HEADING
"Third Quarter,<+0>2002:<+0> Sales Quantity Analysis"
SUM QUANTITY BY PLANT
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, OBJECT=TEXT, ITEM=1, STYLE=BOLD+UNDERLINE, SIZE=12, $
TYPE=HEADING, OBJECT=TEXT, ITEM=2, COLOR=BLUE, SIZE=12,
 STYLE=BOLD+UNDERLINE, $
TYPE=HEADING, OBJECT=TEXT, ITEM=3, STYLE=ITALIC,$
ENDSTYLE
END

The output is:

How to Identify an Embedded Field in a Heading or FootingSyntax:

TYPE=type, [LINE=line_#], OBJECT=FIELD, [ITEM=item #]

where:

type

Identifies a type of heading or footing. Select from HEADING, FOOTING, TABHEADING,
TABFOOTING, SUBHEAD, or SUBFOOT. For details, see Identifying a Heading or Footing
on page 554.

Creating Reports 559

11. Styling Reports

line_#

Identifies a line by its position in the heading or footing. You need to include the LINE
attribute only if you have a multi-line heading or footing.

item_#

Identifies an item by its position in a line.

If you have more than one embedded field in a heading or footing, you must specify the
field you wish to format by giving the item number. Count items from left to right. Do not
include text fields in the count. You do not need to specify the item number if there is
only one embedded field in the heading or footing.

Identifying Embedded Fields in a HeadingExample:

The following illustrates how to format an embedded field in a heading. Notice that the item
number is not specified in the StyleSheet declaration since there is only one embedded field
in the heading. The relevant StyleSheet declaration is highlighted in the request.

TABLE FILE CENTORD
HEADING
"Sales For <YEAR By Plant"
SUM QUANTITY BY PLANT
WHERE YEAR EQ 2000
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, OBJECT=TEXT, COLOR=BLUE,$
TYPE=HEADING, OBJECT=FIELD, COLOR=RED, STYLE=BOLD,$
ENDSTYLE
END

The output is:

560 Information Builders

Identifying Report Components

How to Insert the Total Page CountSyntax:

To insert the total number of pages, add the following to your request:

<TABLASTPAGE

Note that TABLASTPAGE is not supported with Excel 2000.

Inserting the Current Page Number and the Total Page CountExample:

The following illustrates how to add the current page number and the total page count to a
report. The relevant syntax is highlighted in the request.

TABLE FILE EMPLOYEE
PRINT EMP_ID AS 'Employee ID'
BY SALARY IN-GROUPS-OF 5000 AS 'Salary'
BY PCT_INC AS 'Percent,Increase'
BY DAT_INC AS 'Date of,Increase'
ON SALARY PAGE-BREAK
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=TITLE, STYLE=BOLD, SIZE=11, $
ENDSTYLE
FOOTING
"Page <TABPAGENO of <TABLASTPAGE"
END

Creating Reports 561

11. Styling Reports

The first two pages of output are:

How to Display the Total Number of Pages Within Each Sort GroupSyntax:

The request must have the following syntax and hold the output in a styled output format:

BY sortfield REPAGE

The heading or footing can use the following syntax to display “Page x of y”

{HEADING|FOOTING}
"Page <TABPAGENO of <BYLASTPAGE"

where:

sortfield

Is the sort field that has the REPAGE option. A PAGE-BREAK is required on the same
sort field or a lower level sort field. PAGE-BREAK starts a new page for each sort break.
REPAGE resets the page number to 1 for each sort break.

<TABPAGENO

Is the current page number.

562 Information Builders

Identifying Report Components

<BYLASTPAGE

Is the last page number before the repage.

Paginating Within a Sort GroupExample:

The following request against the GGSALES data source sorts by product, region, category,
and city. It resets the pagination each time the product changes. The heading prints the
current page number and the total within each product group:

TABLE FILE GGSALES
HEADING CENTER
"<PRODUCT : Page <TABPAGENO of <BYLASTPAGE "

SUM UNITS
BY PRODUCT NOPRINT REPAGE
BY REGION PAGE-BREAK
BY CATEGORY
BY CITY

ON TABLE HOLD FORMAT PDF
END

The following partial output shows that the page number resets to 1 when the product
changes and that the BYLASTPAGE variable displays the total number of pages for each
product:

Creating Reports 563

11. Styling Reports

564 Information Builders

Identifying Report Components

Identifying a Page Number, Underline, or Skipped Line

How to:

Identify a Page Number, Underline, or Skipped Line

Extend an Underline to the Entire Report Column

Format a Blank Line

Format an Underline

Add or Remove a Report Component Underline

Remove an Underline From a Column Title

Reference:

Usage Notes for the EXTUNDERLINE Attribute

Section Separation Features

In a report, you can identify and format page numbers, underlines, and skipped lines using
the PAGENUM, SKIPLINE, and UNDERLINE attributes.

You can make a detailed tabular report easier to read by separating sections with blank
lines or underlines.

You cannot add blank lines or underlines to an HTML report that displays a grid. You can
add blank lines or underlines if you set the GRID attribute to OFF.

When inserting blank lines, the setting of the LINES parameter should be at least one less
than the setting of the PAPER parameter, to allow room for blanks after the display of data
on a page.

Note that although you can insert skipped lines and underlines in an HTML report, formatting
is not supported.

Creating Reports 565

11. Styling Reports

The following illustrates where the PAGENUM, UNDERLINE, and SKIPLINE components appear
in a report, and which TYPE values you use to identify them.

TABLE FILE CENTORD
HEADING
"Sales By Plant"
SUM QUANTITY
BY PLANT BY YEAR
WHERE PLANT EQ 'BOS' OR 'DAL'
ON YEAR UNDER-LINE
ON PLANT SKIP-LINE
ON TABLE HOLD FORMAT PDF
END

Note: Since this request simply illustrates where the components appear in a report, it
omits a StyleSheet.

How to Identify a Page Number, Underline, or Skipped LineSyntax:

TYPE=type

where:

type

Identifies the report component. Select from:

PAGENUM which identifies page numbers. Note that the TABPAGENO variable is a
component of the heading or footing in which it appears and can be formatted as a
subcomponent of that heading or footing.

566 Information Builders

Identifying Report Components

SKIPLINE which denotes skipped lines generated by ON field SKIP-LINE. This is not
supported for reports in HTML format.

UNDERLINE which identifies underlines generated by ON field UNDER-LINE, or by BAR in
a Financial Modeling Language (FML) report. This is not supported for reports in HTML
format.

Identifying Underlines and Page NumbersExample:

The following illustrates how to identify underlines and page numbers in a report request.
The relevant StyleSheet declarations appear in boldface in the request.

Note that this report is formatted in PDF, since formatting is not supported for underlines
in an HTML report.

TABLE FILE CENTORD
HEADING
"Sales By Plant"
SUM QUANTITY
BY PLANT BY YEAR
WHERE PLANT EQ 'BOS' OR 'DAL' OR 'LA'
ON PLANT UNDER-LINE SKIP-LINE
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, OBJECT=TEXT, COLOR=BLUE, FONT=ARIAL,$
TYPE=PAGENUM, STYLE=ITALIC, SIZE=8,$
TYPE=UNDERLINE, COLOR=RED,$
ENDSTYLE
END

Creating Reports 567

11. Styling Reports

The output is:

Identifying Skipped LinesExample:

The following illustrates how to identify skipped lines in a report. The relevant StyleSheet
declaration is highlighted in the request.

TABLE FILE CENTINV
HEADING
"Low Stock Report"
" "
SUM QTY_IN_STOCK
WHERE QTY_IN_STOCK LT 5000
BY PRODNAME
ON PRODNAME SKIP-LINE
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=SKIPLINE, BACKCOLOR=SILVER, $
ENDSTYLE
END

568 Information Builders

Identifying Report Components

The output is:

How to Extend an Underline to the Entire Report ColumnSyntax:

By default, underlines for column titles on a report extend only from the beginning to the
end of the column title text. You can extend the underline to the entire report column in
styled report output using the EXTUNDERLINE option in your WebFOCUS StyleSheet.
EXTUNDERLINE is an option of the STYLE attribute for the TITLE report component. It is
supported for formats DHTML, PDF, PS, and PPT.

TYPE = TITLE, [COLUMN = colspec,] STYLE = [+|-]EXTUNDERLINE ,$

where:

colspec

Is any valid column specification.

+EXTUNDERLINE

Adds the EXTUNDERLINE option to the inherited text style or specifies a combination of
text styles (for example, STYLE=BOLD+UNDERLINE).

-EXTUNDERLINE

Removes the EXTUNDERLINE option from the inherited text style.

Creating Reports 569

11. Styling Reports

Usage Notes for the EXTUNDERLINE AttributeReference:

HTML format is not supported because the browser calculates the column width and
renders the report.

GRID=ON and EXTUNDERLINE are mutually exclusive since the GRID line spans the width
of the column. GRID overrides any styling specified for the column title underline.

Extending an Underline to the Entire Report ColumnExample:

The following request against the GGSALES data source sums dollar sales by city and by
date:

DEFINE FILE GGSALES
YEAR/YY = DATE;
MONTH/M = DATE;
END
TABLE FILE GGSALES
SUM DOLLARS
BY DATE
BY CITY
WHERE YEAR EQ 1997
WHERE MONTH FROM 01 TO 05
WHERE CITY EQ 'Seattle' OR 'San Francisco' OR 'Los Angeles'
ON TABLE SET PAGE NOPAGE
ON TABLE HOLD FORMAT DHTML
END

570 Information Builders

Identifying Report Components

The output shows that only the column titles are underlined:

To underline entire columns, generate the output in a format that can be styled and use the
EXTUNDERLINE option in the STYLE attribute for the TITLE component. For example, the
following request creates DHTML output in which the column titles are in boldface and left
justified, and the underline is extended to the entire report columns:

DEFINE FILE GGSALES
YEAR/YY = DATE;
MONTH/M = DATE;
END
TABLE FILE GGSALES
SUM DOLLARS
BY DATE
BY CITY
WHERE YEAR EQ 1997
WHERE MONTH FROM 01 TO 05
WHERE CITY EQ 'Seattle' OR 'San Francisco' OR 'Los Angeles'
ON TABLE SET PAGE NOPAGE
ON TABLE HOLD FORMAT DHTML
ON TABLE SET STYLE *
TYPE=TITLE, STYLE= BOLD +EXTUNDERLINE, JUSTIFY=LEFT $
ENDSTYLE
END

Creating Reports 571

11. Styling Reports

The output is:

The following version of the request makes the EXTUNDERLINE and JUSTIFY=LEFT options
the default for the TITLE component, then makes the Date column title bold and removes
the extended underline from that column:

DEFINE FILE GGSALES
YEAR/YY = DATE;
MONTH/M = DATE;
END
TABLE FILE GGSALES
SUM DOLLARS AS 'Sales'
BY DATE
BY CITY
WHERE YEAR EQ 1997
WHERE MONTH FROM 01 TO 05
WHERE CITY EQ 'Seattle' OR 'San Francisco' OR 'Los Angeles'
ON TABLE SET PAGE NOPAGE
ON TABLE HOLD FORMAT DHTML
ON TABLE SET STYLE *
TYPE=TITLE,STYLE= EXTUNDERLINE, JUSTIFY=LEFT ,$
TYPE=TITLE,COLUMN= DATE, STYLE= -EXTUNDERLINE +BOLD ,$
ENDSTYLE
END

572 Information Builders

Identifying Report Components

The output is:

Section Separation FeaturesReference:

Applies toDescriptionFeature

HTML (requires GRID=OFF)

PDF

PS

Adds a blank line.SKIP-LINE

PDF

PS

Formats a blank line.TYPE=SKIPLINE

HTML (requires GRID=OFF)

PDF

PS

Underlines a sort group.UNDER-LINE

PDF

PS

Formats an underline.TYPE=UNDERLINE

Creating Reports 573

11. Styling Reports

Applies toDescriptionFeature

HTML

PDF

PS

Adds an underline to a
report component, or
removes an underline from
a report component other
than a column title.

STYLE={+|-}UNDERLINE

HTML

PDF (displays single or
double underline)

Selects a light or heavy
underline in an FML report.

BAR AS '{-|=}'

How to Format a Blank LineSyntax:

TYPE=SKIPLINE, attribute=value, $

where:

attribute

Is a valid StyleSheet attribute.

value

Is the value of the attribute.

Note: This option is supported for PDF, PS, and HTML reports (when used in conjunction
with internal Cascading Style Sheets).

How to Format an UnderlineSyntax:

TYPE=UNDERLINE ... COLOR={color|RGB} (r g b), $

where:

UNDERLINE

Denotes underlines generated by ON fieldname UNDER-LINE.

COLOR

Specifies the color of the underline. If the display or output device does not support
colors, it substitutes shades of gray. The default value is black.

color

Is one of the supported color values.

RGB

Specifies the text color using a mixture of red, green, and blue.

574 Information Builders

Identifying Report Components

(r g b)

Is the desired intensity of red, green, and blue, respectively. The values are on a scale
of 0 to 255, where 0 is the least intense and 255 is the most intense.

Note that using the three-color components in equal intensities results in shades of
gray. For more information, see Color Values in a Report on page 522.

Note: This option is supported for PDF, PS, and HTML reports (when used in conjunction
with internal Cascading Style Sheets).

Formatting a Sort Group UnderlineExample:

This request uses UNDERLINE to change the default color of an underline from black to red.

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY CATEGORY BY PRODUCT
HEADING
"Sales Report"
" "
ON CATEGORY UNDER-LINE
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=UNDERLINE, COLOR=RED, $
ENDSTYLE
END

Creating Reports 575

11. Styling Reports

The result is an eye-catching separation between sort group values. The online PDF report
appears as:

How to Add or Remove a Report Component UnderlineSyntax:

TYPE=type, [subtype,] STYLE=[+|-]UNDERLINE, $

where:

type

Is the report component.

subtype

Are additional attributes, such as COLUMN, ACROSS, or ITEM, needed to identify the
report component.

+

Adds an underline to the inherited text style or specifies a combination of text styles
(for example, STYLE=BOLD+UNDERLINE). + is the default value.

-

Removes an underline from an inherited text style.

For more information, see Identifying Report Components on page 525.

576 Information Builders

Identifying Report Components

How to Remove an Underline From a Column TitleSyntax:

This syntax applies to an HTML report with internal Cascading Style Sheet.

TYPE=TITLE, [COLUMN=column,] STYLE=-UNDERLINE, $

where:

COLUMN=column

Specifies a column.

Adding Column Underlines and Removing Column Title UnderlinesExample:

This request adds underlines to the values of the column CATEGORY and removes the default
underlines from the column titles in an HTML report with an internal Cascading Style Sheet.

SET HTMLCSS = ON
TABLE FILE MOVIES
PRINT TITLE DIRECTOR
BY CATEGORY
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=TITLE, STYLE=-UNDERLINE, $
TYPE=REPORT, COLUMN=CATEGORY, STYLE=UNDERLINE, $
ENDSTYLE
END

Creating Reports 577

11. Styling Reports

The partial report is:

Reusing FOCUS StyleSheet Declarations With Macros

In this section:

Defining a FOCUS StyleSheet Macro

Applying a FOCUS StyleSheet Macro

If you frequently use a group of attributes within a StyleSheet declaration, you can create a
StyleSheet macro that groups the sequence of attributes together, enabling you to apply
them repeatedly throughout the StyleSheet without recoding them.

578 Information Builders

Reusing FOCUS StyleSheet Declarations With Macros

Defining a FOCUS StyleSheet Macro

How to:

Define a FOCUS StyleSheet Macro

A StyleSheet macro must be defined in the StyleSheet that references it, and the macro
definition must precede its use in the StyleSheet.

To define a macro, use the DEFMACRO attribute followed by the desired styling attributes.

How to Define a FOCUS StyleSheet MacroSyntax:

DEFMACRO = macroname, attribute1 = value1, [attribute2 = value2,]... $

where:

macroname

Is the name you assign to the macro you are creating.

attribute

Is any StyleSheet attribute, such as an attribute to format a report component, insert a
graphic, or apply a condition for conditional formatting (WHEN).

value

Is the value you want to assign to the attribute.

Applying a FOCUS StyleSheet Macro

How to:

Apply a FOCUS StyleSheet Macro

A StyleSheet macro applies all the formatting defined in the macro to the report component
specified in the declaration. To apply a macro, use the MACRO attribute. You can apply one
macro per declaration.

When applying a StyleSheet macro to a report component, you can override any attribute
defined in the macro by specifying the same attribute with the new value in that declaration,
following the MACRO attribute..

Creating Reports 579

11. Styling Reports

How to Apply a FOCUS StyleSheet MacroSyntax:

TYPE=type, [subtype,] MACRO=macroname, [condition,] $

where:

type

Is the report component you wish to affect.

subtype

Is any additional attribute, such as COLUMN, ACROSS, or ITEM, that is needed to identify
the report component to which you are applying the macro. See Identifying Report
Components on page 525, for information about how to specify different types of report
components.

macroname

Is the name of the macro to apply to the specified report component. The macro must
be defined in the same StyleSheet.

condition

Is an optional WHEN attribute that you can specify to make this declaration conditional.

Defining, Applying, and Overriding a FOCUS StyleSheet MacroExample:

The following annotated example illustrates how to define, apply, and override macros in
your StyleSheet:

 TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PRODUCT
 HEADING
 "Sales Report"
 FOOTING
 "Sales Report - Page <TABPAGENO"
 ON TABLE HOLD FORMAT HTML
 ON TABLE SET STYLE *
 TYPE=REPORT, GRID=OFF,$
1. DEFMACRO=A, STYLE=BOLD, SIZE=12, $
2. DEFMACRO=BI, STYLE=BOLD+ITALIC, COLOR=PURPLE, $
3. TYPE=HEADING, MACRO=A, $
4. TYPE=FOOTING, MACRO=BI, COLOR=BLACK, $
5. TYPE=DATA, COLUMN=N1, MACRO=BI, $
 ENDSTYLE
 END

1. Defines the A macro.

2. Defines the BI macro.

580 Information Builders

Reusing FOCUS StyleSheet Declarations With Macros

3. Illustrates how the A macro is applied to the heading.

4. Illustrates how the BI macro is applied to the footing and is partially overridden by the
attribute value pair COLOR=BLACK.

5. Illustrates how the BI macro is applied to the data in the BY sort field CATEGORY (specified
by TYPE=DATA, COLUMN=N1).

The output is:

FOCUS StyleSheet Attribute Inheritance

Reference:

FOCUS StyleSheet Inheritance Hierarchy

Each report component inherits StyleSheet attributes from its parent component. You can
override an inherited attribute by explicitly specifying the same attribute with a different value
in the child component's declaration. Since each component inherits automatically, you
need specify only those attributes that differ from, or that augment, a component's inherited
attributes.

Creating Reports 581

11. Styling Reports

Inheritance enables you to define common formatting in a single declaration, and to apply
it automatically to all child components, except for those components for which you specify
different attribute values to override the inherited values. You benefit from less coding and
a more concise StyleSheet.

For example, you could specify that all report titles should be blue and bold:

TYPE=TITLE, COLOR=BLUE, STYLE=BOLD, $

Each column title will inherit this formatting, appearing in blue and bold by default. However,
you can choose to format one column differently, allowing it to inherit the blue color, but
specifying that it override the bold style and that it add a yellow background color:

TYPE=TITLE, COLUMN=N2, STYLE=-BOLD, BACKCOLOR=YELLOW, $

FOCUS StyleSheet Inheritance HierarchyReference:

Report components inherit StyleSheet attributes according to a hierarchy. The root of the
hierarchy is the entire report, specified in a StyleSheet declaration by TYPE=REPORT.
(Declarations that omit TYPE default to TYPE=REPORT, and so are also applied to the entire
report.) Attributes that are unspecified for the entire report default to values that are
determined according to the report's display format, such as HTML or PDF.

Each report component inherits from its parent component. Component X is a parent of
component Y if X is specified by a subset of all the "type" attributes that specify Y, and if
those shared type attributes have the same values. For example,

A component specified by TYPE=x, subtype=y, elementtype=z is a child of the component
specified by TYPE=x, subtype=y and inherits attributes from it.

The component specified by TYPE=x, subtype=y is a child of the component specified by
TYPE=x, and inherits from it.

The component specified by TYPE=x, where x is any value other than REPORT, is a child
of the entire report (TYPE=REPORT) and inherits from it.

When you use an external Cascading Style Sheet (CSS), a report component inherits
formatting from parent HTML elements, not from a parent report component.

Augmenting Inherited FOCUS StyleSheet AttributesExample:

The following illustrates how to augment inherited StyleSheet attributes. The StyleSheet
declarations discussed in this example are highlighted in the report request.

The page heading in this report has two lines. The first StyleSheet declaration identifies the
report component HEADING to be formatted in bold and have 12-point font size. This will
format both lines of the heading with these styles.

582 Information Builders

FOCUS StyleSheet Attribute Inheritance

To augment the format for the second line of the heading, a second declaration has been
added that specifies the heading line number and the additional style characteristic. In this
case we have added the declaration TYPE=HEADING, LINE=2, STYLE=ITALIC. The second
line of the heading will inherit the bold style and 12-point font size from the first HEADING
declaration, and will also receive the italic style defined in the second declaration.

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY CATEGORY BY PRODUCT
HEADING
"Sales Report:"
"First Quarter"
ON TABLE HOLD FORMAT HTML
ON TABLE SET PAGE-NUM OFF
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, STYLE=BOLD, SIZE=12, $
TYPE=HEADING, LINE=2, STYLE=ITALIC, $ENDSTYLE
END

The output is:

Creating Reports 583

11. Styling Reports

Overriding Inherited FOCUS StyleSheet AttributesExample:

The following illustrates how to override StyleSheet inheritance. The StyleSheet declarations
discussed in this example are highlighted in the report request.

 TABLE FILE GGSALES
 HEADING
 "Sales Report"
 SUM UNITS DOLLARS
 BY CATEGORY BY PRODUCT BY DATE NOPRINT
 WHERE DATE GE 19960101 AND DATE LE 19960401
 ON TABLE SET STYLEMODE PAGED
 ON TABLE SET LINES 20
 ON TABLE HOLD FORMAT HTML
 FOOTING
 "Page <TABPAGENO of <TABLASTPAGE"
 ON TABLE SET STYLE *
 TYPE=REPORT, GRID=OFF, $
1. TYPE=REPORT, BACKCOLOR=BLUE, COLOR=WHITE, $
2. TYPE=HEADING, BACKCOLOR=WHITE, COLOR=BLACK, STYLE=BOLD, SIZE=12, $
3. TYPE=FOOTING, SIZE=11, STYLE=BOLD+ITALIC, BACKCOLOR=WHITE,
 COLOR=BLACK, $
4. TYPE=FOOTING, OBJECT=FIELD, ITEM=1, STYLE=-ITALIC, $
 ENDSTYLE
 END

1. Formats the entire report (all components) to appear with a blue background and white
font.

2. Overrides the inherited format for the page heading (defined in the TYPE=REPORT
declaration) by specifying the background color as white and the font as black.

3. Formats the page footing as font size 11 with a bold and italic style, and overrides the
report color by specifying BACKCOLOR=WHITE and COLOR=BLACK.

4. Since the <TABPAGENO system variable is part of the page footing, it inherits all of the
formatting specified in the first TYPE=FOOTING declaration. This declaration overrides
the inherited format for the page footing by specifying OBJECT=FIELD, ITEM=1, and
removing the italic style (STYLE=-ITALIC). Note that ITEM=1 needs to be specified, since
there are two embedded fields in the footing.

584 Information Builders

FOCUS StyleSheet Attribute Inheritance

The output is:

Conditionally Formatting in a StyleSheet

In this section:

Applying Sequential Conditional Formatting

Using Conditional Grid Formatting in a Field

You can conditionally format report components or display a graphic in your report based
on the values in your report. Using conditional styling, you can:

Draw attention to particular items in the report.

Emphasize differences between significant values.

Customize the resources to which an end user navigates from different parts of the report.

Creating Reports 585

11. Styling Reports

To conditionally format reports, add the WHEN attribute to a StyleSheet declaration. The
WHEN attribute specifies a condition that is evaluated for each instance of a report component
(that is, for each cell of a tabular report column or each free-form report page). The StyleSheet
declaration is applied to each instance that satisfies the condition, and is ignored by each
instance that fails to satisfy the condition.

You can also apply sequential conditional formatting.

Applying Sequential Conditional Formatting

In this section:

Using WHEN With ACROSSCOLUMN

How to:

Conditionally Format in a StyleSheet

You can apply sequential conditional logic to a report component by creating a series of
declarations, each with a different condition. This is the StyleSheet equivalent of a sequence
of nested IF-THEN-ELSE statements. When several conditional declarations specify the same
report component (for example, the same column) and evaluate the same field in the
condition, they are processed together as a group. For each instance of the report component
(for example, for each cell of a column):

1. The conditional declarations in the "group" are evaluated, in the order in which they are
found in the StyleSheet, until one of the conditions is satisfied. That declaration is then
applied to that instance of the report component. The other conditional declarations in
the "group," and any non-conditional declarations that specify the same report component
and the same attributes, are ignored for that instance.

2. If, however, none of the conditional declarations have been satisfied for that instance,
then the first unconditional declaration for that report component that specifies the same
attribute(s) is applied to that instance.

3. Any unconditional declarations for that report component that specify other attributes"that
is, attributes that have not already been applied to the instance in Steps 1 or 2"are now
applied to the instance.

4. The entire process is repeated for the next instance of the report component (for example,
for the next cell of the column).

586 Information Builders

Conditionally Formatting in a StyleSheet

How to Conditionally Format in a StyleSheetSyntax:

TYPE=type, [subtype,] attributes, WHEN=field1 operator {field2|value}, $

OR

TYPE=type, [subtype,] attributes, WHEN=FORECAST, $

where:

type

Is the value of the TYPE attribute. You can specify any report component.

subtype

Are any additional attributes, such as COLUMN, ACROSS, or ITEM, that are needed to
identify the report component to which you are applying the declaration.

attributes

Are the attributes in the StyleSheet declaration that are made conditional by the WHEN
attribute. They can include most formatting or graphic image attributes.

field1, field2

Identifies the report fields that are being compared. Each one can be:

The name of a display field or vertical sort field in a tabular report. You cannot specify
a horizontal sort field (ACROSS).

A column reference in a report.

The name of an embedded field in the heading or footing of a free-form report.

If you wish to use a field that you do not want to display in the report, you can specify
the field in the report request, and use the NOPRINT option to prevent the field from
being displayed (for example, PRINT fieldname NOPRINT).

To apply a prefix operator to a field in a report, you can:

Use the same prefix operator in the WHEN attribute. You must refer to the field by
name in the WHEN attribute (for example, WHEN=AVE.PRICE GT 300).

Refer to the field in the WHEN attribute by column position and omit the prefix operator
(for example, WHEN=N3 GT 300). This is not supported for the ST. and CT. prefix
operators.

The field cannot be a packed (P) numeric field.

Creating Reports 587

11. Styling Reports

operator

Defines how the condition is satisfied. You can use these relational operators:

EQ where the condition is satisfied if the values on the left and right are equal. If the
values being compared are alphanumeric, their case (uppercase, lowercase, or mixed
case) must match.

NE where the condition is satisfied if the values on the left and right are not equal.

LT where the condition is satisfied if the value on the left is less than the value on the
right.

LE where the condition is satisfied if the value on the left is less than or equal to the
value on the right.

GT where the condition is satisfied if the value on the left is greater than the value on
the right.

GE where the condition is satisfied if the value on the left is greater than or equal to the
value on the right.

value

Is a constant, such as a number, character string, date, or date-time. You must enclose
non-numeric constants, such as character strings and dates, in single quotation marks.

Although you cannot use functions or operators here to specify the value, you can define
a temporary field (COMPUTE or DEFINE) using functions and operators, use the temporary
field in the report, and specify it here instead of a constant.

FORECAST

Identifies fields that are generated using the FORECAST command.

Applying Basic Conditional FormattingExample:

This example illustrates how to apply conditional formatting to a report. The conditional
formatting draws attention to orders that total more than $200,000.

588 Information Builders

Conditionally Formatting in a StyleSheet

Notice that because a particular column is not specified in the declaration, the formatting
is applied to the entire row.

TABLE FILE CENTORD
HEADING
"Order Revenue"
" "
SUM ORDER_DATE LINEPRICE AS 'Order,Total:'
BY HIGHEST 10 ORDER_NUM
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA, BACKCOLOR=AQUA, STYLE=BOLD, WHEN=LINEPRICE GT 200000, $
TYPE=HEADING, FONT='Arial', STYLE=BOLD, SIZE=11, $
ENDSTYLE
END

The output is:

Applying Conditional Formatting to a ColumnExample:

This example illustrates how you can use conditional formatting to draw attention to columns
that are not specified in the condition. The WHEN condition states that the order number
for orders exceeding $200,000 should display in boldface with an aqua background.

Creating Reports 589

11. Styling Reports

Notice that the column that is evaluated in the WHEN condition (LINEPRICE) is different from
the column that is formatted (ORDER_NUM); they do not need to be the same.

TABLE FILE CENTORD
HEADING
"Order Revenue"
" "
SUM ORDER_DATE LINEPRICE AS 'Order,Total:'
BY HIGHEST 10 ORDER_NUM
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA, COLUMN=ORDER_NUM,
 BACKCOLOR=AQUA, STYLE=BOLD, WHEN=LINEPRICE GT 200000, $
TYPE=HEADING, FONT='Arial', STYLE=BOLD, SIZE=11, $
ENDSTYLE
END

The output is:

Applying Conditional Formatting Based on a Hidden (NOPRINT) Field's ValuesExample:

This example illustrates how to apply conditional formatting based on the values of a hidden
(NOPRINT) field. This report uses conditional formatting to draw attention to those employees
who have resigned.

590 Information Builders

Conditionally Formatting in a StyleSheet

Notice that the WHEN attribute's condition evaluates a field (STATUS) that is hidden in the
report. Although the field that is evaluated in the condition must be included in the report
request, you can prevent it from displaying in the report by using the NOPRINT option, as
shown in the following request.

TABLE FILE CENTHR
HEADING
"Employee List for Boston"
" "
"For Pay Levels 5+"
" "
"Resigned Employees Shown in <0>Red Bold"
" "
PRINT LNAME FNAME PAYSCALE STATUS NOPRINT
BY ID_NUM
WHERE PLANT EQ 'BOS' AND PAYSCALE GE 5
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA, COLUMN=LNAME,
 COLOR=RED, FONT='Arial', STYLE=BOLD, WHEN=STATUS EQ 'RESIGNED', $
TYPE=DATA, COLUMN=FNAME,
 COLOR=RED, FONT='Arial', STYLE=BOLD, WHEN=STATUS EQ 'RESIGNED',
$TYPE=HEADING, FONT='Arial', STYLE=BOLD, SIZE=11, $
TYPE=HEADING, LINE=5, STYLE=-BOLD, $
TYPE=HEADING, LINE=5, ITEM=2, STYLE=BOLD, COLOR=RED, $
ENDSTYLE
END

Creating Reports 591

11. Styling Reports

The output is:

592 Information Builders

Conditionally Formatting in a StyleSheet

Applying Conditional Formatting to a Sort GroupExample:

This example illustrates how to apply conditional formatting to a sort group. This report uses
conditional formatting to draw attention to those employees who have resigned.

Notice that one conditional declaration is able to apply formatting to all the rows in the sort
group. You can accomplish this by evaluating the sort field (STATUS) in the WHEN attribute's
condition.

TABLE FILE CENTHR
HEADING
"Employee List for Boston"
" "
"For Pay Levels 5+"
" "
PRINT LNAME FNAME PAYSCALE
BY STATUS SKIP-LINE
WHERE PLANT EQ 'BOS' AND PAYSCALE GE 5
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA,
 COLOR=RED, FONT='Arial', STYLE=BOLD, WHEN=STATUS EQ 'RESIGNED',$
TYPE=HEADING, FONT='Arial', STYLE=BOLD, SIZE=11, $
ENDSTYLE
END

Creating Reports 593

11. Styling Reports

The output is:

594 Information Builders

Conditionally Formatting in a StyleSheet

In order to apply the same conditional formatting to only two columns, instead of all the
columns, this version of the report request uses two declarations, each specifying a different
column (LNAME and FNAME):

TABLE FILE CENTHR
HEADING
"Employee List for Boston"
" "
"Pay Levels 5+"
" "
PRINT LNAME FNAME PAYSCALE
BY STATUS SKIP-LINE
WHERE PLANT EQ 'BOS' AND PAYSCALE GE 5
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA, COLUMN=LNAME,
 COLOR=RED, FONT='Arial', STYLE=BOLD, WHEN=STATUS EQ 'RESIGNED', $
TYPE=DATA, COLUMN=FNAME,
 COLOR=RED, FONT='Arial', STYLE=BOLD, WHEN=STATUS EQ 'RESIGNED', $
TYPE=HEADING, FONT='Arial', STYLE=BOLD, SIZE=11, $
ENDSTYLE
END

Creating Reports 595

11. Styling Reports

The output is:

596 Information Builders

Conditionally Formatting in a StyleSheet

Using Sequential Conditional FormattingExample:

This example illustrates how to apply sequential conditional formatting to a report. This
report uses sequential conditional logic to format each row based on its order total
(LINEPRICE).

 TABLE FILE CENTORD
 HEADING
 "Order Revenue"
 " "
 SUM ORDER_DATE LINEPRICE AS 'Order,Total:'
 BY HIGHEST 10 ORDER_NUM
 ON TABLE SET PAGE-NUM OFF
 ON TABLE HOLD FORMAT HTML
 ON TABLE SET STYLESHEET *
 TYPE=REPORT, GRID=OFF, $
1. TYPE=DATA, BACKCOLOR=AQUA, STYLE=BOLD+ITALIC,
 WHEN=LINEPRICE GT 600000, $
2. TYPE=DATA, BACKCOLOR=YELLOW, STYLE=BOLD,
 WHEN=LINEPRICE GT 400000, $
3. TYPE=DATA, BACKCOLOR=ORANGE, STYLE=ITALIC,
 WHEN=LINEPRICE GT 200000, $
4. TYPE=DATA, BACKCOLOR=SILVER, FONT='Arial', $
 TYPE=HEADING, FONT='Arial', STYLE=BOLD, SIZE=11, $
 ENDSTYLE
 END

Notice that:

1. The first conditional declaration formats any rows whose order total is greater than
$600,000.

2. The second conditional declaration formats any rows whose order total is greater than
$400,000 and less than or equal to $600,000, as rows with an order total greater than
$200,000 would have already been formatted by the first conditional declaration.

3. The third conditional declaration formats any rows whose order total is greater than
$200,000 and less than or equal to $400,000, as rows with an order total greater than
$150,000 would have already been formatted by one of the first two conditional
declarations.

4. The unconditional declaration following the conditional declarations specifies:

Background color, which is also specified by the conditional declarations. It applies
background color (silver) to any rows whose order total is less than or equal to
$200,000, since those rows have not already been formatted by the conditional
declarations.

Font, which is not specified by the conditional declarations. It applies font (Arial) to
all data rows.

Creating Reports 597

11. Styling Reports

The output is:

Applying Conditional Formatting to Forecasted ValuesExample:

The following illustrates how you can apply conditional formatting to forecasted values in a
report.

DEFINE FILE GGSALES
SDATE/YYM = DATE;
SYEAR/Y = SDATE;
SMONTH/M = SDATE;
PERIOD/I2 = SMONTH;
END

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY CATEGORY BY PERIOD
WHERE SYEAR EQ 97 AND CATEGORY EQ 'Coffee'
ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,'MOVAVE',3);
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=REPORT, BACKCOLOR=SILVER, WHEN=FORECAST, $
END

598 Information Builders

Conditionally Formatting in a StyleSheet

The output is:

Using WHEN With ACROSSCOLUMN

If you use WHEN with ACROSSCOLUMN, styles are applied differently depending on whether
the column referenced in the WHEN condition falls within ACROSS groups. A WHEN column
that is within an ACROSS group controls the formatting of all data within the same ACROSS
group.

In the following StyleSheet declaration, data values in the RETAIL_COST columns are
formatted according to the data in their corresponding DEALER_COST columns:

TYPE=DATA,ACROSSCOLUMN=RETAIL_COST,COLOR=RED, WHEN=COUNTRY EQ 'ENGLAND',$

If a StyleSheet uses ACROSSCOLUMN with WHEN and a field name referenced in the WHEN
condition appears both under the ACROSS and elsewhere in the report (as is possible with
a multi-verb request), the field name under the ACROSS takes precedence. You can refer to
the other column using another version of the column notation, such as Cn.

Creating Reports 599

11. Styling Reports

Field Interaction When Using ACROSSCOLUMN and WHENExample:

In this request, the RETAIL_COST column under each value of COUNTRY may be printed in
italic with an aqua background color, depending on the corresponding value of DIFF:

TABLE FILE CAR
SUM RETAIL_COST AND DEALER_COST
COMPUTE DIFF/D12.2=RETAIL_COST - DEALER_COST;
ACROSS COUNTRY
WHERE COUNTRY EQ 'ENGLAND' OR 'FRANCE'
ON TABLE SET SQUEEZE ON
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML AS NF958068
ON TABLE SET STYLE *
TYPE=REPORT, FONT=TIMES, SIZE=10,$
TYPE=REPORT, GRID=OFF,$
TYPE=DATA, ACROSSCOLUMN=RETAIL_COST, BACKCOLOR=AQUA,
WHEN=DIFF GT 5000, STYLE=ITALIC,$
ENDSTYLE
END

The output is:

To specify the DIFF field outside the ACROSS, use the notation C3:

WHEN=C3 GT 9000

600 Information Builders

Conditionally Formatting in a StyleSheet

Using ACROSSCOLUMN With WHENExample:

In this example, SEATS is an ACROSSCOLUMN under COUNTRY. Each value of SEATS is
styled differently as a result of the WHEN conditions:

TABLE FILE CAR
PRINT SALES SEATS ACROSS COUNTRY
ON TABLE SET SQUEEZE ON
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, ORIENTATION=LANDSCAPE,FONT=COURIER,$
TYPE=DATA,ACROSSCOLUMN=SEATS,WHEN=SEATS EQ 4,STYLE=BOLD,
 COLOR=BLUE,$
TYPE=DATA,ACROSSCOLUMN=SEATS,WHEN=SEATS GT 4,SIZE=12,
 COLOR=AQUA,$
TYPE=DATA,ACROSSCOLUMN=SEATS,WHEN=SEATS LT 4,STYLE=ITALIC,
 COLOR=RED,$
ENDSTYLE
END

Creating Reports 601

11. Styling Reports

The output is:

602 Information Builders

Conditionally Formatting in a StyleSheet

Using Conditional Grid Formatting in a Field
You can use conditional grid formatting in order to emphasize a particular cell or field in a
PDF or PostScript report.

Creating a Report Using Conditional Grid FormattingExample:

TABLE FILE CAR
SUM SALES BY CAR
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF,$
TYPE=DATA, COLUMN=SALES, GRID=HEAVY, WHEN=CAR EQ 'DATSUN', $
ENDSTYLE
END

The output is:

Creating Reports 603

11. Styling Reports

604 Information Builders

Conditionally Formatting in a StyleSheet

FOCUS

Cascading Style Sheets12
Topics:

Cascading Style Sheets (CSS) provide a
standardized method for styling HTML
documents. This W3C-authorized
specification requires the use of a Web
browser that fully supports CSS.

What Are Cascading Style Sheets?

Cascading Style Sheets and
Precedence Rules

To use an existing Cascading Style
Sheet, simply link it to your report and,
optionally, apply additional CSS classes
to specific report components using the
CLASS attribute. You can create or edit
Cascading Style Sheets with a text
editor, or use a third-party Web page
development tool.

Cascading Style Sheet Formatting
Statements: Rules and Classes

Generating an Internal Cascading Style
Sheet

Working With External Cascading Style
Sheets

Combining CSS Styling With Other
Formatting Methods

Linking to an External Cascading Style
Sheet

FAQ About Using External Cascading
Style Sheets

Troubleshooting Cascading Style
Sheets

Creating Reports 605

What Are Cascading Style Sheets?

In this section:

Benefits of Cascading Style Sheets

The Notion of Browser Dependence

Types of Cascading Style Sheets

The World Wide Web Consortium's (W3C) Cascading Style Sheets (CSS) specification defines
a simple language for adding styling (such as fonts, colors, and spacing) to HTML documents.
A style sheet separates the structural content of a document, defined in HTML, from the
styling instructions, which are specified in a CSS. Each style sheet consists of one or more
instructions or rules, called statements. Each statement includes a selector that tells a
browser which elements on a page are affected by that statement, and a declaration that
tells the browser how to draw or render them.

Benefits of Cascading Style Sheets
The benefits of using Cascading Style Sheets to format reports include:

Increased formatting options. Almost any formatting that you can specify in a Cascading
Style Sheet can be applied to a report, including options unavailable using native FOCUS
StyleSheet attributes.

Reduced transmission bandwidth. Cascading Style Sheets enable FOCUS to generate
concise HTML output, reducing the bandwidth and overhead required to send output to
the browser and display it.

Reduced effort. Experienced designers have the option of applying CSS to their FOCUS
reports as well, avoiding duplications in specifying and maintaining inline formatting
instructions.

Easier standards conformance. Produce consistent documents for sites more easily
by specifying default formatting for all Web documents of a similar type in a single
Cascading Style Sheet (as opposed to selectively replicating the formatting in inline
FOCUS StyleSheets).

606 Information Builders

What Are Cascading Style Sheets?

The Notion of Browser Dependence
In preparing to use CSS, it is important to understand the pivotal role played by the Web
browser. It is the browser's support and implementation of CSS, and not FOCUS, that
determines how (or if) a style sheet formats a styled report. Some browsers support CSS
specifications fully, while others support only certain versions or formatting attributes, and
some offer no support at all. Make sure that your browser and your readers' browsers all
support CSS before proceeding.

Types of Cascading Style Sheets
When you create a HOLD file in HTML format, FOCUS generates most of the report output
as an HTML table, placing each report item in a separate cell. Through the CSS feature, you
can expedite the translation process and minimize the size of the generated HTML file by
including an internal (or "embedded") CSS in your request.

You can employ several types of Cascading Style Sheets with FOCUS:

Internal Cascading Style Sheets that are stored internally in the <head> element of
the HTML documents that they format. When you include an internal CSS, FOCUS
interprets your FOCUS StyleSheet instructions in a Cascading Style Sheet that is stored
in the metadata of your styled HTML output file. The viewing browser interprets this CSS
to determine how to render the file contents.

External Cascading Style Sheets that you or someone else creates are stored in
separate files accessible to the target browsers. Users may share documents linked to
them. Specify an external CSS location in a FOCUS request using the CSSURL FOCUS
StyleSheet attribute or the CSSURL SET parameter.

An external CSS is ideal for defining corporate-standard default styles (such as overall
font/size), which users can then selectively override through FOCUS StyleSheet attributes
when adjusting styles for particular report components.

Inline Style Sheets are stored within the tag of an HTML element or within the <head>
of the document. These are generally not recommended, as they defeat the basic aim
of using style sheets, which is the separation of content and style. They are supported,
however, and can be used to override default style values in all other style sheets, as
described in the next section.

Creating Reports 607

12. Cascading Style Sheets

Cascading Style Sheets and Precedence Rules
As the term "cascading" implies, you can apply several style sheets to a single document
at the same time. For example, you may associate one style sheet with a document itself,
link another style sheet to the first, and then associate a third with the Web browser on
which the document is displayed. When multiple style sheets are in effect, they are applied
to the document in a predetermined sequence set by the browser (not by FOCUS). The
formatting cascades from one style sheet to the next. The precedence of style sheet methods,
from highest priority to lowest, is as follows:

1. Inline Style.

2. Internal Style Sheet.

3. External Style Sheet.

4. Browser default.

Inline styles are physically defined within specific HTML elements, and cannot be overridden.
An internal Style Sheet, whether coded by you or generated by FOCUS, consists of formatting
declarations placed within the <head> tag of the generated HTML file. It is the way you
typically override styling defaults established in an external Cascading Style Sheet that
resides on a corporate LAN server, and serves as a basic Web document template. External
Cascading Style Sheets offer an excellent mechanism for centralizing control of corporate
publications throughout a site, but also save you the effort of repeating basic styling
instructions from one report request to the next. Finally, you can set your Web browser to
observe or ignore Cascading Style Sheets, assuming it is capable of supporting them in the
first place. You and the readers of any documents styled with CSS must have CSS-enabled
browsers to view or work with them.

The actual process for using Cascading Style Sheets in mainframe FOCUS involves several
steps. First, in a FOCUS session specify (or link to) the style attributes that you wish to
apply, and create a HOLD file in HTML format. The rest of this chapter discusses formatting
methods and alternatives. After running your request, leave FOCUS and transfer the HOLD
file to your browser using FTP or another file transfer protocol. Then open the HTML file in
your browser and view and work with the HTML file contents.

608 Information Builders

Cascading Style Sheets and Precedence Rules

Cascading Style Sheet Formatting Statements: Rules and Classes

In this section:

Selecting a CSS Rule

Naming CSS Classes

Inheritance and CSS

Cascading Style Sheets (CSS) define formatting in statements called rules. For example,
this simple rule makes the background color of the body of an HTML page yellow:

BODY {background: yellow}

Each rule has a selector (BODY in this example) and a declaration (such as background:
yellow). A declaration has a property (background) and a value assigned to the property
(yellow). A declaration defines formatting, and a selector determines to what it applies. The
selector can be any HTML element, or a class. You can define a class by creating a rule for
it.

You define classes in a Cascading Style Sheet, and then format report components by
assigning CSS classes to them. Define different formatting for the same element by creating
several classes for it. For example, if you wish to differentiate between text in sort columns,
aggregate columns and detail columns, you can accomplish this by creating three separate
classes of the BODY element"sortColumn, aggregateColumn, and detailColumn:

BODY.sortColumn {color: blue}
BODY.aggregateColumn {color: green}
BODY.detailColumn {color: black}

You can also define generic classes that are not limited to a single element. For example:

.pageFooting {font-weight: bolder}

You can use generic classes to specify formatting for any FOCUS report component.

Selecting a CSS Rule
When formatting a report, you have the choice of using BODY or TD rules for the entire report,
or applying generic class rules to style individual components.

In choosing between the rules for BODY or TD, note that a rule for:

BODY specifies default formatting for the entire Web page in which the report appears,
including for the report itself. Note that this relies on CSS inheritance, which is Web
browser-dependent.

Creating Reports 609

12. Cascading Style Sheets

If you wish to use Cascading Style Sheets to format a report in the usual way, set
STYLEMODE to FULL (the default) or PAGED. If you set it to FIXED and link to an external
Cascading Style Sheet, the report inherits formatting from the BODY and PRE elements,
but you are unable to format the report using classes and the TD element.

TD specifies default formatting only for the report, and for any other table cells on the
page. (TD stands for table data, the table cell element. FOCUS generates most HTML
report output as an HTML table, placing each report item in a separate cell. This enables
a TD rule to format the entire report.)

When formatting a report component using a class rule, use a FOCUS StyleSheet to assign
the class to the component using the CLASS attribute. When applying several CSS properties
to the same report component, it is more efficient to declare them in a single class.

Naming CSS Classes
Class names are case-sensitive. It is recommended to name classes after the functions
they perform, not the appearances of the components to which they are applied, so that the
names remain meaningful even if the report changes appearance. For example, if you want
all report titles to be red, you may name the class declared to format titles Title, but preferably
not Red.

Inheritance and CSS
Components in reports formatted using an external Cascading Style Sheet inherit formatting
from the TD element and from all elements within which the element nests, such as BODY.
(Inheritance, like all CSS behavior, is implemented by the user's Web browser and is browser-
dependent.)

This differs from inheritance in a FOCUS StyleSheet, in which report components inherit
formatting from higher-level components. When you format reports using external Cascading
Style Sheet classes, classes assigned to a report component do not inherit formatting from
classes of higher-level components.

Inheriting Report Column Formatting From a TD ElementExample:

This report lists vendors that supply products to Gotham Grinds. Its formatting instructions
specify that:

The default background color for the entire report is orange. This is specified in a rule
for the TD element.

The data is displayed in an italic Arial font. The data inherits the orange background color
from the rule for TD.

610 Information Builders

Cascading Style Sheet Formatting Statements: Rules and Classes

The PRODUCT_ID data has a yellow background, overriding the default specified in the
rule for TD. If the report formatting were specified in a FOCUS StyleSheet instead of in
an external CSS, PRODUCT_ID would inherit the italic Arial font from its parent report
component, the report data. Instead, because the formatting is specified in an external
CSS, PRODUCT_ID inherits its formatting from the rule for the TD element.

The report request and inline FOCUS StyleSheet follow:

 TABLE FILE GGPRODS
 PRINT PRODUCT_DESCRIPTION VENDOR_NAME
 BY PRODUCT_ID
 ON TABLE SET PAGE-NUM OFF

 ON TABLE HOLD AS CSSEXAM1 FORMAT HTML

 ON TABLE SET STYLESHEET *
1. TYPE=REPORT, CSSURL = c:\Projects\report02.css, $
2. TYPE=DATA, CLASS=Data, $
3. TYPE=DATA, COLUMN=PRODUCT_ID, CLASS=Sort, $
 ENDSTYLE

 END

The external Cascading Style Sheet, report02.css, follows:

4. TD {background:orange; border:0}
5. TABLE {border:0}
6. .Data {font-style:italic; font-family:Arial}
7. .Sort {background:yellow}

1. Set CSSURL to link to the external Cascading Style Sheet report02.css. Alternatively,
you can link to a URL on a Web server, as in the following example:

TYPE=REPORT, CSSURL=http://websrv1/CSS/reportstyles.css, $

2. Specify report data formatting using the CSS rule for the Data class.

3. Specify PRODUCT_ID data formatting using the CSS rule for the Sort class. This overrides
the general declaration for formatting report data in line 2.

4. This CSS rule for the TD element specifies an orange background. Because this rule is
for the TD, it is applied to the entire report. You can override TD formatting for a particular
report component by applying a rule for a generic class to it, as is done in this procedure
with the Sort class rule (see line 7).

5. CSS rules for the TD and TABLE elements remove the default grid from the report.

6. This CSS rule for the generic class Data specifies an Arial font family and an italic style.
The FOCUS StyleSheet applies this to the report(tm)s data (see line 2). This rule inherits
its background color from the rule for the TD element (line 4).

Creating Reports 611

12. Cascading Style Sheets

7. This CSS rule for the generic class Sort specifies a yellow background. The FOCUS
StyleSheet applies this rule to PRODUCT_ID data (see line 3).

This rule overrides the default background color specified in line 4.

The output is:

Generating an Internal Cascading Style Sheet

In this section:

Selecting a Unit of Measurement

When you select HTML format for your report, you instruct FOCUS to generate HTML code
to specify its formatting. You can optimize this process by generating an internal Cascading
Style Sheet as part of the output, in which case FOCUS places an internal Cascading Style
Sheet in the <head> of the HTML document. This, in turn:

Significantly reduces the size of the HTML file generated, which, in turn, decreases
the necessary transmission bandwidth and expedites the display of large reports.

Expands the options for formatting the HTML report. Certain FOCUS StyleSheet
attributes are only supported for HTML reports with internal Cascading Style Sheets.
These include the UNITS, BOTTOMMARGIN, TOPMARGIN, LEFTMARGIN, RIGHTMARGIN,
SIZE, POSITION, WRAP, and PAGECOLOR attributes. Internal Cascading Style Sheets also
permit the addition or removal of underlines from most report components, and allow
specification of exact starting positions and sizes of images.

612 Information Builders

Generating an Internal Cascading Style Sheet

Selecting a Unit of Measurement

How to:

Generate an Internal Cascading Style Sheet

You can choose inches, centimeters, or points as the unit of measurement for page margins
and column widths in HTML reports that include an internal Cascading Style Sheet.

To set the unit of measure, use one of the following:

StyleSheet: UNITS attribute.

SET command: UNITS parameter.

If you change the unit, existing measurements are automatically converted to the new scale.
For example, if you set UNITS to inches and set the top margin to 1, and later change UNITS
to centimeters, the top margin automatically converts to 1 centimeter.

How to Generate an Internal Cascading Style SheetSyntax:

To generate an internal Cascading Style Sheet as part of the HTML report output, do the
following:

Outside a report request, use:

SET HTMLCSS = {ON|OFF}

Within a report request, use:

ON TABLE SET HTMLCSS {ON|OFF}

where:

ON

Generates an internal Cascading Style Sheet in the HTML output to control most aspects
of the report's appearance.

OFF

Turns off the generation of an internal Cascading Style Sheet. Instead, formatting tags
are placed in each HTML table cell used to create the report. This is the default.

When generating an internal Cascading Style Sheet, you can also apply an external one in
the same request. Should the formatting instructions for a report component conflict, the
internal Cascading Style Sheet specifications override the corresponding specifications in
the external Cascading Style Sheet, thus providing a mechanism for runtime adjustment of
external CSS settings.

Creating Reports 613

12. Cascading Style Sheets

Working With External Cascading Style Sheets

In this section:

Applying CSS Styles

Using an External CSS - A Graphical Overview

To format a report using an external Cascading Style Sheet (CSS), you can:

Apply an existing CSS without changes. Some sites use a single style sheet for all
pages on their web site. The same style sheet could also be used for other types of
documents.

Edit an existing CSS, adding or modifying rules. For example, you can add generic
classes to an existing style sheet to format your report's components. When you edit an
existing CSS, the next time someone displays the report on a browser it reflects those
changes without their having to rerun the report (provided an earlier version was not
cached on the browser, in which case he or she has to refresh the view to see the edited
version).

Create your own Cascading Style Sheet to format reports.

Applying CSS Styles

How to:

Use the CLASS Attribute to Apply CSS Formatting

You can apply external Cascading Style Sheet (CSS) formatting to:

A report component (for example, to make a column italic). Assign Cascading Style
Sheet classes to report components using FOCUS StyleSheet CLASS attributes. When
formatting tabular or free-form reports, you can format any report component by assigning
CSS classes. To center headings or footings, use the CENTER option of the HEADING or
FOOTING command, rather than doing this in a style sheet.

An entire report (for example, to make an entire report italic). You can specify this
formatting in an external CSS rule for the BODY or TD elements. You do not need a rule
for a class of an element, nor do you need a FOCUS StyleSheet declaration when
formatting an entire report with this approach.

When using an external Cascading Style Sheet to format a report, it is recommended not to
use a FOCUS StyleSheet to specify the report's formatting unless you also generate an
internal Cascading Style Sheet.

614 Information Builders

Working With External Cascading Style Sheets

How to Use the CLASS Attribute to Apply CSS FormattingSyntax:

To apply an external Cascading Style Sheet (CSS) class to a report component, use the
following syntax in a FOCUS StyleSheet declaration.

TYPE = type, [subtype,] CLASS = classname, [when,] [link,] $

where:

type

Identifies the report component to which you are applying the class's formatting. For
tabular and free-form reports, it can be any component.

Each report component can be formatted by one class. If you specify several classes
for a report component:

1. Classes in declarations with conditional formatting are evaluated first. For each cell
in the report component, the first class whose condition is satisfied by the cell(tm)s
row is assigned to the cell.

2. If there are no conditional declarations, or if no conditions are satisfied, the class in
the first unconditional declaration is assigned to the report component. All subsequent
declarations for that component are ignored.

subtype

Is an optional attribute and value needed to specify certain kinds of report components
completely. For example, COLUMN and a column identifier are needed to specify a
particular report column.

classname

Is the name of the Cascading Style Sheet class you are applying to format the report
component. You can assign the same class to multiple report components.

Class names are case sensitive, and must agree with the case name in the class rule
in the Cascading Style Sheet. (Note, however, that not all Web browsers enforce case
sensitivity for class names.)

when

Is an optional WHEN attribute and value. Supply this to apply conditional formatting.

link

Is an optional URL or JAVASCRIPT attribute and value. Supply this if you want to link the
report component to another resource.

Creating Reports 615

12. Cascading Style Sheets

Using an External CSS - A Graphical Overview

How to:

Format a Tabular Report With an External CSS

Three items are required to style a report with an external Cascading Style Sheet (CSS):

An external Cascading Style Sheet that specifies formatting to be applied.

A FOCUS StyleSheet in which you apply external CSS formatting attributes to your report
components (this is not required if you format the entire report with the CSS).

A link to the external Cascading Style Sheet from the report.

This example demonstrates the interaction.

616 Information Builders

Working With External Cascading Style Sheets

How to Format a Tabular Report With an External CSSProcedure:

To format a report using an external Cascading Style Sheet (CSS):

1. Specify the report formatting in the CSS. To specify formatting for:

A report component, use a rule for any generic class (one not tied to an element).
This Cascading Style Sheet rule declares the ColumnTitle generic class:

.ColumnTitle {font-family:helvetica; font-weight:bold;
color:blue;}

The entire report, use a rule for the BODY or TD elements (not for a class of these
elements), and skip Step 2. This is an effective way to specify default report
formatting, and generates more efficient report output than applying a CSS class to
the entire report. This Cascading Style Sheet rule for the TD element specifies the
element's font family:

TD {font-family:helvetica}

Because this rule is for the TD element, the formatting is applied to an entire report,
not just a report component.

2. Assign classes to report components. In a FOCUS StyleSheet, use the CLASS attribute
to assign a Cascading Style Sheet class to each report component that you wish to
format. You can assign each component a different class, and you can assign the same
class to multiple components. This FOCUS StyleSheet example formats ACROSS values
by applying the formatting for the ColumnTitle class:

TYPE=AcrossValue, CLASS=ColumnTitle, $

3. Link to the CSS. Link the external Cascading Style Sheet by assigning either the URL
or the fully qualified pathname for the CSS file, through either the CSSURL FOCUS
StyleSheet attribute or the CSSURL SET parameter, as shown below:

TYPE=REPORT, CSSURL = c:\projects\reportstyles.css

TYPE=REPORT, CSSURL=http://webserv1/css/reportstyles.css

You can accomplish the same thing using a SET command:

SET CSSURL = c:\projects\reportstyles.css

SET CSSURL=http://webserv1/css/reportstyles.css

Creating Reports 617

12. Cascading Style Sheets

Formatting a Report Using a Cascading Style SheetExample:

This annotated report, which displays products currently offered by Gotham Grinds, is
formatted using a Cascading Style Sheet (report01.css). The formatting specifies that:

The default font family is Arial.

The style sheet formatting overrides the report heading default font family of Times New
Roman. The heading is also in a larger point size and is center-justified.

All column titles are in a bold font and have a light-blue background.

When a product's unit price is less than $27, the report displays that product row in
green italics.

The report request and inline FOCUS StyleSheet follow:

 TABLE FILE GGPRODS
 HEADING
 "</1 Current Products</1"
 PRINT PRODUCT_DESCRIPTION UNIT_PRICE
 BY PRODUCT_ID
 ON TABLE SET PAGE-NUM OFF

 ON TABLE HOLD AS CSSEXAM2 FORMAT HTML

1. ON TABLE SET STYLE *
2. TYPE=REPORT, CSSURL=c:\Projects\report01.css, $
3. TYPE=HEADING, CLASS=headText, $
4. TYPE=TITLE, CLASS=reportTitles, $
5. TYPE=DATA, CLASS=lowCost, WHEN=N3 LT 27, $
6. ENDSTYLE
 END

The external Cascading Style Sheet, report01.css, follows:

7. BODY {font-family:Arial, sans-serif}
8. TABLE {border:0}
8. TD {border:0}
9. .reportTitles {font-weight:bolder; background:lightblue;}
10..lowCost {color:green; font-style:italic;}
11..headText {font-family:Times New Roman, serif; font-size:larger;
 text-align:center}

1. Begin the inline FOCUS StyleSheet.

2. Link to the fully-qualified pathname (or URL, if Web-based) of the external Cascading Style
Sheet report01.css.

618 Information Builders

Working With External Cascading Style Sheets

3. Format the report(tm)s heading using the Cascading Style Sheet(tm)s rule for the headText
class.

4. Format the report(tm)s column titles using the CSS(tm)s rule for the reportTitles class.

5. For each report row for which the product(tm)s unit cost is less than $27, format that
row using the CSS rule for the lowCost class.

6. End the inline FOCUS StyleSheet.

7. This CSS rule for the BODY element specifies the font family Arial, and if Arial is
unavailable, the generic font family sans serif.

Because this is a rule for BODY, it is applied to the entire report: all text in the report
defaults to Arial. You can override this for a particular report component by applying a
rule for a generic class to that component, as is done in this procedure with the rule for
the headText class (see line 11).

8. These CSS rules for the TABLE and TD elements remove the report(tm)s default grid.

9. This CSS rule for the generic class reportTitles specifies a bolder relative font weight and
a light blue background color. The FOCUS StyleSheet applies this to the report(tm)s
column titles (see line 4).

10. This CSS rule for the generic class lowCost specifies the text color green and the font
style italic. The FOCUS StyleSheet applies this rule conditionally to report rows for which
the product(tm)s unit cost is less than $27 (see line 5).

11. The CSS rule for the generic class headText specifies the font family Times New Roman,
and if Times New Roman is unavailable, the generic font family serif. It also specifies a
larger relative font size and center justification.

The FOCUS StyleSheet applies this rule to the report(tm)s heading. It overrides the default
font family specified in the rule for the BODY element (see line 7).

Creating Reports 619

12. Cascading Style Sheets

The output is:

Combining CSS Styling With Other Formatting Methods

In this section:

Combining an External CSS With a FOCUS StyleSheet

Combining an External CSS With TABLE Language Formatting

When using a Cascading Style Sheet (CSS) to format a report, you can also apply other
formatting methods, such as FOCUS StyleSheets and FOCUS TABLE Language.

Combining an External CSS With a FOCUS StyleSheet
When using an external Cascading Style Sheet (CSS) to format a report, you can always use
a FOCUS StyleSheet at the same time, whether or not you generate an internal Cascading
Style Sheet.

620 Information Builders

Combining CSS Styling With Other Formatting Methods

An effective approach is to link to an external CSS to provide basic report formatting, and
then use a FOCUS StyleSheet to selectively override defaults for styling individual report
components. Thus, a CSS BODY or TD rule can provide default report formatting, which you
can override by providing native FOCUS StyleSheet attributes for those individual report
components.

Exceptions: Even when specifying external CSS classes, use native FOCUS StyleSheet
attributes to:

Create hyperlinks (using URL attributes). However, if you wish to format a hyperlink, do
so using the Cascading Style Sheet.

Make a FOCUS StyleSheet declaration conditional (using the WHEN attribute).

Embed an image (using the IMAGE attribute). If you wish to format the image to position
it, do so using the Cascading Style Sheet.

Performance considerations: Unless you also generate an internal Cascading Style Sheet
from the FOCUS StyleSheet, combining an external CSS and a FOCUS StyleSheet may reduce
the performance benefits associated with the external CSS. This is because you generate
more HTML code when styling a report with both external CSS and native FOCUS StyleSheet
attributes than if you only use the external CSS. However, this still generates less code than
if the report uses only native FOCUS StyleSheet attributes.

Do not double-format. Do not format the same property of the same report component
using both an external CSS class (using the CLASS attribute) and a FOCUS StyleSheet
attribute, since the class and the StyleSheet attribute could conflict.

For example, do not include the following declarations in the same StyleSheet:

TYPE=Data, COLUMN=Country, COLOR=Orange, $
TYPE=Data, CLASS=TextColor, $

because both try to assign a color to the report's Country column.

You can specify classes and FOCUS StyleSheet attributes that format different report
components, and different properties of the same report component. For example, the
following declarations are acceptable in the same StyleSheet:

1. TYPE=Heading, COLOR=Green, $
1. TYPE=Heading, CLASS=HeadingFontSize, $
2. TYPE=Data, Column=Country, BACKCOLOR=Yellow, $
2. TYPE=Data, Column=Car, CLASS=DataBackgroundColor, $

1. These two declarations are compatible because they format different properties (color
and font size).

2. These two declarations are compatible because they format different report components
(the Country column and the Car column).

Creating Reports 621

12. Cascading Style Sheets

Combining an External CSS With TABLE Language Formatting
TABLE language instructions. You can use TABLE language formatting instructions, such
as HEADING CENTER, PAGE-BREAK, and spot markers, but never apply the same formatting
to a report component using both a TABLE language instruction and an external Cascading
Style Sheet rule. For example, do not specify both of the following for the same report,
because both attempt to align the page heading of the report:

HEADING CENTER in the report request.

Text-align in an external CSS, applied to the report's page heading.

Linking to an External Cascading Style Sheet

How to:

Use the CSSURL SET Parameter to Link to an External CSS

Use the CSSURL Attribute to Link to an External CSS

To format a report using an external Cascading Style Sheet (CSS), you must link to the
Cascading Style Sheet by assigning a file location using the CSSURL attribute or parameter:

Using CSSURL as a StyleSheet attribute enables you to specify all formatting information
in one place, since you can specify a link to the external CSS, and references to CSS
classes within the FOCUS StyleSheet. This makes it easier to maintain your formatting
logic.

Using CSSURL as a SET parameter enables you to switch a link quickly from one CSS to
another, which is useful for redirecting many reports at once. To do so, put the SET
CSSURL command in its own procedure, and merge it into other report procedures by
inserting a -INCLUDE Dialogue Manager command in each.

When the CSSURL is specified in several ways, the most local specification takes precedence.
The order of precedence, from local (1) to global (3), is:

1. TYPE=REPORT, CSSURL = url_or_fully-qualified pathname

2. ON TABLE SET CSSURL url_or_fully-qualified pathname

3. SET CSSURL = url_or_fully-qualified pathname

How to Use the CSSURL SET Parameter to Link to an External CSSSyntax:

To link an external Cascading Style Sheet (CSS) to a report using a SET parameter, issue
the following command in a procedure:

SET CSSURL = css_url_or_fully-qualified pathname

622 Information Builders

Linking to an External Cascading Style Sheet

or the following ON TABLE SET command in a report request:

ON TABLE SET CSSURL css_url_or_fully-qualified pathname

where:

css_url_or_fully-qualified pathname

Is the location of the external Cascading Style Sheet (assume it is case-sensitive).

The length limit is:

69 characters in a SET command.

57 characters in an ON TABLE SET command.

Linking to an External Cascading Style Sheet Using the CSSURL AttributeExample:

This report displaying products offered by Gotham Grinds is formatted using an external
Cascading Style Sheet (CSS) that is linked through the CSSURL attribute in the FOCUS
StyleSheet:

TABLE FILE GGPRODS
HEADING
"</1 Current Products</1"
PRINT PRODUCT_DESCRIPTION UNIT_PRICE
BY PRODUCT_ID
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD AS CSSEXAM3 FORMAT HTML

ON TABLE SET STYLESHEET *
TYPE=REPORT, CSSURL = c:\projects\report01.css, $
TYPE=HEADING, CLASS=headText, $
TYPE=TITLE, CLASS=reportTitles, $
TYPE=DATA, CLASS=lowCost, WHEN=N3 LT 27, $
ENDSTYLE
END

Creating Reports 623

12. Cascading Style Sheets

The output is:

How to Use the CSSURL Attribute to Link to an External CSSSyntax:

Use the following syntax to link an external Cascading Style Sheet (CSS) to your report using
a FOCUS StyleSheet attribute:

[TYPE=REPORT,] CSSURL=css_path, $

where:

TYPE=REPORT

Specifies that this attribute is being applied to the entire report. If it is omitted, the
StyleSheet declaration still defaults to this setting.

css_path

Specifies the URL or fully-qualified path name of the location where the external Cascading
Style Sheet definition file resides.

If you specify CSSURL multiple times, the last value specified in an ON TABLE SET command
overrides all the other values within that report request. If CSSURL is not specified within a
report request, the last value specified with SET overrides all the others.

624 Information Builders

Linking to an External Cascading Style Sheet

FAQ About Using External Cascading Style Sheets
This topic answers the most frequently asked questions (FAQ) about using external Cascading
Style Sheets (CSS) to format reports.

Does it answer your question? Please send in any questions that you may still have.
Each question will get a response, and will also be considered for inclusion in a future
release of FAQ. Any comments on this document are also welcome.

You can:

E-mail them to books_info@ibi.com. Please include your name and phone number, and
put Cascading Style Sheet FAQ in the subject line.

Send them to:

Documentation Services
Attn: Core Reporting Group
Information Builders
Two Penn Plaza
New York, NY 10121-2898

Please include your name, phone number, e-mail address, and postal address.

How do I specify a report's default formatting using CSS?

Specify default formatting for an entire report in an external Cascading Style Sheet rule for
the BODY or TD element.

Do I always need to use the CLASS attribute?

No. You need a CLASS attribute in a FOCUS StyleSheet if you specify formatting for an
individual report component. You use CLASS to assign a rule for a generic class to the report
component. When you specify formatting for the entire report, you do so in a rule for the
BODY or TD element, not in a rule for a class, so you omit the CLASS attribute.

Can I use a Cascading Style Sheet and a FOCUS StyleSheet together?

When linking to an external Cascading Style Sheet, you can also specify native FOCUS
StyleSheet attributes in a FOCUS StyleSheet. However, if you do not generate an internal
Cascading Style Sheet, you should not specify CSS classes (CLASS=) and native FOCUS
StyleSheet attributes in the same FOCUS StyleSheet (except to specify conditional formatting,
to specify a link to another resource, or to embed an image).

Which version of CSS does FOCUS support?

Support for different versions of Cascading Style Sheets (such as CSS2) is determined
entirely by your Web browser's support and implementation of Cascading Style Sheets, not
by FOCUS.

Creating Reports 625

12. Cascading Style Sheets

Which types of reports can I format using an external Cascading Style Sheet?

You can format tabular reports, including regular (column-oriented) reports and Financial
Modeling Language (FML, also known as extended matrix or row-oriented) reports.

Troubleshooting Cascading Style Sheets
This topic addresses some common problems encountered when formatting reports with
Cascading Style Sheets (CSS).

What problems did you encounter? If you have troubleshooting suggestions that you
think others will find helpful, you may send them to be considered for inclusion in a future
release. You can:

E-mail them to books_info@ibi.com. Please include your name and phone number, and
put Cascading Style Sheet troubleshooting for FOCUS applications in the subject line.

Send them to:

Documentation Services
Attn: Core Reporting Group
Information Builders
Two Penn Plaza
New York, NY 10121-2898

Please include your name, phone number, e-mail address, and postal address.

Symptom: The report is not using any of the Cascading Style Sheet's formatting.

Reason 1: Your Web browser may not support Cascading Style Sheets.

Solution 1: Check to be sure that your browser supports Cascading Style Sheets; if it
does not, install an appropriate browser version.

Reason 2: Your Web browser may be set to ignore Cascading Style Sheets.

Solution 2: Reset the browser to accept a document's Cascading Style Sheet. For
instructions about checking or changing a browser's setting, see your browser's help.

Symptom: The report reflects some, but not all, of the CSS formatting.

Reason 1: Your Web browser's support and implementation of Cascading Style Sheets
determines how a Cascading Style Sheet rule formats your report. It has nothing to do
with FOCUS. You may experience this symptom because your browser does not support
the level of Cascading Style Sheets that you are using, leaving some CSS features
unimplemented.

Solution 1: Upgrade your browser to a version that supports all the CSS features used
to format the report, or edit the Cascading Style Sheet to remove features that are
unsupported by some of the browsers that are used to display the report.

626 Information Builders

Troubleshooting Cascading Style Sheets

Reason 2: Your Web browser may be set to use your personal Cascading Style Sheet,
and you may have rules there that override those specified in the Cascading Style Sheet
assigned to the report. See your third-party CSS documentation.

Solution 2: Reset your browser to accept each document's Cascading Style Sheet, or
edit the rules in the two Cascading Style Sheets so that they no longer conflict.

Reason 3: Certain Web browsers ignore an entire rule if they do not support a property
specified in it. If your Web browser does not support a property specified in a rule for
one of the classes assigned to the report, none of the report components to which that
rule was assigned are formatted.

Solution 3: Remove the unsupported property, or upgrade your browser to a version that
supports the property.

Reason 4: Each report component can be assigned only one Cascading Style Sheet
class. If you have specified more than one class, only the first one specified is assigned
to the component; the others are ignored.

If a class has not yet been assigned to a report cell, and you specify conditional formatting
for it, only the first class whose condition is satisfied by that row is assigned to the cell.
The others are ignored.

Solution 4: Do not assign more than one CSS class to each report component. If you
need to apply multiple attributes, bundle them into a single class.

Reason 5: Some Web browsers implement CSS inheritance rules for nested elements
in ways that do not conform to the CSS standard. If you are using such a browser, and"for
example"you specify some formatting in a rule for the BODY element, your browser may
not apply the rule to other elements nested within BODY.

Solution 5: Specify the report's formatting in a rule for a different element (for example,
if the browser does not correctly implement inheritance from BODY, use a rule for TD),
or else upgrade your browser to a version that correctly supports inheritance.

Reason 6: External Cascading Style Sheets can be subject to certain restrictions when
used with other formatting methods. For example, if a report's FOCUS StyleSheet does
not generate an internal Cascading Style Sheet, but it references external CSS classes
and also specifies native FOCUS StyleSheet attributes, there may be a formatting conflict.

Solution 6: The solution depends on the kind of formatting conflict. In the example
above, the solution is to generate an internal Cascading Style Sheet.

Creating Reports 627

12. Cascading Style Sheets

628 Information Builders

Troubleshooting Cascading Style Sheets

FOCUS

Working With Styled Output Formats13
Topics:

Some advanced features of styled report
output depend on whether the report is
produced as HTML, PDF, PostScript,
Excel 2000, or Excel 97 format. These
features are described in this chapter.

Working With HTML Reports

Working With Excel 2000 and Excel
97 Reports

For information about creating a
StyleSheet, identifying and styling report
components, and choosing a styled
output format, see Styling Reports.

Working With PostScript and PDF
Reports

For advanced StyleSheet techniques and
features that apply to styled output
formats, see Advanced StyleSheet
Features.

Creating Reports 629

Working With HTML Reports

In this section:

Preserving Leading and Internal Blanks in Report Output

Creating HTML Reports With Absolute Positioning

Preserving Leading and Internal Blanks in Report Output

How to:

Preserve Leading and Internal Blanks in HTML and EXL2K Reports

By default, HTML browsers and Excel remove leading and trailing blanks from text and
compress multiple internal blanks to a single blank.

If you want to preserve leading and internal blanks in HTML and EXL2K report output, you
can issue the SET SHOWBLANKS=ON command.

Even if you issue this command, trailing blanks will not be preserved except in heading,
subheading, footing, and subfooting lines that use the default heading or footing alignment.

How to Preserve Leading and Internal Blanks in HTML and EXL2K ReportsSyntax:

In a FOCEXEC, on the command line, or in a profile use the following syntax

SET SHOWBLANKS = {OFF|ON}

In a request, use the following syntax

ON TABLE SET SHOWBLANKS {OFF|ON}

where:

OFF

Removes leading blanks and compresses internal blanks in HTML and EXL2K report
output.

ON

Preserves leading and internal blanks in HTML and EXL2K report output. Also preserves
trailing blanks in heading, subheading, footing, and subfooting lines that use the default
heading or footing alignment.

630 Information Builders

Working With HTML Reports

Preserving Leading and Internal Blanks in HTML and EXL2K Report OutputExample:

The following request creates a virtual field that adds leading blanks to the value ACTION
and both leading and internal blanks to the values TRAIN/EX and SCI/FI in the CATEGORY
field. It also adds trailing blanks to the value COMEDY:

SET SHOWBLANKS = OFF
DEFINE FILE MOVIES
NEWCAT/A30 = IF CATEGORY EQ 'ACTION' THEN ' ACTION'
 ELSE IF CATEGORY EQ 'SCI/FI' THEN 'SCIENCE FICTION'
 ELSE IF CATEGORY EQ 'TRAIN/EX' THEN ' TRANING EXERCISE'
 ELSE IF CATEGORY EQ 'COMEDY' THEN 'COMEDY '
 ELSE 'GENERAL';
END
TABLE FILE MOVIES
SUM CATEGORY LISTPR/D12.2 COPIES
BY NEWCAT
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
GRID=OFF,$
TYPE=REPORT, FONT=COURIER NEW,$
ENDSTYLE
END

With SHOWBLANKS OFF, these additional blanks are removed:

With SHOWBLANKS ON, the additional leading and internal blanks are preserved. Note that
trailing blanks are not preserved:

Creating Reports 631

13. Working With Styled Output Formats

Creating HTML Reports With Absolute Positioning

How to:

Create Web Archive Report Output

Create a DHTML Report

Reference:

Usage Notes for Format DHTML

Format DHTML provides HTML output that has most of the features normally associated
with output formatted for printing such as PDF or PostScript output. You can create an HTML
file (.htm) or a Web Archive file (.mht). The type of output file produced is controlled by the
value of the HTMLARCHIVE parameter.

Some of the features supported by format DHTML are:

Absolute positioning. DHTML precisely places text and images inside an HTML report,
allowing you to use the same StyleSheet syntax to lay out HTML as you use for PDF or
PS output.

On demand paging. On demand paging is available with SET HTMLARCHIVE=OFF.

PDF StyleSheet features. For example, the following features are supported: grids,
background colors, OVER.

How to Create Web Archive Report OutputSyntax:

SET HTMLARCHIVE = {ON|OFF}

where:

ON

Creates output in Web Archive format. The file type of the output file is MHT.

OFF

Creates output in HTML format The file type of the output file is HTM. OFF is the default
value.

632 Information Builders

Working With HTML Reports

How to Create a DHTML ReportSyntax:

[ON TABLE] HOLD [AS name] FORMAT DHTML

where:

name

Specifies the name of the output file. The extension will be HTML if SET HTMLARCHIVE
is OFF or MHT if SET HTMLARCHIVE is ON.

Usage Notes for Format DHTMLReference:

The font map file for DHTML reports is DHTML FOCFTMAP on z/VM and is member DHTML
in the ERRORS PDS on z/OS.

Legacy compound reports are not supported.

Creating a DHTML ReportExample:

The following example creates a DHTML file that has an image with absolute positioning:

SET HTMLARCHIVE = OFF
TABLE FILE GGSALES
SUM UNITS BY CATEGORY BY PRODUCT
ON TABLE SUBHEAD
"Report on Units Sold"
" "
" "
" "
" "
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT DHTML
ON TABLE SET STYLE *
TYPE=TABHEADING,IMAGE=c:\images\GOTHAM.GIF, POSITION=(.25 .25),
 SIZE=(.5 .5), $
ENDSTYLE
END

Creating Reports 633

13. Working With Styled Output Formats

The output shows that the look and positioning are the same as they would be for a PDF
report:

634 Information Builders

Working With HTML Reports

Working With Excel 2000 and Excel 97 Reports

In this section:

Creating Styled Excel 2000 Files

National Language Support With EXL2K

Displaying Formatted Dates and Numeric Values

Controlling Column Width and Wrapping

Locking Columns in Excel Report Output

Using the Excel 2000 Formula Option

Using the Excel 2000 PIVOT Option

Designating CACHEFIELDS in PivotTables

Designating PAGEFIELDS in PivotTables

Excel Named Ranges

Identifying Null Values in Excel 2000

Excel Table of Contents

Excel Compound Reports

Transferring Excel 2000 Formatted Files Using FTP

Creating Styled Excel 97 Files

EXL2K format generates styled reports in Excel 2000 HTML format for use on other platforms
and on the Web. Feature options enable FOCUS users to also download all fields mentioned
in their requests in an Excel PivotTable, or include interactive Excel formulas for FOCUS
aggregation operations for performing additional "what if" analyses on their data within Excel
2000.

EXL97 is an HTML-based HOLD format for generating formatted Excel 97 spreadsheets.
EXL97 is a full StyleSheet driver for accurately rendering all report elements (such as headings
and subtotals, for example) as well as applying StyleSheet syntax (such as, conditional
styling). You must have Microsoft Excel 97 or higher installed on your computer to display
an Excel 97 report.

Creating Reports 635

13. Working With Styled Output Formats

Creating Styled Excel 2000 Files

How to:

Create a Styled Excel 2000 File

EXL2K format is a full StyleSheet driver for accurately rendering all report elements (such
as headings and subtotals) as well as applying StyleSheet syntax (such as, conditional
styling). The EXL2K format accurately displays formatted dates and numeric values and
controls column width and wrapping in Excel 2000.

The three HOLD format options for Excel 2000 are:

HOLD FORMAT EXL2K. EXL2K format supports full styling of FOCUS report elements
(such as use of centered headings, multiple fonts and background colors, and subtotals),
permitting you to exploit StyleSheets features such as conditional styling in the generated
Excel 2000 spreadsheets.

FORMAT EXL2K FORMULA. The FORMULA option automatically generates properly
formatted Excel formulas for FOCUS summary operations, such as row and column totals
and COMPUTE commands.

HOLD FORMAT EXL2K PIVOT. The PIVOT option generates Excel 2000 spreadsheets
in PivotTables, which are Excel tools used to analyze complex data in an OLAP-like
environment. This allows users to create differing views of their data by dragging and
dropping data fields within the "PivotTable" to employ varied sorts across rows or columns.

How to Create a Styled Excel 2000 FileSyntax:

[ON TABLE] HOLD [AS filename] FORMAT EXL2K [PIVOT] [FORMULA]

where:

EXL2K

Creates an Excel-formatted output file that may include styling based on internal or
external StyleSheets features. The file type on VM is XHT; the extension on Windows
platforms is .xht;

PIVOT

Creates an output file in Excel PivotTable format with an accompanying PivotTable cache
file. The filetype of the Pivot Table file is XML; the extension on Windows platforms is
.xml. For more information about this option, see Using the Excel 2000 PIVOT Option on
page 657.

636 Information Builders

Working With Excel 2000 and Excel 97 Reports

FORMULA

Creates an XHT output file including appropriate Excel formulas for all FOCUS numeric
summary operations. For more information about this option, see Using the Excel 2000
Formula Option on page 651.

Creating an EXL2K Output FileExample:

This example shows how to create a styled report in EXL2K format, with conditional styling
based on the contents of CENTORD:

TABLE FILE CENTORD
HEADING
"LINE COST BY STATE"
SUM LINE_COGS AS 'Cost'
 BY STATE AS 'State'
BY PLANTLNG AS 'Plant'
BY STORENAME AS 'Store Name'
 WHERE TOTAL LINE_COGS GT 10000000
 ON TABLE HOLD AS EXL2K1 FORMAT EXL2K
ON TABLE SET STYLE *
TYPE=REPORT, FONT=ARIAL, TITLETEXT=SALES REPORT, $
TYPE=DATA, COLUMN=LINE_COGS, COLOR=RED, BACKCOLOR=YELLOW,
 WHEN=LINE_COGS GT 20000000,$
TYPE=DATA, COLUMN=STORENAME, BACKCOLOR=YELLOW,
WHEN=LINE_COGS GT 20000000,$
TYPE=HEADING, FONT=ARIAL BLACK, COLOR=RED, BACKCOLOR=SILVER, SIZE=16, $
TYPE=TITLE, FONT=ARIAL, SIZE=12, $
ENDSTYLE
END

Creating Reports 637

13. Working With Styled Output Formats

The output is:

You can also adjust column contents in your Excel spreadsheets using the StyleSheets
keywords WRAP (for wrapping column contents) and SQUEEZE (for truncating columns).

National Language Support With EXL2K

How to:

Set the Default Language

Excel 2000 users can select one of six languages as their default language when generating
EXL2K formatted output. In addition to English, which is the automatic default, users can
issue a SET command to select one of five other options.

638 Information Builders

Working With Excel 2000 and Excel 97 Reports

How to Set the Default LanguageSyntax:

Excel 2000 users can select one of six languages as their default language when generating
EXL2K formatted output. In addition to English, which is the automatic default, you can
select one of five other options

SET EXL2KLANG=lang

where:

lang

Is one of the following: AME, FRE, SPA, GER, JPN or KOR.

You can code the SET EXL2KLANG in your user profile or include it in a FOCEXEC to override
the default setting in the NLSCFG ERRORS file for a specific request.

Displaying Formatted Dates and Numeric Values

Reference:

Usage Notes for Date and Numeric Formats

Using Date Separators in Excel

When translating numeric and date formats from FOCUS to Excel, there must be a
corresponding Excel format to translate to. If there is no corresponding format, then the
value will be formatted in the closest matching Excel format or in Excel's General format.

Excel 2000 spreadsheets generated by FOCUS contain the numeric formatting specified in
the data source Master File or as specified in a temporary field. All FOCUS numeric values
and date formats (such as currency and Smart Dates) are translated into supported Excel
formats and display properly in Excel 2000.

Creating Reports 639

13. Working With Styled Output Formats

Displaying Formatted Numeric Data in Excel 2000Example:

This example illustrates how formatted numeric data appears in a spreadsheet when you
use the EXL2K format. Note that the format for the LINEPRICE field D12.2M (that represents
floating point double-precision with two decimal places, commas, and a floating dollar sign)
is translated into the corresponding Excel format.

SET PAGE-NUM=OFF
TABLE FILE CENTORD
"Line Total Report"
"Excel 2000 Spreadsheet"
" "
SUM LINEPRICE
BY STATE AS 'State'
BY PLANTLNG AS 'Plant'
BY STORENAME AS 'Store Name'
WHERE TOTAL LINEPRICE FROM 9000000 TO 20000000
ON TABLE SET BYDISPLAY ON
 ON TABLE HOLD AS EXL2K2 FORMAT EXL2K
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, FONT=TAHOMA, $
TYPE=HEADING, SIZE=14, COLOR=NAVY, $
TYPE=HEADING, LINE=2, SIZE=12, COLOR=RED, $
TYPE=TITLE, JUSTIFY=CENTER, STYLE=BOLD, $
TYPE=DATA, JUSTIFY=CENTER, $
TYPE=DATA, COLUMN=LINEPRICE, JUSTIFY=RIGHT, $
END

640 Information Builders

Working With Excel 2000 and Excel 97 Reports

The output is:

Note the repetition of the sort field values in the output. This presentation is particularly
desirable in a spreadsheet and is controlled by the command ON TABLE SET BYDISPLAY
ON.

Displaying Formatted Dates in Excel 2000Example:

This example illustrates how customized dates display in a spreadsheet when using the
EXL2K format.

Month Hired is defined in the request as MtYY format (the month is represented as a three-
character abbreviation with an initial capital letter followed by a four-digit year).

Creating Reports 641

13. Working With Styled Output Formats

Years of Service is defined as I4C format, a four-digit integer with a comma if required. Both
formats are properly displayed as defined in the spreadsheet.

SET PAGE-NUM=OFF
DEFINE FILE EMPLOYEE
YRHIRED/YY = HIRE_DATE;
MHIRED/MtYY = HIRE_DATE;
TOTSVC/I4C = 2002 - YRHIRED;
END
TABLE FILE EMPLOYEE
"Employee Service Report for 2002"
"Excel 2000 Spreadsheet"
" "
PRINT FIRST_NAME AS 'First Name'
MHIRED AS 'Month Hired'
TOTSVC AS 'Years of Service'
BY LAST_NAME AS 'Last Name'
ON TABLE SET BYDISPLAY ON
ON TABLE HOLD AS EXL2K3 FORMAT EXL2K
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, FONT=TAHOMA, $
TYPE=HEADING, SIZE=14, COLOR=NAVY, $
TYPE=HEADING, LINE=2, SIZE=12, COLOR=RED, $
TYPE=TITLE, JUSTIFY=CENTER, STYLE=BOLD, $
TYPE=DATA, JUSTIFY=CENTER, $
TYPE=DATA, COLUMN=TOTSVC, COLOR=BLUE, WHEN=TOTSVC GT 20, $
END

642 Information Builders

Working With Excel 2000 and Excel 97 Reports

The output is:

The command ON TABLE SET BYDISPLAY ON ensures that sort fields are repeated in each
spreadsheet cell.

Usage Notes for Date and Numeric FormatsReference:

Warning: The following formats are not supported in EXL2K and may produce unpredictable
results when translated into Excel's General Format:

YY, Y, M, D, JUL, and I2MT.

Any date format with a Q (quarter).

Any packed-decimal (P) date formats.

Any alphanumeric (A) date formats.

Fixed Dollar (N) formats.

Multiple format options. Only single format options are supported when using FORMAT
EXL2K. For example, the formats I9C and I9B are supported, but I9BC is not.

Creating Reports 643

13. Working With Styled Output Formats

The following applies to headings and footings with embedded numeric fields:

If you embed a numeric field in a heading, subheading, footing, or subfooting of a report
in Excel 2000 or higher format, the numeric field displays in Excel general format (text).
To display a numeric field in Excel number format, you must set HEADALIGN=BODY in
the StyleSheet.

Using Date Separators in ExcelReference:

In order to use a "-" as a separator between month, day, and year in Excel, you must change
the default date separator for Windows®. This setting can be located under Regional Options
in the Control Panel.

Controlling Column Width and Wrapping

How to:

Wrap Data in Excel 2000

Set Column Width in Excel 2000

You control data wrapping and column widths in FORMAT EXL2K, by:

Turning data wrapping on. The default behavior is to have all data wrap according to
a default column width determined by Excel.

Turning data wrapping off. This setting allows columns to expand to the length of the
data value. The column width is determined by Excel, but should be wide enough to
accommodate the longest data value in the column. If a portion of the data is hidden,
you can adjust the column width in Excel after the spreadsheet has been generated.

Turning data wrapping off and setting the column width at the same time. If a
data value is wider than the specified column width, a portion of the data will be hidden
from view. You can adjust the column width in Excel after the spreadsheet has been
generated.

Specifying the exact width of a column with data wrapping on.

How to Wrap Data in Excel 2000Syntax:

TYPE=REPORT, [COLUMN=column,] WRAP=value, $

where:

column

Identifies a particular column. If COLUMN is not included in the declaration, the column
width specified with SQUEEZE is applied to the entire report.

644 Information Builders

Working With Excel 2000 and Excel 97 Reports

value

Is one of the following:

ON

Turns on data wrapping. ON is the default. With this setting, the column width is
determined by the client (Excel). Data wraps if it exceeds the width of the column
and the row’s height expands to meet the new height of the wrapped data.

OFF

Turns off data wrapping. This setting adjusts the column width of the largest data
value in the column. Data will not wrap in any cell in the column.

n

Represents a specific numeric value for the column width. The value represents the
measure specified with the UNITS parameter (the default is inches). This is the most
commonly used SQUEEZE setting in an Excel 2000 report.

How to Set Column Width in Excel 2000Syntax:

TYPE=REPORT, [COLUMN=column,] SQUEEZE=n, $

where:

column

Identifies a particular column. If COLUMN is not included in the declaration, the column
width specified with SQUEEZE is applied to the entire report.

n

Represents a specific numeric value for the column width. The value represents the
measure specified with the UNITS parameter (the default is inches). This is the most
commonly used SQUEEZE setting in an Excel 2000 report.

Note: SQUEEZE=(ON/OFF), which turns data wrapping on and off, is not supported for EXL2K,
so if a data value is wider than the specified column width, it will be hidden from view.
However, you can adjust column widths in Excel after you generate a spreadsheet.

Creating Reports 645

13. Working With Styled Output Formats

Controlling Column Width and Wrapping in Excel 2000Example:

The following example illustrates how to turn on and turn off data wrapping in a column and
how to set the column width for a particular column. The UNITS in this example are set to
inches (the default).

DEFINE FILE CENTORD
MYDATE/MDY='10/22/60';
RCD/D14.3=LINE_COGS;
VERYLONG/A80='Multiply quantity times line_cost to'|
' calculate line_cost_of_goods';
END
TABLE FILE CENTORD
SUM MYDATE RCD
VERYLONG AS 'Default' VERYLONG AS 'WRAP=OFF'
VERYLONG AS 'WRAP=4.1' VERYLONG AS 'WRAP=2'
VERYLONG AS 'SQUEEZE=2' LINE_COGS
BY REGION AS 'Region'
 ON TABLE HOLD AS EXL2K4 FORMAT EXL2K
ON TABLE SET STYLE *
TYPE=DATA, COLUMN=MYDATE, JUSTIFY=CENTER, $
1. TYPE=REPORT, COLUMN=VERYLONG(2), WRAP=OFF, $
2. TYPE=REPORT, COLUMN=VERYLONG(3), WRAP=4.1, $
3. TYPE=REPORT, COLUMN=VERYLONG(4), WRAP=2, $
4. TYPE=REPORT, COLUMN=VERYLONG(5), SQUEEZE=2, $
END

where:

1. Identifies the column titled "WRAP=OFF" and turns off data wrapping for that column.

2. Identifies the column titled "WRAP=4.1" and sets the column width to 4.1 inches with
data wrapping on.

3. Identifies the column titled "WRAP=2" and sets the column width to 2 inches with data
wrapping on.

4. Identifies the column titled "SQUEEZE=2" and sets the column width to 2 inches with
data wrapping off.

Note: The column titled "Default" illustrates the default column width and wrapping behavior.

646 Information Builders

Working With Excel 2000 and Excel 97 Reports

Since the output is wider than this page, it is shown in two sections. The following output
displays the "Default", "WRAP=OFF", and "WRAP=4.1" columns:

The following output displays the "WRAP=2", and "SQUEEZE=2" columns:

Locking Columns in Excel Report Output

How to:

Enable Spreadsheet Locking

Lock Specific Cells Within a Spreadsheet

Using StyleSheet attributes, you can lock Excel spreadsheet values so they are read-only.
These attributes apply to all Excel formats including EXL2K, EXL2K PIVOT, and EXL2K
FORMULA.

Creating Reports 647

13. Working With Styled Output Formats

How to Enable Spreadsheet LockingSyntax:

To enable locking, use the following attributes:

TYPE=REPORT, PROTECTED={ON|OFF}, [LOCKED={ON|OFF}],$

where:

TYPE=REPORT,PROTECTED=ON

Is necessary to enable spreadsheet locking. PROTECTED=OFF is the default. If you omit
the LOCKED=OFF attribute, the entire spreadsheet is locked.

LOCKED=ON

Locks the entire spreadsheet. ON is the default value.

LOCKED=OFF

Unlocks the spreadsheet as a whole, but enables you to lock or unlock specific cells or
groups of cells.

How to Lock Specific Cells Within a SpreadsheetSyntax:

Once you include the following declaration in your StyleSheet, you can specify the LOCKED
attribute for specific cells or groups of cells:

TYPE=REPORT, PROTECTED=ON, LOCKED=OFF,$

To lock specific parts of the spreadsheet, add the LOCKED=ON attribute to the StyleSheet
declaration for the cells you want to lock.

TYPE=type, [COLUMN=columnspec] ,LOCKED={ON|OFF},$

where:

type

Is the type of element that describes the cells to be locked.

columnspec

Is a valid column specification.

Locking an Entire Excel SpreadsheetExample:

The following request locks the entire spreadsheet because the StyleSheet declarations
include the following declaration:

TYPE=REPORT, PROTECTED=ON, $

648 Information Builders

Working With Excel 2000 and Excel 97 Reports

The request is:

TABLE FILE CAR
HEADING
"Profit By Car "
" "
SUM RETAIL_COST AND DEALER_COST AND
COMPUTE PROFIT/D12.2 = RETAIL_COST - DEALER_COST;
BY CAR
ON TABLE SET PAGE-NUM OFF
ON TABLE PCHOLD AS EXLFORM1 FORMAT EXL2K
ON TABLE SET STYLE *
TYPE=REPORT, COLOR=BLUE, BACKCOLOR=SILVER, SIZE=9,$
TYPE=REPORT, PROTECTED=ON, $
TYPE=HEADING, STYLE=BOLD, SIZE=14, $
TYPE=TITLE, STYLE=BOLD, SIZE=11,$
ENDSTYLE
END

You cannot edit any value on the spreadsheet. Any attempt to do so displays a message
that the sheet is protected:

Locking a Single Column on an Excel SpreadsheetExample:

The following request locks the second column (RETAIL_COST) because the StyleSheet
declarations include the following declarations

TYPE=REPORT, PROTECTED=ON, LOCKED=OFF, $
TYPE=DATA, COLUMN=2, LOCKED=ON,$

Creating Reports 649

13. Working With Styled Output Formats

The request is:

TABLE FILE CAR
HEADING
"Profit By Car "
" "
SUM RETAIL_COST AND DEALER_COST AND
COMPUTE PROFIT/D12.2 = RETAIL_COST - DEALER_COST;
BY CAR
ON TABLE SET PAGE-NUM OFF
ON TABLE PCHOLD AS EXLFORM2 FORMAT EXL2K
ON TABLE SET STYLE *
TYPE=REPORT, COLOR=BLUE, BACKCOLOR=SILVER, SIZE=9,$
TYPE=REPORT, PROTECTED=ON, LOCKED=OFF,$
TYPE=HEADING, STYLE=BOLD, SIZE=14, $
TYPE=TITLE, STYLE=BOLD, SIZE=11,$
TYPE=DATA, COLUMN=2, LOCKED=ON,$
ENDSTYLE
END

You cannot edit any value in column 2, although you can edit values in other columns. Any
attempt to edit a value in column 2 displays a message that the cells are protected:

650 Information Builders

Working With Excel 2000 and Excel 97 Reports

Using the Excel 2000 Formula Option

How to:

Save a Report as FORMAT EXL2K FORMULA

Reference:

Translation Support for FORMAT EXL2K FORMULA

Since Excel users employ formulas to calculate the contents of spreadsheet cells, the EXL2K
feature includes a HOLD option for generating correct native Excel formulas for all FOCUS
summary operations, such as row and column totals and COMPUTE commands. The EXL2K
StyleSheet-related features can also be applied with the FORMULA option.

When you display or save a tabular report request using EXL2K FORMULA, the resulting
spreadsheet contains correct native Excel formulas that compute and display the results of
all aggregation operations (such as row totals, column totals, subtotals, and calculated
values) rather than the static values. Spreadsheets saved using the EXL2K FORMULA format
are interactive, allowing for "what if" scenarios that immediately reflect any additions or
modifications made to the data.

The EXL2K FORMULA format is supported for the following FOCUS TABLE options: ROWTOTAL,
COLUMN-TOTAL, SUB-TOTAL, SUBTOTAL, SUMMARIZE, RECOMPUTE, and COMPUTE, and
for calculations performed by functions.

EXL2K FORMULA is not supported with PivotTables (EXL2K PIVOT), with prefix operators, or
with financial reports created with the Financial Modeling Language (FML).

How to Save a Report as FORMAT EXL2K FORMULASyntax:

Add the following syntax to your request to include Excel formulas in your spreadsheet:

ON TABLE HOLD FORMAT EXL2K FORMULA

Generating Native Excel Formulas for Column TotalsExample:

The following example illustrates the translation of a column total in a report request into
an Excel formula when using format EXL2K FORMULA. Note that the formatting of the column
total (TYPE=GRANDTOTAL) is retained in the Excel 2000 spreadsheet.

Creating Reports 651

13. Working With Styled Output Formats

When you select the total in the report, the equation =SUM(B4:B7) appears in the formula
bar, representing the column total as a sum of cell ranges.

TABLE FILE CENTORD
HEADING
"Projected Return By Region"
" "
SUM LINE_COGS AS 'RETURN'
BY REGION AS 'REGION'
ON TABLE COLUMN-TOTAL
ON TABLE HOLD AS EXL2K5 FORMAT EXL2K FORMULA
ON TABLE SET STYLE *
TYPE=REPORT, COLOR=BLUE, BACKCOLOR=SILVER, SIZE=9,$
TYPE=HEADING, STYLE=BOLD, SIZE=14,$
TYPE=TITLE, STYLE=BOLD+UNDERLINE, SIZE=10,$
TYPE=GRANDTOTAL, STYLE=BOLD,$
ENDSTYLE
END

The output is:

652 Information Builders

Working With Excel 2000 and Excel 97 Reports

Generating Native Excel Formulas for Row TotalsExample:

This request calculates totals for line price and quantity across regions. The row totals are
represented as sums of cell ranges.

TABLE FILE CENTORD
HEADING
"Projected Line Cost Across Region"
" "
SUM LINEPRICE AND QUANTITY
ACROSS REGION AS 'Region'
BY STORENAME
WHERE REGION EQ 'EAST' OR 'NORTH'
ON REGION ROW-TOTAL AS 'TOTAL'
ON TABLE COLUMN-TOTAL AS 'TOTAL'
ON TABLE HOLD AS EXL2K6 FORMAT EXL2K FORMULA
ON TABLE SET STYLE *
TYPE=REPORT, COLOR=BLUE, BACKCOLOR=SILVER, SIZE=9,$
TYPE=HEADING, STYLE=BOLD, SIZE=14,$
TYPE=TITLE, STYLE=BOLD, SIZE=11,$
TYPE=SUBTOTAL, STYLE=BOLD, $
TYPE=GRANDTOTAL, STYLE=BOLD, SIZE=11,$
TYPE=ACROSSTITLE, STYLE=BOLD, SIZE=11, JUSTIFY=LEFT,$
TYPE=ACROSSVALUE, STYLE=BOLD, SIZE=10, JUSTIFY=CENTER,$
ENDSTYLE
END

The output highlights the formula that calculates the row total in cell G11=C11+E11:

Generating Native Excel Formulas for Calculated ValuesExample:

This request totals the columns for line price and quantity and calculates the value of a field
called LINECOST by multiplying the line price by the quantity.

Creating Reports 653

13. Working With Styled Output Formats

The formula for the calculated values is generated by translating the internal form of the
FOCUS expression (COMPUTE LINECOST/P24.2MC=QUANTITY*LINEPRICE;) into an Excel
formula.

TABLE FILE CENTORD
ON TABLE SET PAGE-NUM OFF
SUM LINEPRICE AND QUANTITY AS 'Quantity'
COMPUTE LINECOST/P24.2MC = QUANTITY * LINEPRICE; AS 'Total Cost'
BY REGION AS 'Region'
HEADING
"Line Cost of Goods by Region"
" "
ON TABLE COLUMN-TOTAL
 ON TABLE HOLD AS EXL2K7 FORMAT EXL2K FORMULA
ON TABLE SET STYLE *
TYPE=REPORT, COLOR=BLUE, BACKCOLOR=SILVER, SIZE=9,$
TYPE=HEADING, STYLE=BOLD, SIZE=14,$
TYPE=TITLE, STYLE=BOLD, SIZE=11,$
TYPE=GRANDTOTAL, STYLE=BOLD, SIZE=11,$
ENDSTYLE
END

The top line in the spreadsheet output highlights the formula.

654 Information Builders

Working With Excel 2000 and Excel 97 Reports

Generating Native Excel Formulas for FunctionsExample:

The following illustrates how functions are translated to Excel 2000 reports. The function
IMOD divides ACCTNUMBER by 1000 and returns the remainder to LAST3_ACCT. The Excel
formula corresponds to this, =(MOD($C2,1000)).

TABLE FILE EMPLOYEE
PRINT ACCTNUMBER AS 'Account Number' AND COMPUTE
 LAST3_ACCT/I3L = IMOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME AS 'Last Name' BY FIRST_NAME AS 'First Name'
WHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ 'MIS')
 ON TABLE HOLD AS EXL2K8 FORMAT EXL2K FORMULA
ON TABLE SET STYLE *
TYPE=TITLE, SIZE = 12, STYLE=BOLD,$
END

The output is:

Translation Support for FORMAT EXL2K FORMULAReference:

All standard operators are supported. These include arithmetic operators, relational
operators, string operators, IF/THEN/ELSE, and logical operators.

The IS-MISSING operator is not supported.

The following functions are supported: ABS, ARGLEN, ATODBL, BYTVAL, CHARGET, CTRAN,
CTRFLD, DECODE DMOD, DOWK, DOWKI, DOWKL, DOWKLI, EDIT (1 argument variant
only), EXP, EXPN, FMOD, HEXBYT, HHMMSS, IMOD, INT, LCWORD, LJUST, LOCASE, LOG,
MAX, MIN, OVRLAY, POSIT, RDUNIF, RANDOM, RJUST, SQRT, SUBSTR, TODAY, TODAYI,
UPCASE, YM.

If you use the COMPUTE command with an unsupported function, an error message
appears.

EXL2K FORMULA is not supported with the following FOCUS commands and phrases:

Creating Reports 655

13. Working With Styled Output Formats

DEFINE.

OVER.

NOPRINT. If your report contains a calculated value (generated by the COMPUTE
command), all of the fields referenced by the calculated value must be displayed in
the report.

Multiple display (PRINT, LIST, SUM, and COUNT) commands.

SEQUENCE.

RECAP.

Prefix operators.

Formulas for ROW-TOTALs and COLUMN-TOTALs are represented as sums of cell ranges.
For example, =SUM(G2:G10).

A formula for a calculated value is generated by translating the internal form of the FOCUS
expression into an Excel formula.

Excel formulas are limited to 1024 characters. Therefore, the translation to an Excel
formula will fail if a FOCUS total or the result of an expression requires more than 1024
bytes of Excel formula code. An error message will be generated.

Conditional styling is based on the values in the original report. If the spreadsheet values
are changed and the formulas are recomputed, the styling will not reflect the updated
information.

656 Information Builders

Working With Excel 2000 and Excel 97 Reports

Using the Excel 2000 PIVOT Option

How to:

Generate a PivotTable

Reference:

Usage Notes for PivotTable Requests

How TABLE Elements Appear in a Pivot Table

Effects of TABLE Syntax on PivotTable Requests

Content, Function and Origin of PivotTable Elements

The power of EXL2K format derives in large measure from its ability to take advantage of
PivotTables. PivotTables are Microsoft Excel tools for analyzing complex data. They allow
you to drag and drop data fields within a PivotTable spreadsheet, providing different views
of the data, such as sorting across rows or columns. You can also create dimensional
hierarchies by using the PAGEFIELDS option.

When you use FORMAT EXL2K PIVOT, two data streams are created:

The first data stream is the PivotTable file containing the actual spreadsheet data. The
PivotTable file (.xht) is an HTML file with embedded XML. The HTML file contains all the
information that will be displayed in your browser.

The second data stream is the PivotTable cache file (.xml). The PivotTable cache file is
a metadata type file. It contains all the fields specified in the procedure and links internally
to the PivotTable file. The PivotTable cache file can contain data fields called
CACHEFIELDS, which populate the PivotTable toolbar, but do not initially display in the
report. CACHEFIELDS can be dragged and dropped from the PivotTable toolbar into the
PivotTable when required for analysis.

After creating FOCUS reports formatted as Excel PivotTables you must transfer both the XHT
and XML files to Excel 2000 using FTP in ASCII mode or another transfer facility.

How to Generate a PivotTableSyntax:

ON TABLE HOLD FORMAT EXL2K PIVOT AS mypivot

where:

mypivot

Is a name you assign to the HOLD file.

Two files are generated with this syntax:

Creating Reports 657

13. Working With Styled Output Formats

MYPIVOT.XHT is the main PivotTable spreadsheet file that will be displayed in the browser
or Excel window.

MYPIVOT$.XML is the Pivot Cache file.

Standard HOLD and SAVE syntax is supported for EXL2K PIVOT. The PivotTable cache file
contains all the fields specified in the procedure and links internally to the PivotTable file.
All available fields can be viewed in the PivotTable toolbar.

Usage Notes for PivotTable RequestsReference:

Keep these considerations in mind when preparing output for a PivotTable:

Requests must include the display command PRINT. This is necessary to extract all data
(each individual record) into the pivot cache file. The field following the PRINT command
is designated the PivotTable Data field and must be numeric. Note that the SUM and
COUNT commands are not supported for EXL2K PIVOT. Nevertheless, you can use this
native PivotTable behavior in Excel once the data has been output to an Excel PivotTable.

Fields used in a PivotTable cannot appear more than once in the report request. Each
field can function in only one role in a FORMAT EXL2K PIVOT request. For example, a
Page field cannot appear simultaneously as a column and a row field.

Styling is based on the initial state of your report and is retained only on a limited basis
when you pivot the output.

NODATA fields appear as blank cells in the PivotTable.

You can include column, row, grand totals, and subtotals in a PivotTable. If no totals are
specified in a request, no totals will display in Excel 2000.

658 Information Builders

Working With Excel 2000 and Excel 97 Reports

Using the EXL2K PIVOT OptionExample:

This simple example shows how to populate and generate PivotTables:

TABLE FILE CENTINV
HEADING
"CENTINV File PivotTable"
"Sum of Price by Product Across Category"
PRINT PRICE
BY PROD_NUM
ACROSS PRODCAT
ON TABLE COLUMN-TOTAL
 ON TABLE HOLD AS EXL2K9 FORMAT EXL2K PIVOT
 PAGEFIELDS PRODNAME
 CACHEFIELDS COST QTY_IN_STOCK
ON TABLE SET STYLE *
TYPE=HEADING, LINE=1, FONT='ARIAL', COLOR=PURPLE, SIZE=16, STYLE=BOLD,$
TYPE=HEADING, LINE=2, FONT='ARIAL', COLOR=PURPLE, SIZE=12, STYLE=BOLD,$
TYPE=DATA, FONT='ARIAL', COLOR=PURPLE,$
TYPE=GRANDTOTAL, FONT='ARIAL', COLOR=PURPLE, SIZE=12, STYLE=BOLD,$
ENDSTYLE
END

The output is:

Creating Reports 659

13. Working With Styled Output Formats

How TABLE Elements Appear in a Pivot TableReference:

The PivotTable is generated by the PRINT command in combination with the BY, ACROSS,
PAGEFIELDS, and CACHEFIELDS phrases. It contains all options used to design and format
the report, as well as fields specified in the PIVOT request. Fields can be dragged into the
report from the toolbar. The following graphic and summary table depicts PivotTable output
with major elements and associated FOCUS syntax.

Effects of TABLE Syntax on PivotTable RequestsReference:

This table summarizes the effects of TABLE request syntax elements within EXL2K PIVOT
operations. You must include at least one sort field or a PAGEFIELD to have a valid Pivot
Table request.

Effect on PivotTableUsageSyntax Element

Designates the data field in a PivotTable.RequiredPRINT

Designates row field in a PivotTable.OptionalBY

660 Information Builders

Working With Excel 2000 and Excel 97 Reports

Effect on PivotTableUsageSyntax Element

Designates a column field in a PivotTable.OptionalACROSS

Places fields in the Pivot cache file and makes
them available from the Pivot toolbar.

OptionalCACHEFIELDS

Designates a Page field in a PivotTable.OptionalPAGEFIELDS

Content, Function and Origin of PivotTable ElementsReference:

Generating
Syntax

FunctionContains...PivotTable
Element

PAGEFIELDS
phrase

A filtering mechanism
to conduct a high level
sort.

Field that controls
view of the entire page
(worksheet).

Page field

PAGEFIELDS
phrase

Selecting a page field
item summarizes data
for the entire report.

The value for a page
field item appears in
a drop-down list.

Page field item

PRINT commandHolds data available
to be summarized

Numeric data that is
available to be
summarized

Data field

ACROSS commandSorts data
horizontally.

Horizontal sort dataColumn field

BY commandSorts data vertically.Vertical sort dataRow field

Designating CACHEFIELDS in PivotTables

Reference:

Usage Notes for Specifying CACHEFIELDS

By including a CACHEFIELDS phrase in your EXL2K request, you can add fields to the pivot
cache not initially displayed in the report. The cache file enables you to add available fields
from the PivotTable toolbar into the body of the PivotTable by dragging and dropping. You
can also remove fields from the PivotTable by dragging and dropping them outside the report.
In either case, you can very quickly vary your data views.

Creating Reports 661

13. Working With Styled Output Formats

The CACHEFIELDS phrase is optional; you can always generate a PivotTable without one.

Usage Notes for Specifying CACHEFIELDSReference:

Fields designated as CACHEFIELDS must immediately follow the PIVOT keyword in the ON
TABLE HOLD FORMAT EXL2K PIVOT syntax or follow a PAGEFIELDS phrase. A CACHEFIELD
cannot be designated elsewhere in the request. Lists of CACHEFIELDS are terminated by
the same keywords that terminate normal report requests, such as END or another ON
phrase.

Using CACHEFIELDS With EXL2K PIVOTExample:

This example shows how to specify CACHEFIELDS to populate the PivotTable toolbar.

TABLE FILE CENTINV
HEADING
"PivotTable with CACHEFIELDS"
"Sum of Price by Product Across Category"
PRINT PRICE
BY PRODCAT BY PRODTYPE
ON PRODCAT SUB-TOTAL
 ON TABLE HOLD AS EXL2K10 FORMAT EXL2K PIVOT
 CACHEFIELDS COST PRODNAME
ON TABLE SET STYLE *
TYPE=DATA, COLUMN=PRODCAT, COLOR=RED,$
TYPE=HEADING, COLOR=BLUE, STYLE=BOLD, SIZE=14,$
ENDSTYLE
END

662 Information Builders

Working With Excel 2000 and Excel 97 Reports

The output is:

Designating PAGEFIELDS in PivotTables
You can specify fields in the procedure as Excel 2000 page fields. Page fields filter the data
for the field value specified. Through PivotTable functionality, you can select a single value
from the page field drop-down menu (also called a page field item) to display only data
associated with that selection. For example, in a report showing international car sales data,
if you specify COUNTRY as your page field and JAPAN as the page field item, you will display
only sales data for Japanese cars. If you then select ENGLAND, you will see the data for
JAGUAR and TRIUMPH.

A page field can act as the sort field. Valid PivotTables can be generated without specifying
a PAGEFIELD if sorting is handled by either a BY or ACROSS phrase. However, if the request
contains neither a BY or ACROSS phrase, a PAGEFIELD must be included.

Note:

A field specified as a PAGEFIELD cannot be designated anywhere else in the request.

Because Excel is case insensitive, the values of the PAGEFIELD must not contain duplicate
values in different cases. For example, "JONES" and "jones" are considered equal in
Excel. Use the UPCASE and LOCASE functions to convert mixed-case values.

Creating Reports 663

13. Working With Styled Output Formats

Using FORMAT EXL2K PIVOT With PAGEFIELDSExample:

This example illustrates the use of PAGEFIELDS syntax to make three fields available in the
PivotTable toolbar.

TABLE FILE CENTINV
HEADING
"PivotTable with PAGEFIELDS"
PRINT PRICE COST
 ON TABLE HOLD AS EXL2K11 FORMAT EXL2K PIVOT
 PAGEFIELDS PRODCAT PRODNAME PRODTYPE
ON TABLE SET STYLE *
TYPE=DATA, COLUMN=PRODCAT, COLOR=RED,$
TYPE=HEADING, COLOR=BLUE, STYLE=BOLD, SIZE=14,$
ENDSTYLE
END

This output is:

664 Information Builders

Working With Excel 2000 and Excel 97 Reports

Excel Named Ranges

How to:

Use Excel Named Ranges

Reference:

Rules for Excel Named Ranges

Support for Excel Named Ranges

An Excel Named Range is a name assigned to a specific group of cells within an Excel
worksheet that can be easily referenced by FOCUS applications. The FOCUS StyleSheet
language facilitates the generation of Named Ranges.

The use of Excel Named Ranges provides many benefits, including the following:

Provides advantages over static cell references, including the ability of named range data
areas to expand to include new data added during scheduled workbook updates.

Enables easy setup of Excel worksheets, created by FOCUS applications, as an ODBC
(Open Database Connectivity) data source.

Provides accurate, consistent data feeds to advanced Excel worksheet applications,
which eliminates manual activities that tend to result in errors.

Simplifies the process of referencing data in multiple worksheets. This is especially useful
when named ranges are added to the output of an Excel Template report.

How to Use Excel Named RangesSyntax:

To create Excel Named Ranges, use

TYPE=type, IN-RANGES=rangename, $

where:

type

Identifies the FOCUS report component to be included in the range. Normally, both of
the following are used together:

DATA adds the DATA element of the report to the named range (excludes heading, footing,
and column titles).

TITLE adds the TITLE element of the report to the named range (includes all column
titles).

Note: Multiple elements can be added to the same named range.

Creating Reports 665

13. Working With Styled Output Formats

rangename

Is the name assigned to the output in the Excel workbook your application is creating,
and is also the name that will be referenced by other FOCUS applications.

Using Excel Named RangesExample:

This example creates one report in one worksheet of an Excel workbook. The code specific
to Excel Named Ranges appears in bold in the following syntax.

TABLE FILE GGSALES
PRINT
 PRODUCT
 DATE
 UNITS
BY REGION
BY DOLLARS
ON TABLE SET PAGE-NUM OFF
ON TABLE SET BYDISPLAY ON
ON TABLE NOTOTAL
ON TABLE HOLD FORMAT EXL2K
ON TABLE SET STYLE *
 UNITS=IN, SQUEEZE=ON, ORIENTATION=PORTRAIT, $
TYPE=REPORT, FONT='ARIAL', SIZE=9, COLOR='BLACK', BACKCOLOR='NONE',
 STYLE=NORMAL, $
TYPE=DATA, IN-RANGES='RegionalSales', $
TYPE=TITLE, STYLE=BOLD, IN-RANGES='RegionalSales', $
ENDSTYLE
END

The Excel output is:

666 Information Builders

Working With Excel 2000 and Excel 97 Reports

The name assigned to this Excel Named Range is RegionalSales. If additional rows of data
are added, or columns of data are inserted, the named range will stretch to contain both
new and existing data.

Rules for Excel Named RangesReference:

The Excel data area associated with a named range must be continuous and cannot
contain any breaks in the data. Examples of report components containing breaks in the
data that cannot be part of a named range include SUBHEAD and SUBFOOT.

It is recommended that you use ON TABLE SET BYDISPLAY ON. This activates the option
to display repeated sort values, which produces continuous output with no breaks in the
data.

Two different worksheets from the same workbook cannot have the same range name.

When creating Compound Excel reports (multiple TABLE requests output to the same
Excel workbook), each report must have a unique range name that is stored at the
workbook level.

Support for Excel Named RangesReference:

Excel Named Ranges are supported for the following Excel formats:

EXL2K, EXL2K FORMULA, EXL2K TEMPLATE

Excel Named Ranges are not supported for the following Excel formats:

EXL2K BYTOC, EXCEL PIVOT

Excel Named Ranges are not supported with any report syntax that produces discontinuous
data or uses columnar references that span multiple columns, which includes the following:

ACROSSCOLUMN, RECAP, RECOMPUTE, SUBHEAD, SUBFOOT, SUBTOTAL, SUB-TOTAL

Identifying Null Values in Excel 2000

How to:

Identify Null Values in EXL2K Report Output

When a report is formatted as EXL2K, and null values are retrieved for one or more fields,
blank spaces are displayed by default in each cell of the report output for the empty (null)
fields. This behavior is the result of SET EMPTYCELLS ON being set by default in the
background of all EXL2K reports. If you want to identify null values with something other
than blank spaces, a character string can be used to populate all empty fields in a report.

Creating Reports 667

13. Working With Styled Output Formats

How to Identify Null Values in EXL2K Report OutputSyntax:

Outside of a report request, use the following syntax

SET NODATA = character_string
SET EMPTYCELLS = [ON|OFF]

In a report request, use the following syntax

ON TABLE SET NODATA character_string
ON TABLE SET EMPTYCELLS [ON|OFF]

where:

character_string

Is the string of characters displayed in the cells of the report for each field where null
values are retrieved from the database. The maximum number of characters is 11. If
the number of characters in the string exceeds the length of the output field, the
additional characters will not be displayed. If special characters are used, the string
must be enclosed in single quotes. SET EMPTYCELLS OFF must also be specified to
make the SET NODATA command effective.

ON

Indicates that empty spaces are displayed in the cells of the report for each field where
null values are retrieved from the database. ON is the default.

OFF

Indicates that zeros, or the character string specified with the SET NODATA command,
will be displayed in the cells of the report for each field where null values are retrieved
from the database. OFF must be specified when using SET NODATA.

Identifying Null Values in EXL2K Report OutputExample:

The following syntax utilizes the default behavior of ON TABLE SET EMPTYCELLS ON, which
is set in the background:

TABLE FILE CAR
SUM SALES BY COUNTRY ACROSS SEATS
ON TABLE HOLD FORMAT EXL2K
ON TABLE SET STYLE *
TYPE = ACROSSTITLE, STYLE=BOLD,$TYPE = TITLE, STYLE = BOLD,$
ENDSTYLE
END

668 Information Builders

Working With Excel 2000 and Excel 97 Reports

The following output displays empty spaces in the cells of the report for each field where
null values are retrieved from the database:

The following syntax utilizes the SET NODATA command:

TABLE FILE CAR
SUM SALES BY COUNTRY ACROSS SEATS
ON TABLE SET NODATA 'n/a'
ON TABLE SET EMPTYCELLS OFF
ON TABLE HOLD FORMAT EXL2K
ON TABLE SET STYLE *
TYPE = ACROSSTITLE, STYLE=BOLD,$TYPE = TITLE, STYLE = BOLD,$
ENDSTYLE
END

Note: If you do not add SET EMPTYCELLS OFF, the SET NODATA command will be ignored.

The following output displays 'n/a' in the cells of the report for each field where null values
are retrieved from the database:

Creating Reports 669

13. Working With Styled Output Formats

The following syntax turns off the default SET EMPTYCELLS behavior and does not use SET
NODATA, which makes it impossible to distinguish null values from zero quantities:

TABLE FILE CAR
SUM SALES BY COUNTRY ACROSS SEATS
ON TABLE SET EMPTYCELLS OFF
ON TABLE HOLD FORMAT EXL2K
ON TABLE SET STYLE *
TYPE = ACROSSTITLE, STYLE=BOLD,$TYPE = TITLE, STYLE = BOLD,$
ENDSTYLE
END

The following output displays zeros in the cells of the report for each field where either null
values are retrieved from the database or the quantity is zero:

Excel Table of Contents

How to:

Use the Excel Table of Contents Feature

Reference:

How to Name Worksheets

Limitations of TOC Reports

Excel Table of Contents (TOC) is a feature that enables you to generate a multiple worksheet
report in which a separate worksheet is generated for each value of the first BY field in the
FOCUS report.

Note: This feature can be used only with Excel 2002 or higher releases because it requires
the Web Archive file format, which was not available in Excel 2000 and earlier releases.

670 Information Builders

Working With Excel 2000 and Excel 97 Reports

How to Use the Excel Table of Contents FeatureSyntax:

Only a single BY field is allowed in an EXL2K Table of Contents report.

ON TABLE HOLD FORMAT EXL2K BYTOC

Since only one level of TOC is allowed for EXL2K reports, the optional number following the
BYTOC keyword can only be 1.

The SET COMPOUND syntax, which precedes the TABLE command, may also be used to
specify that a TOC be created:

SET COMPOUND=BYTOC

Since a TOC report is burst into worksheets according to the value of the first BY field in the
report, the report must contain at least one BY field. The bursting field may be a NOPRINT
field.

How to Name WorksheetsReference:

The worksheet tab names are the BY field values that correspond to the data on the
current worksheet. If the user specifies the TITLETEXT keyword in the stylesheet, it will
be ignored.

Excel limits the length of worksheet titles to 31 characters. The following special
characters cannot be used: ':', '?', '*', and '/'.

Limitations of TOC ReportsReference:

A TOC report cannot be embedded in a compound report.

A TOC report cannot be a pivot table report.

Creating a Simple TOC ReportExample:

SET COMPOUND=BYTOC
TABLE FILE CAR
PRINT SALES BY COUNTRY NOPRINT BY CAR
ON TABLE HOLD FORMAT EXL2K
ON TABLE SET STYLE *
type=report, style=bold, color=yellow, backcolor=black, $
type=data, backcolor=red, $type=data, column=car, color=blue,
backcolor=yellow, $
END

Creating Reports 671

13. Working With Styled Output Formats

The output is:

Excel Compound Reports

Reference:

Guidelines for Using the OPEN, CLOSE, and NOBREAK Keywords and SET COMPOUND

Guidelines for Producing Excel Compound Reports

Excel Compound Reports is a feature which enables you to generate multiple worksheet
reports using the EXL2K output format.

The syntax of this feature is identical to that of PDF Compound Reports. By default, each of
the component reports from the compound report is placed in a new Excel worksheet
(analogous to a new page in PDF). If the NOBREAK keyword is used, the next report follows
the current report on the same worksheet (analogous to starting the report on the same
page in PDF).

Output is generated in Microsoft's Web Archive format. This format is labeled Single File
Web Page in Excel's Save As dialog. Excel provides the conventionally given file types: MHT
or MHTML. FOCUS uses the same XHT file type that is used for EXL2K reports.

The components of an Excel compound report can be FORMULA or PIVOT reports (subject
to the restrictions). They cannot be Table of Contents (TOC) reports.

672 Information Builders

Working With Excel 2000 and Excel 97 Reports

Note: Excel 2002 (Office XP) or higher must be installed. This feature will not work with
earlier versions of Excel since they do not support the Web Archive file format.

Guidelines for Using the OPEN, CLOSE, and NOBREAK Keywords and SET COMPOUNDReference:

As with PDF, the keywords OPEN, CLOSE, and NOBREAK are used to control Excel compound
reports. They can be specified with the HOLD command or with a separate SET COMPOUND
command.

OPEN is used on the first report of a sequence of component reports to specify that a
compound report be produced.

CLOSE is used to designate the last report in a compound report.

NOBREAK specifies that the next report be placed on the same worksheet as the current
report. If it is not present, the default behavior is to place the next report on a separate
worksheet.

NOBREAK may appear with OPEN on the first report, or alone on a report between the
first and last reports. (Using CLOSE is irrelevant, since it refers to the placement of the
next report, and no report follows the final report on which CLOSE appears.)

When used with the HOLD syntax, the compound report keywords OPEN, CLOSE, and
NOBREAK must appear immediately after FORMAT EXL2K, and before any additional
keywords, such as FORMULA or PIVOT. For example, you can specify:

ON TABLE HOLD FORMAT EXL2K OPEN

ON TABLE HOLD AS MYHOLD FORMAT EXL2K OPEN NOBREAK

ON TABLE HOLD FORMAT EXL2K NOBREAK FORMULA

ON TABLE HOLD FORMAT EXL2K CLOSE PIVOT PAGEFIELDS COUNTRY

As with PDF compound reports, compound report keywords can be alternatively specified
using SET COMPOUND:

SET COMPOUND = OPEN

SET COMPOUND = 'OPEN NOBREAK'

SET COMPOUND = NOBREAK

SET COMPOUND = CLOSE

Guidelines for Producing Excel Compound ReportsReference:

Pivot Tables and NOBREAK. Pivot Table Reports may appear in compound reports, but
they may not be combined with another report on the same worksheet using NOBREAK.

Creating Reports 673

13. Working With Styled Output Formats

Naming of Worksheets. The default worksheet tab names will be Sheet1, Sheet2, and
so on. You have the option to specify a different worksheet tab name by using the
TITLETEXT keyword in the stylesheet. For example:

TYPE=REPORT, TITLETEXT='Summary Report', $

Excel limits the length of worksheet titles to 31 characters. The following special
characters cannot be used: ':', '?', '*', and '/'.

File Names and Formats. The output file name (AS name, or HOLD by default) is obtained
from the first report of the compound report (the report with the OPEN keyword). Output
file names on subsequent reports are ignored.

The HOLD FORMAT syntax used in the first component report in a compound report applies
to all subsequent reports in the compound report, regardless of their format.

NOBREAK Behavior. When NOBREAK is specified, the following report appears on the
row immediately after the last row of the report with the NOBREAK. If additional spacing
is required between the reports, a FOOTING or an ON TABLE SUBFOOT can be placed on
the report with the NOBREAK, or a HEADING or an ON TABLE SUBHEAD can be placed
on the following report. This allows the most flexibility, since if blank rows were added
by default there would be no way to remove them.

Creating a Simple Compound Report Using EXL2KExample:

SET PAGE-NUM=OFF
TABLE FILE CAR
HEADING
"Sales Report"
" "
SUM SALES
BY COUNTRY
ON TABLE SET STYLE *
type=report, titletext='Sales Rpt', $
type=heading, size=18, $
ENDSTYLE
ON TABLE HOLD AS EX1 FORMAT EXL2K OPEN
END

674 Information Builders

Working With Excel 2000 and Excel 97 Reports

TABLE FILE CAR
HEADING
"Inventory Report"
" "
SUM RC
BY COUNTRY
ON TABLE SET STYLE *
type=report, titletext='Inv. Rpt', $
type=heading, size=18, $
ENDSTYLE
ON TABLE HOLD FORMAT EXL2K
END

TABLE FILE CAR
HEADING
"Cost of Goods Sold Report"
" "
SUM DC
BY COUNTRY
ON TABLE SET STYLE *
type=report, titletext='Cost Rpt', $
type=heading, size=18, $
ENDSTYLE
ON TABLE HOLD FORMAT EXL2K CLOSE
END

Creating Reports 675

13. Working With Styled Output Formats

The output for each tab in the Excel worksheet is:

676 Information Builders

Working With Excel 2000 and Excel 97 Reports

Creating a Compound Report With Pivot Tables and FormulasExample:

SET PAGE-NUM=OFF
TABLE FILE CAR
HEADING
"Sales Report"
" "
PRINT RCOST
BY COUNTRY
ON TABLE SET STYLE *
type=report, titletext='Sales Rpt', $
type=heading, size=18, $
ENDSTYLE
ON TABLE HOLD AS PIV1 FORMAT EXL2K OPEN
END

Creating Reports 677

13. Working With Styled Output Formats

TABLE FILE CAR
HEADING
"Inventory Report"
" "
PRINT SALES
BY COUNTRY
ON TABLE SET STYLE *
type=report, titletext='Inv. Rpt', $
type=heading, size=18, $
ENDSTYLE
ON TABLE HOLD AS PPPP FORMAT EXL2K PIVOT
PAGEFIELDS TYPE SEATS
CACHEFIELDS MODEL MPG RPM
END

TABLE FILE CAR
SUM RCOST
BY COUNTRY BY CAR BY MODEL BY TYPE BY SEATS SUMMARIZE
ON MODEL SUB-TOTAL
ON TABLE HOLD AS XFOCB FORMAT EXL2K FORMULA
END

TABLE FILE CAR
HEADING
"Cost of Goods Sold Report"
" "
PRINT DCOST
BY COUNTRY
ON TABLE SET STYLE *
type=report, titletext='Cost Rpt', $
type=heading, size=18, $
ENDSTYLE
ON TABLE HOLD AS ONE FORMAT EXL2K CLOSE PIVOT
PAGEFIELDS RCOST
CACHEFIELDS MODEL TYPE SALES ACCEL SEATS
END

678 Information Builders

Working With Excel 2000 and Excel 97 Reports

The output for each tab in the Excel worksheet is:

Creating Reports 679

13. Working With Styled Output Formats

680 Information Builders

Working With Excel 2000 and Excel 97 Reports

Creating a Compound Report Using NOBREAKExample:

In this example, the first two reports are on the first worksheet, and the last two reports are
on the second worksheet, since NOBREAK appears on both the first and third reports.

TABLE FILE CAR
HEADING
"Report 1: England"
PRINT DCOST BY COUNTRY BY CAR
IF COUNTRY EQ ENGLAND
ON TABLE HOLD FORMAT EXL2K OPEN NOBREAK
ON TABLE SET STYLE *
type=report, color=red, $
type=data, backcolor=yellow, $
type=heading, color=blue, $
END

TABLE FILE CAR
HEADING
" "
" "
"Report 2: France"
PRINT RCOST BY COUNTRY
IF COUNTRY EQ FRANCE
ACROSS SEATS
ON TABLE HOLD FORMAT EXL2K
ON TABLE SET STYLE *
type=report, color=lime, backcolor=fuschia, style=bold, $
type=title, color=black, style=bold+italic, $
type=heading, backcolor=black, $
END

TABLE FILE CAR
FOOTING
"Report 3 - All"
PRINT SALES BY COUNTRY BY CAR
ON TABLE HOLD FORMAT EXL2K NOBREAK
ON TABLE SET STYLE *
type=report, backcolor=yellow, style=bold, $
type=title, color=blue, $
type=footing, backcolor=aqua, $
END

Creating Reports 681

13. Working With Styled Output Formats

TABLE FILE CAR
HEADING
" "
" "
"Report 4"
PRINT SALES BY COUNTRY BY CAR
ON TABLE HOLD FORMAT EXL2K CLOSE
ON TABLE SET STYLE *
type=report, color=yellow, backcolor=black, style=bold, $
END

The output is:

682 Information Builders

Working With Excel 2000 and Excel 97 Reports

Creating Reports 683

13. Working With Styled Output Formats

Transferring Excel 2000 Formatted Files Using FTP

Reference:

Important Considerations for Transferring EXL2K-generated Files

After creating an Excel 2000 formatted file, you must transfer it from the mainframe to your
PC to view and use it. The following illustrates the process of using FTP in Microsoft Windows
to retrieve the files from the mainframe:

C:\temp\work>ftp ibimvs
Connected to ibimvs.ibi.com.
220-FTPD1 IBM FTP CS V2R10 at IBIMVS.IBI.COM, 15:24:50 on 2003-11-06.
220 Connection will close if idle for more than 5 minutes.
User (ibimvs.ibi.com:(none)): userid1
331 Send password please.
Password:
230 USERID1 is logged on. Working directory is "USERID1.".
ftp> get pivotmvs.xht pivot.xht
200 Port request OK.
125 Sending data set USERID1.PIVOTMVS.XHT
250 Transfer completed successfully.
ftp: 8387 bytes received in 0.14Seconds 59.48Kbytes/sec.
ftp> get pivotmvs.xml pivot.xml
200 Port request OK.
125 Sending data set USERID1.PIVOTMVS.XML
250 Transfer completed successfully.
ftp: 1940 bytes received in 0.16Seconds 12.44Kbytes/sec.
ftp> by
221 Quit command received. Goodbye.

Important Considerations for Transferring EXL2K-generated FilesReference:

You must transfer the file as an ASCII file.

Whatever name you give the file ("HOLD" or an "asname" assigned with a HOLD AS
phrase) must be kept for the transferred file. The HOLD EXL2K PIVOT operation actually
produces two files; an "asname.XHT" data file and an "asname$.XML" PivotTable file.

Before the FTP operation on z/OS, issue a DYNAM FREE for both the "asname" and the
"asname$" ddnames.

684 Information Builders

Working With Excel 2000 and Excel 97 Reports

Creating Styled Excel 97 Files

How to:

Create a Styled Excel 97 File

Reference:

Limitations for FORMAT EXL97

EXL97 is an HTML-based HOLD format for generating formatted Excel 97 spreadsheets.
EXL97 is a full StyleSheet driver for accurately rendering all report elements (such as headings
and subtotals, for example) as well as applying StyleSheet syntax (such as conditional
styling). You must have Microsoft Excel 97 or higher installed on your computer to display
an Excel 97 report.

While Excel 97 is fully compatible with Excel 2000 and Excel 2002, we strongly recommend
upgrading to Excel 2000 to exploit its broader range of features and future Excel
enhancements, which will primarily be made to the EXL2K format. See Limitations for FORMAT
EXL97 on page 687.

How to Create a Styled Excel 97 FileSyntax:

To produce an Excel 97 spreadsheet, create a FOCUS report using the Excel 97 HOLD option
and then transfer the output file to your browser and open it in Excel 97. The HOLD syntax
is

[ON TABLE] HOLD [AS filename] FORMAT EXL97

where:

EXL97

Creates an Excel-formatted HTML file, with an extension of .HTM, which may include
styling based on FOCUS StyleSheet features. The MIME type assigned automatically
designates Excel as the active application for this file type. Before you can see or work
with this file you must transfer it to your PC.

Creating Reports 685

13. Working With Styled Output Formats

Creating an EXL97 Output FileExample:

The following example shows how to create a report in EXL97 format based on the contents
of CENTORD, with conditional styling:

TABLE FILE CENTORD
HEADING
"Order Revenue"
"Styled Report in Excel 97"
" "
SUM ORDER_DATE LINEPRICE AS 'Order,Total:'
BY HIGHEST 10 ORDER_NUM
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT EXL97
ON TABLE SET STYLE *
TYPE=HEADING, COLOR=NAVY, SIZE=10, $
TYPE=HEADING, LINE=2, COLOR=RED, $
TYPE=DATA, BACKCOLOR=AQUA, STYLE=BOLD, WHEN=LINEPRICE GT 200000, $
TYPE=TITLE, STYLE=BOLD, $
END

The output is:

When you use Microsoft Internet Explorer and Excel 97, the Excel client opens in the
background and the report launches in your browser. Depending on browser settings, you
may see the Excel application open and minimized while viewing your report. Leave Excel
open when viewing the spreadsheet. In Excel 97, you will be prompted to save the document
as a Microsoft Excel Workbook with an .xls extension. This saves the file as a binary Excel
document.

686 Information Builders

Working With Excel 2000 and Excel 97 Reports

Limitations for FORMAT EXL97Reference:

This format is compatible only with Excel 97 or higher. It is not compatible with Excel 95
or versions of Excel prior to Excel 95.

While Excel 97 supports styling (StyleSheets), it does not support Cascading Style Sheets
(CSS). Styling specified in a report that uses CSS (SET HTMLCSS=ON) will not be
respected in Excel 97. The WRAP=n feature is not supported with EXL97, since this
feature requires CSS.

Numeric and date formatting options not supported for EXL2K are also not supported for
EXL97. In addition, negative numbers displayed with brackets and trailing zeroes after
the decimal are not supported. Note that dates are typically translated into Excel's General
format, which may cause problems with sorting and other Excel features.

PivotTables are not supported with EXL97. (EXL2K PIVOT is the only valid PivotTable
format.)

Working With PostScript and PDF Reports

In this section:

Creating Compound PDF or PostScript Reports

Adding PostScript Type 1 Fonts for PS and PDF Formats

Creating PDF Files for Use With UNIX Systems

Displaying An and AnV Fields With Line Breaks

Reference:

Required Files and DDNAMES

FOCUS generates a PDF or PS document from scratch. In order to do so, it must physically
embed all the objects it displays or prints, including images and fonts, in the document
itself.

When you execute a report request and specify PDF or PS as your format, FOCUS retrieves
the data and begins to format the report. Fonts and images specified in the StyleSheet must
be available to create the output file. FOCUS reads the font information from font files and
embeds that information in the document.

Creating Reports 687

13. Working With Styled Output Formats

To ensure that FOCUS can locate the required information, you must define and map it in
the following files:

Font file, usually a PFB (Printer Font Binary) file. This file contains the information
about the shape to draw for each character of the font. The information in the font file
is scalable, which means that a single font file can be used to generate characters of
any size. Note, however, that bold and italic variations of the typeface are separate fonts.
An alternative ASCII format, PFA, can also be used by FOCUS.

Note that the basic fonts delivered with FOCUS do not need PFA or PFB files. Acrobat
Reader and PostScript printers already have the descriptions of these fonts.

Adobe Font Metrics (AFM) file. This file is distributed with all Adobe fonts. It contains
information about the size of each character in each font. FOCUS uses this information
to lay out the report on the page. (Note that the three built-in fonts also have AFM files,
which are distributed with FOCUS. However, these fonts don't require font files, since
the fonts are built into Acrobat.)

Note: A Printer Metrics File (PFM) is also available. This file is used by applications such
as Acrobat Reader for laying out text; however, it is not supported by FOCUS. You must
use the AFM file.

FOCUS Font Map files. These configuration files map the name of a font to the
appropriate font and font metrics files (AFM and PFB or PFA). There are two versions of
this file: PDF and PSCRIPT. You can update either one or both, depending on the output
format (PDF or PS) with which you plan to use the Type 1 fonts.

Required Files and DDNAMESReference:

When you produce a PostScript or PDF report, you need the following files:

CMSz/OSPurposeName

File type
FOCSTYLE, any file
name

Any member of the
PDS allocated to
ddname FOCSTYLE.

Define the styles in
reports.

StyleSheet files. You
can create them with
a text editor (see
Styling Reports).

File type AFM, any
file name

Member names
start with PS.
Allocated to
ddname ERRORS.

Define the
measurements of
characters for
PostScript and PDF
output.

Adobe Font Metrics
(AFM) files (supplied
with FOCUS).

688 Information Builders

Working With PostScript and PDF Reports

CMSz/OSPurposeName

File name PSCRIPT
(for PostScript) or
PDF (for PDF), File
type FOCFTMAP

Member PSCRIPT
(for PostScript) or
PDF (for PDF) in the
PDS allocated to
ddname ERRORS.

Maps font names
to the Font Metrics
files.

Font location file
(supplied with
FOCUS).

File type PS or PDF,
any file name

DDNAME is HOLD
or the AS name
assigned in the
HOLD command.

Contain the
formatted output.

Output files. You
create these with a
HOLD, SAVE, or SET
command.

Note that if you add fonts, you also need PFA or PFB files for those fonts.

Creating Compound PDF or PostScript Reports

How to:

Display Compound Reports

Compound reports combine multiple reports into a single PDF or PS file. This enables you
to concatenate reports with styled formats (such as PDF, HTML, PS, or EXL2K). You can
also embed image files in a compound report.

The first PDF or PS report defines the format for the concatenated report, enabling you to
intersperse intermediate reports in other formats into one encompassing report. Using
compound reports, you can gather data from different data sources and combine reports
into one governing report that runs each request and concatenates the output into a single
PDF or PS file.

How to Display Compound ReportsSyntax:

For a compound report that may contain different report types, use the syntax

SET COMPOUND= {OPEN|CLOSE} [NOBREAK]

or

ON TABLE SET COMPOUND {OPEN|CLOSE}

Note that when you are using this syntax, you must also include the following code to identify
the display format of each of the reports to be concatenated:

ON TABLE {HOLD|SAVE} [AS name] FORMAT formatname

Creating Reports 689

13. Working With Styled Output Formats

If all of the reports in the compound set are of the same type, either PDF or PS, you can
use the following, more compact, syntax

ON TABLE {HOLD|SAVE} [AS name] FORMAT {PDF|PS} {OPEN|CLOSE} [NOBREAK]

where:

name

Is the name of the generated file. The name is taken from the first request in the
compound report. If no name is specified in the first report, the name HOLD is used.

OPEN

Is specified with the first report, and begins the concatenation process. A report that
contains the OPEN attribute must be PDF or PS format.

CLOSE

Is specified with the last report, and ends the concatenation process.

NOBREAK

Is an optional phrase that suppresses page breaks. By default, each report is displayed
on a separate page.

You can use NOBREAK selectively in a request to control which reports are displayed
on the same page.

Note:

Compound reports cannot be nested.

You can save or hold the output from a compound report.

Creating a Compound PDF ReportExample:

The following illustrates how to combine three separate PDF reports into one by creating a
compound report. Notice that:

Report 1 specifies ON TABLE HOLD FORMAT PDF OPEN. This defines the report as the
first report and sets the format for the entire compound report as PDF.

Report 2 specifies only the format ON TABLE HOLD FORMAT PDF.

Report 3 specifies ON TABLE HOLD FORMAT PDF CLOSE. This defines the report as the
last report.

These reports are all set to PDF format. When creating compound reports, however, only
the first must be in either PDF or PS format; the rest can be in any styled format.

690 Information Builders

Working With PostScript and PDF Reports

Report 1:

SET PAGE-NUM=OFF
TABLE FILE CENTORD
HEADING
"Sales Report"
" "
SUM LINEPRICE
BY PRODCAT
ON TABLE SET STYLE *
TYPE=HEADING, SIZE=18, $
ENDSTYLE
ON TABLE HOLD FORMAT PDF OPEN NOBREAK
END

Report 2:

TABLE FILE CENTORD
HEADING
"Inventory Report"
" "
SUM QUANTITY
BY PRODCAT
ON TABLE SET STYLE *
TYPE=HEADING, SIZE=18, $
ENDSTYLE
ON TABLE HOLD FORMAT PDF NOBREAK
END

Report 3:

TABLE FILE CENTORD
HEADING
"Cost of Goods Sold Report"
" "
SUM LINE_COGS
BY PRODCAT
ON TABLE SET STYLE *
TYPE=HEADING, SIZE=18, $
ENDSTYLE
ON TABLE HOLD FORMAT PDF CLOSE
END

Creating Reports 691

13. Working With Styled Output Formats

The output appears as a PDF report. Because the syntax for reports 1 and 2 contain the
NOBREAK command, all three reports appear on a single page. (Without NOBREAK, each
report would appear on a separate page.)

Adding PostScript Type 1 Fonts for PS and PDF Formats

How to:

Configure Type 1 Postscript Fonts

Reference:

Support for the Symbol Font

You can add and configure PostScript Type 1 fonts to significantly expand your options for
displaying and printing PS and PDF reports, beyond those provided by the basic set of fonts
distributed with Adobe Acrobat Reader. Thousands of PostScript fonts are available to make
your reports more stylish and useful, including some that support symbols and bar codes.

692 Information Builders

Working With PostScript and PDF Reports

Through a simple process, you can customize your environment to take advantage of these
fonts.

First, copy the font files (AFM and PFB or PFA) to FOCUS.

Next, update the FOCUS font map files (PDF and/or PSCRIPT). These configuration files
already exist in the correct location, with specifications for the fonts that are distributed
with Adobe Acrobat Reader. These files map the name of a font to its actual font file
information. You will add the new font definitions to these files.

Once this step is complete, you can begin using the new font in your StyleSheet
declarations.

You can also use a variety of utilities to convert Windows True Type fonts (such as Arial and
Tahoma) into Type 1 fonts. Verify that you are licensed for this type of font use. Then, once
converted, you can define and map these fonts for use by FOCUS.

One such utility is TTF2PT1.

For information about the Windows version, go to:

http://gnuwin32.sourceforge.net/packages/ttf2pt1.htm

Support for the Symbol FontReference:

To use the Symbol font, specify font=symbol in your FOCUS StyleSheet:

Some versions of Firefox 3 do not support the symbol font and substitute it with another
font; for information about Firefox support for the symbol font, refer to Firefox sources.

The Euro character displays in PDF output because the Adobe Symbol character set
includes the Euro character.

The Euro character does not display in DHTML and PPT report output because the Windows
Symbol character set does not include the Euro character.

The following style options can be rendered with the Symbol font:

DHTML and PPT support style=normal, bold, italic, and bold+italic.

PDF supports only style=normal. Any other style specified in the StyleSheet will be
mapped to normal.

How to Configure Type 1 Postscript FontsProcedure:

Once you have located the font files you wish to add, you can set up FOCUS to use one or
more Type 1 fonts.

Creating Reports 693

13. Working With Styled Output Formats

1. Copy the AFM file into the ERRORS data set on z/OS (or into a PDS with the same DCB
attributes that's concatenated to it). On z/VM, copy the AFM file to a file with FILETYPE
ERRORS.

Note that some of the comment lines may be truncated to 80 characters; this will not
affect processing.

You can copy this file using FTP from Windows (in standard ASCII mode). The member
name in the PDS or file name on VM should match the METRICSFILE name in the font
map file.

2. You can use either PFB (binary) fonts or PFA (ASCII) fonts:

If you're using PFB (binary) fonts, create a partitioned data set on z/OS, put the PFB
file in it (for example, using FTP in BINARY mode), and allocate this to DDNAME PFB.
On VM, store it in a file with FILETYPE PFB.

The PDS should be created with the following DCB attributes:

RECFM: FB LRECL: 1024 BLKSIZE: 27648

The member name on z/OS or the file name on z/VM should match the FONTFILE
name in the font map file. For example, PREFIX.PFBFILES.DATA(OCRA).

If you're using PFA (ASCII) font files on z/OS, create a PDS, put the PFA file in it (for
example, using FTP in ASCII mode), and allocate this to DDNAME PFA. On VM, store
it in a file with FILETYPE PFA. The PDS should be created with the following DCB
attributes:

RECFM: VB LRECL: 516 BLKSIZE: 27998

The member name in the PDS or the file name on VM should match the FONTFILE
name in the font map file. For example, PREFIX.PFAFILES.DATA(OCRA).

Note that you can use PFB and PFA files simultaneously. The three character file type
in the font map file (PFB or PFA) tells FOCUS which PDS to search for the specified
member name.

3. Open the FOCUS font map file (on z/OS, members PDF or PSCRIPT in the PDS allocated
to DDNAME ERRORS; on VM, file PSCRIPT ERRORS or PDF ERRORS) in a text editor.

Note: If the Windows font file names contain underscore characters, you must rename
them, since underscore characters are not valid in z/OS member names or VM file
names. For example, if the Windows designation is font=garamond_light, z/OS
references would be as follows:

FONTFILENAME=garalt pdb *,
METRICFILENAME= garalt afm*, $

694 Information Builders

Working With PostScript and PDF Reports

4. Add a separate declaration for each font and style. A line in the FOCUS font map file
may not exceed 80 characters. You can break the line after any comma.

The syntax is

font=fontname, style=style, metricsfile=METRICSFILENAME AFM *,
fontfile=FONTFILENAME PFB *, $

where:

fontname

Is the name of a Type 1 font. This name is used to reference the font in the FOCUS
StyleSheet.

style

Is a font style. Normal is the default. This entry is used to reference the font style
in the FOCUS StyleSheet.

If you wish to specify font style variations (for example, bold, italic, bold-italic for a
particular font), you must purchase the font files for those styles and create a
separate entry for each one in the FOCUS font map file.

METRICSFILENAME

Maps the font to the name of the font metrics file. The name of the metrics file must
be followed by a space, followed by AFM, followed by an asterisk (*).

This entry must be in upper case and may not exceed 8 characters.

FONTFILENAME

Maps the font to the name of the font file. The name of the font file must be followed
by a space, followed by PFB (or PFA), followed by asterisk (*).

The entry must be in upper case and may not exceed 8 characters.

Tip: If you are familiar with FOCUS StyleSheets, notice that the syntax of these files is
similar. Lines can be continued after a comma and statements are terminated by a
comma and dollar sign (,$).

FOCUS Font Map File Entries for PDFExample:

Initially, this file contains mappings for the default fonts delivered with Adobe Acrobat Reader.
These core Type 1 fonts are mapped to the appropriate font files. Each "style" of the font
requires a separate font file, as shown for the core fonts. Notice that each one has four
different sets of files for normal, bold, italic, and bold plus italic. You will need to follow the
same model when you add a new Type 1 font to the file. If you want to add the normal and
the bold versions of a new Type 1 font, you must make both sets of files available to FOCUS
and map then in the font map file.

Creating Reports 695

13. Working With Styled Output Formats

Tip: The file also contains a series of aliases (not shown) that map common Windows True
Type fonts to existing Type 1 fonts (for example, Arial to Helvetica) along with a series of
fonts used for various languages that FOCUS supports. You can set up your own aliases to
ensure proper mapping and interpretation of Windows True Type Fonts.

Font metrics are already defined for the default fonts ,so there is not need to specify the
PFB file name in the map file. However, you will need to specify that file, along with the AFM
file, for each new font.

$ PDF.FMP: StyleSheets Font Map file for PDF Driver $
$ Version 1: All fonts mapped into Courier, Helvetica or Times.
$ "Native" Acrobat fonts:

font=Courier, style=normal, metricsfile=PSCOUR AFM *, $
font=Courier, style=bold, metricsfile=PSCOURB AFM *, $
font=Courier, style=italic, metricsfile=PSCOURI AFM *, $
font=Courier, style=bold+italic, metricsfile=PSCOURBI AFM *, $

font=Helvetica, style=normal, metricsfile=PDHELV AFM *, $
font=Helvetica, style=bold, metricsfile=PDHELVB AFM *, $
font=Helvetica, style=italic, metricsfile=PDHELVI AFM *, $
font=Helvetica, style=bold+italic, metricsfile=PDHELVBI AFM *, $

font=Times, style=normal, metricsfile=PDTIME AFM *, $
font=Times, style=bold, metricsfile=PDTIMEB AFM *, $
font=Times, style=italic, metricsfile=PDTIMEI AFM *, $
font=Times, style=bold+italic, metricsfile=PDTIMEBI AFM *, $

-* Following is an entry for a new Type 1 Font: OCRA
A quick way to add an entry is to copy and modify an existing one.

font=OCRA, style=normal, metricsfile=OCRA AFM *, fontfile=OCRA PFB *, $
font=OCRA, style=bold, metricsfile=OCRAB AFM *, fontfile=OCRAB PFB *, $

FOCUS StyleSheet Declaration

The following is an in-line FOCUS StyleSheet declaration that formats the entire report to
use the new Type1 font, OCRA. Other than the font, the report uses default styles:

ON TABLE SET STYLE *
TYPE=REPORT, FONT=OCRA, $
ENDSTYLE

FOCUS Font Map File Entries for PSExample:

The FOCUS font map file for PS includes a wide range of fonts that are typically supported
by Level 2 Printers. To take advantage of a listed font, it must be installed on your printer.

696 Information Builders

Working With PostScript and PDF Reports

These core Type 1 fonts are mapped to the appropriate font files. Each "style" of the font
requires a separate font file, as shown for the core fonts. Notice that each one has four
different sets of files for normal, bold, italic, and bold plus italic. You will need to follow the
same model when you add a new Type 1 font to the file. If you want to add the normal and
the bold versions of a new Type 1 font, you must make both sets of files available to FOCUS
and map then in the font map file.

font=Arial, style=normal, metricsfile=PSHELV AFM *, $
font=Arial, style=bold, metricsfile=PSHELVB AFM *, $
font=Arial, style=italic, metricsfile=PSHELVI AFM *, $
font=Arial, style=bold+italic, metricsfile=PSHELVBI AFM *, $

font=Avant Garde Gothic, style=normal, metricsfile=PSAVAN AFM *, $
font=Avant Garde Gothic, style=bold, metricsfile=PSAVANB AFM *, $
font=Avant Garde Gothic, style=italic, metricsfile=PSAVANI AFM *, $
font=Avant Garde Gothic, style=bold+italic,
 metricsfile=PSAVANBI AFM *, $

font=Bookman, style=normal, metricsfile=PSBOOK AFM *, $
font=Bookman, style=bold, metricsfile=PSBOOKB AFM *, $
font=Bookman, style=italic, metricsfile=PSBOOKI AFM *, $
font=Bookman, style=bold+italic, metricsfile=PSBOOKBI AFM *, $

font=Courier, style=normal, metricsfile=PSCOUR AFM *, $
font=Courier, style=bold, metricsfile=PSCOURB AFM *, $
font=Courier, style=italic, metricsfile=PSCOURI AFM *, $
font=Courier, style=bold+italic, metricsfile=PSCOURBI AFM *, $

font=Courier New, style=normal, metricsfile=PSCOUR AFM *, $
font=Courier New, style=bold, metricsfile=PSCOURB AFM *, $
font=Courier New, style=italic, metricsfile=PSCOURI AFM *, $
font=Courier New, style=bold+italic, metricsfile=PSCOURBI AFM *, $

Creating Reports 697

13. Working With Styled Output Formats

font=Helvetica, style=normal, metricsfile=PSHELV AFM *, $
font=Helvetica, style=bold, metricsfile=PSHELVB AFM *, $
font=Helvetica, style=italic, metricsfile=PSHELVI AFM *, $
font=Helvetica, style=bold+italic, metricsfile=PSHELVBI AFM *, $

font=Helvetica Narrow, style=normal, metricsfile=PSNHLE AFM *, $
font=Helvetica Narrow, style=bold, metricsfile=PSNHLEB AFM *, $
font=Helvetica Narrow, style=italic, metricsfile=PSNHLEI AFM *, $
font=Helvetica Narrow, style=bold+italic, metricsfile=PSNHLEBI AFM *, $

font=Lubalin Graph, style=normal, metricsfile=PSLUB AFM *, $
font=Lubalin Graph, style=bold, metricsfile=PSLUBB AFM *, $
font=Lubalin Graph, style=italic, metricsfile=PSLUBI AFM *, $
font=Lubalin Graph, style=bold+italic, metricsfile=PSLUBBI AFM *, $

font=New Century Schoolbook, style=normal, metricsfile=PSSCHL AFM *, $
font=New Century Schoolbook, style=bold, metricsfile=PSSCHLB AFM *, $
font=New Century Schoolbook, style=italic, metricsfile=PSSCHLI AFM *, $
font=New Century Schoolbook, style=bold+italic,
 metricsfile=PSSCHLBI AFM *, $

font=Palatino, style=normal, metricsfile=PSPALA AFM *, $
font=Palatino, style=bold, metricsfile=PSPALAB AFM *, $
font=Palatino, style=italic, metricsfile=PSPALAI AFM *, $
font=Palatino, style=bold+italic, metricsfile=PSPALABI AFM *, $

font=Souvenir, style=normal, metricsfile=PSSOUV AFM *, $
font=Souvenir, style=bold, metricsfile=PSSOUVB AFM *, $
font=Souvenir, style=italic, metricsfile=PSSOUVI AFM *, $
font=Souvenir, style=bold+italic, metricsfile=PSSOUVBI AFM *, $

font=Times, style=normal, metricsfile=PSTIME AFM *, $
font=Times, style=bold, metricsfile=PSTIMEB AFM *, $
font=Times, style=italic, metricsfile=PSTIMEI AFM *, $
font=Times, style=bold+italic, metricsfile=PSTIMEBI AFM *, $

font=Times New Roman, style=normal, metricsfile=PSTIME AFM *, $
font=Times New Roman, style=bold, metricsfile=PSTIMEB AFM *, $
font=Times New Roman, style=italic, metricsfile=PSTIMEI AFM *, $
font=Times New Roman, style=bold+italic, metricsfile=PSTIMEBI AFM *, $

font=Zapf Chancery, style=italic, metricsfile=PSZAPFCI AFM *, $

-* Following is an entry for a new Type 1 Font: OCRA
A quick way to add an entry is to copy and modify an existing one.

font=OCRA, style=normal, metricsfile=OCRA AFM *, fontfile=OCRA PFB *, $
font=OCRA, style=bold, metricsfile=OCRAB AFM *, fontfile=OCRAB PFB *, $

698 Information Builders

Working With PostScript and PDF Reports

FOCUS StyleSheet Declaration

The following is an in-line FOCUS StyleSheet declaration that formats the entire report to
use the new Type1 font, OCRA. Other than the font, the report uses default styles:

ON TABLE SET STYLE *
TYPE=REPORT, FONT=OCRA, $
ENDSTYLE

Creating PDF Files for Use With UNIX Systems

How to:

Specify Line Termination Characters When Creating a PDF File

Reference:

Required PDFLINETERM Settings Based on Environment

PDF files created with HOLD FORMAT PDF present a challenge if you work in an MVS or VM
environment and use UNIX-based systems as the server for Adobe or as an intermediate
transfer point.

The end of each PDF file has a table containing the byte offset, including line termination
characters, of each PDF object in the file. The offsets indicate that each line is terminated
by two characters, a carriage return and a line feed, which is the standard Windows text file
format. However, records in a UNIX text file are terminated by one character, a line feed
only. When using default settings, the offsets in a PDF file will be incorrect, causing an error
when Acrobat attempts to open the file. If the file is then transferred in BINARY mode to
Windows, it cannot be opened in Acrobat for Windows, as the carriage-return character was
not inserted.

One solution has been to transfer the file to the UNIX system in text mode and then transfer
in text mode to the Windows system, as the carriage return is added by the transfer facility
when transferring to Windows.

If that is not possible or desirable, you can use the SET PDFLINETERM=SPACE command
to facilitate binary transfer to Windows from an ASCII-based UNIX system. This command
causes an extra space character to be appended to each record of the PDF output file. This
extra space acts as a placeholder for the expected carriage return character and makes the
object offsets in the file correct when it is transferred from MVS or VM to a UNIX system.
This enables a UNIX server to open a PDF file in that environment.

Note: A text mode transfer is always required when transferring a text file from a mainframe
to any other environment (Windows, ASCII Unix, or EBCDIC Unix).

Creating Reports 699

13. Working With Styled Output Formats

How to Specify Line Termination Characters When Creating a PDF FileSyntax:

In a profile, a FOCEXEC, or from the command line, issue the following command:

SET PDFLINETERM={STANDARD|SPACE}

In a TABLE request, issue the following command:

ON TABLE SET PDFLINETERM {STANDARD|SPACE}

where:

STANDARD

Creates a PDF file without any extra characters. This file will be a valid PDF file if
transferred in text mode to a Windows machine, but not to a UNIX machine. If
subsequently transferred from a UNIX machine to a Windows machine in text mode, it
will be a valid PDF file on the Windows machine.

SPACE

Creates a PDF file with an extra space character appended to each record. This file will
be a valid PDF file if transferred in text mode to a UNIX machine, but not to a Windows
machine. If subsequently transferred from an ASCII UNIX machine to a Windows machine
in binary mode, it will be a valid PDF file on the Windows machine.

Required PDFLINETERM Settings Based on EnvironmentReference:

The following chart will assist you in determining the correct setting to use, based on your
environment:

SET PDFLINETERM=Transferring from MVS or VM to:

SPACEEBCDIC UNIX (text transfer)

SPACEASCII UNIX (text transfer)

SPACEASCII UNIX (text); then to Windows (binary)

STANDARDUNIX (text); then to Windows (text)

STANDARDDirectly to Windows (text)

700 Information Builders

Working With PostScript and PDF Reports

Displaying An and AnV Fields With Line Breaks

How to:

Display An and AnV Fields Containing Line Breaks on Multiple Lines

Using StyleSheet attributes, you can display An (character) and AnV (varchar) fields that
contain line breaks on multiple lines in a PDF or PostScript report. Line breaks can be based
on line feeds, carriage returns, or a combination of both. If you do not add these StyleSheet
attributes, all line feed and carriage return formatting within these fields will be ignored.

How to Display An and AnV Fields Containing Line Breaks on Multiple LinesSyntax:

TYPE=REPORT,LINEBREAK='type',$

where:

REPORT

Is the required component for the LINEBREAK attribute.

'type'

Specifies that line breaks will be inserted in a report based on the following:

LF inserts a line break after each line-feed character found in all An and AnV fields.

CR inserts a line break after each carriage-return character found in all An and AnV fields.

LFCR inserts a line break after each combination of a line-feed character followed by a
carriage-return character found in all An and AnV fields.

CRLF inserts a line break after each combination of a carriage-return character followed
by a line-feed character found in all An and AnV fields.

Note: The report output must be formatted as PDF or PostScript.

Creating Reports 701

13. Working With Styled Output Formats

Displaying an Alphanumeric Field With Line Breaks in a PDF ReportExample:

The following request defines an alphanumeric named ANLB field with a semi-colon in the
middle. The CTRAN function then replaces the semi-colon with a carriage return character
and stores this string in a field named ANLBC. On the report output, this field displays on
two lines:

DEFINE FILE EMPLOYEE
ANLB/A40 ='THIS IS AN An FIELD;WITH A LINE BREAK.';
ANLBC/A40 = CTRAN(40, ANLB, 094, 013 , ANLBC);
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME ANLBC
WHERE LAST_NAME EQ 'BLACKWOOD'
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT,LINEBREAK='CR',$
ENDSTYLE
END

The output is:

ANLBCLAST_NAME
THIS IS AN An FIELD
WITH A LINE BREAK.

BLACKWOOD

Using an Alphanumeric Field With a LIne Break in a SubfootExample:

The following request defines an alphanumeric named ANLB field with a semi-colon in the
middle. The CTRAN function then replaces the semi-colon with a carriage return character
and stores this string in a field named ANLBC. In the subfoot, this field displays on two lines:

DEFINE FILE EMPLOYEE
ANLB/A40 ='THIS IS AN An FIELD;WITH A LINE BREAK.';
ANLBC/A40 = CTRAN(40, ANLB, 094, 013 , ANLBC);
END
TABLE FILE EMPLOYEE
PRINT FIRST_NAME
BY LAST_NAME
WHERE LAST_NAME EQ 'BLACKWOOD'
ON LAST_NAME SUBFOOT
 " "
 " <ANLBC "
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT,LINEBREAK='CR',$
ENDSTYLE
END

702 Information Builders

Working With PostScript and PDF Reports

The output is:

FIRST_NAMELAST_NAME
ROSEMARIEBLACKWOOD

 THIS IS AN An FIELD
 WITH A LINE BREAK.

Creating Reports 703

13. Working With Styled Output Formats

704 Information Builders

Working With PostScript and PDF Reports

FOCUS

Advanced StyleSheet Features14
Topics:

Some advanced StyleSheet features
include positioning, arranging, and
aligning elements, adding images, grids
and borders, and linking in a report.
These features are described in this
chapter.

Positioning a Report Component

Arranging Pages and Columns on a
Page

For information about creating a
StyleSheet, identifying and styling report
components, and choosing a styled
output format, see Styling Reports on
page 491.

Wrapping and Justifying Report
Components

Aligning Heading and Footing Elements

Adding Grids and Borders

Adding an Image to a Report

Linking in a Report

Working With Mailing Labels and
Multi-Pane Pages

Creating Reports 705

Positioning a Report Component

How to:

Specify the Starting Position of a Column

Set a Starting Position for a Heading or Footing

Set a Starting Position for a Heading or Footing Element

Add Blank Space Around a Report Component

Reference:

Positioning Attributes

A StyleSheet enables you to specify an absolute or relative starting position for a column,
heading, or footing, or element in a heading or footing. You can also add blank space around
a report component.

For a PDF, PS, or HTML report, you can use the POSITION attribute in a StyleSheet to specify
a starting position for a heading or footing, expressed as a unit measurement. For HTML,
this capability requires an internal Cascading Style Sheet. For details on selecting an
alignment method, see Aligning Heading and Footing Elements on page 742.

In addition, for a PDF or PS report, you can use the POSITION attribute to specify an absolute
or relative starting position for an element within a heading or footing, or to align an item in
a heading or footing with a report column. An absolute starting position is the distance from
the left margin of the report. A relative starting position is the distance from the preceding
object. For the first item on a heading line this is the left margin of the report.

In an HTML report, you can use related syntax and an internal Cascading StyleSheet to
position an image in a heading or footing.

706 Information Builders

Positioning a Report Component

Positioning AttributesReference:

Applies toDescriptionAttribute

PDF

PS

Sets absolute or relative starting position
of a column.

An absolute position is the distance from
the left margin of the printed paper.

A relative position is the distance from the
default position. After the first column, the
default position is the end of the
preceding column.

POSITION

PDF

PS

Adds blank space to the top or bottom of
a report.

TOPGAP
BOTTOMGAP

PDF

PS

Adds blank space to the left or right of a
report.

LEFTGAP
RIGHTGAP

How to Specify the Starting Position of a ColumnSyntax:

This syntax applies to a PDF or PS report.

TYPE=REPORT, COLUMN=identifier, POSITION={+|-}position, $

where:

identifier

Selects a single column and collectively positions the column title, data, and totals if
applicable. For valid values, see Identifying an Entire Report, Column, or Row on page
527.

+

Starts the column at the specified distance to the right of the default starting position.

By default, text items and alphanumeric fields are left-justified in a column, and numeric
fields are right-justified in a column.

-

Starts the column at the specified distance to the left of the default starting position.

Creating Reports 707

14. Advanced StyleSheet Features

It is possible to create a report in which columns overlap. If this occurs, simply adjust
the values.

position

Is the desired distance, in the unit of measurement specified with the UNITS attribute.

How to Set a Starting Position for a Heading or FootingSyntax:

Use the following syntax to specify a starting position for an entire heading or footing in
relation to the left margin of a report.

TYPE = headfoot, POSITION = position, $

where:

headfoot

Is the type of heading or footing. Valid values are TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD, and SUBFOOT.

position

Is the desired distance from the left, expressed by the UNITS attribute (the default is
INCHES).

Note: In an HTML report, this syntax must be used in conjunction with an internal Cascading
Style Sheet.

How to Set a Starting Position for a Heading or Footing ElementSyntax:

For a PDF or PS report, use the following syntax to specify a starting position for a heading
or footing element in relation to the preceding item

TYPE = headfoot, [subtype,] POSITION = {+|-}option, $

where:

headfoot

Is the type of heading or footing. Valid values are TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD, and SUBFOOT.

subtype

Are additional attributes that identify the report component. These options can be used
separately or in combination, depending upon the degree of specificity you need to fully
identify an element. Valid values are:

LINE which identifies a line by its position in a heading or footing. Identifying individual
lines enables you to format each line differently.

708 Information Builders

Positioning a Report Component

If a heading or footing has multiple lines and you apply a StyleSheet declaration that
does not specify LINE, the declaration is applied to all lines. Blank lines are counted
when interpreting the value of LINE.

ITEM which identifies an item by its position in a line. To divide a heading or footing line
into items, you can use the <+0> spot marker.

To determine an ITEM number for an OBJECT, follow these guidelines:

When used with OBJECT=TEXT, count only the text strings from left to right.

When used with OBJECT=FIELD, count only values from left to right.

When used without OBJECT, count text strings and field values from left to right.

If you apply a StyleSheet declaration that specifies ITEM, the number is counted from
the beginning of each line in the heading or footing, not just from the beginning of the
first line.

OBJECT which identifies an element in a heading or footing as a text string or field value.
Valid values are TEXT or FIELD. TEXT may represent free text or a Dialogue Manager
amper (&) variable.

It is not necessary to specify OBJECT=TEXT unless you are styling both text strings and
embedded fields in the same heading or footing.

option

Is the alignment method. Valid values are:

position which is the desired distance, expressed by the UNITS attribute (the default
is inches) for absolute positioning.

+ which starts the heading or footing element at the specified distance to the right of
the preceding item. For the first item in a heading or footing, the preceding item is the
left margin of the report.

- which starts the heading or footing element at the specified distance to the left of the
preceding item. This is useful if you want to overlap images in a heading.

column_title which aligns the heading or footing element with the first character of
the designated column.

Creating Reports 709

14. Advanced StyleSheet Features

Specifying an Absolute Starting Position for a ColumnExample:

The following illustrates how to position a column in a printed report. The request specifies
that the PRODUCT_DESCRIPTION field should appear three inches from the left margin of
the PDF report.

TABLE FILE GGORDER
"PRODUCTS ORDERED ON 08/01/96"
SUM QUANTITY BY PRODUCT_DESCRIPTION
WHERE ORDER_DATE EQ '080196'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT, COLUMN=PRODUCT_DESCRIPTION, POSITION=3, $
ENDSTYLE
END

The output is:

710 Information Builders

Positioning a Report Component

Specifying a Relative Starting Position for a ColumnExample:

This request positions the column title and data for the QUANTITY field two inches from the
default position; in this case, two inches from the end of the preceding column.

TABLE FILE GGORDER
"PRODUCTS ORDERED ON 08/01/96"
SUM QUANTITY BY PRODUCT_DESCRIPTION
WHERE ORDER_DATE EQ '080196'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT, COLUMN=PRODUCT_DESCRIPTION, POSITION=3, $
TYPE=REPORT, COLUMN=QUANTITY, POSITION=+2, $
ENDSTYLE
END

QUANTITY, titled Ordered Units in the report, is relatively positioned to Product:

Creating Reports 711

14. Advanced StyleSheet Features

Setting an Absolute Starting Position for a Heading ItemExample:

This request uses the spot marker <+0> to divide the report heading into three text strings.
It starts the third text string, 1st Qtr 2001, 3 inches from the left report margin. This technique
can be used in PDF as well as PS reports.

TABLE FILE GGSALES
SUM UNITS DOLLARS BY CATEGORY BY PRODUCT
ON TABLE SUBHEAD
"Sales Report - <+0>All Products<+0> 1st Qtr 2001"
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE SET SQUEEZE ON
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLESHEET *
TYPE = TABHEADING, OBJECT = TEXT, ITEM=1, SIZE = 12, STYLE = BOLD, $
TYPE = TABHEADING, OBJECT = TEXT, ITEM=2, STYLE = BOLD, $
TYPE = TABHEADING, OBJECT = TEXT, ITEM=3, POSITION = 3, $
ENDSTYLE
END

The output is:

712 Information Builders

Positioning a Report Component

Setting a Relative Starting Position for a Heading ItemExample:

This request uses the spot marker <+0> to divide the report heading into three text strings.
It starts the third text string, 1st Qtr 2001, one inch to the right of the previous item on the
heading line. Inches are the default unit of measure. This technique can be used in PDF as
well as PS reports.

TABLE FILE GGSALES
SUM UNITS DOLLARS BY CATEGORY BY PRODUCT
ON TABLE SUBHEAD
"Sales Report - <+0>All Products<+0> 1st Qtr 2001"
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE SET SQUEEZE ON
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLESHEET *
TYPE = TABHEADING, OBJECT = TEXT, ITEM=1, SIZE = 12, STYLE = BOLD, $
TYPE = TABHEADING, OBJECT = TEXT, ITEM=2, STYLE = BOLD, $
TYPE = TABHEADING, OBJECT = TEXT, ITEM=3, POSITION = +1, $
ENDSTYLE
END

The output is:

Creating Reports 713

14. Advanced StyleSheet Features

Aligning a Heading Item With a ColumnExample:

This request uses the spot marker <+0> to divide the report heading into three text strings.
It starts the second text string at the horizontal position where the column UNITS (Unit Sales)
is. This technique can be used in PDF as well as PS reports.

TABLE FILE GGSALES
SUM UNITS DOLLARS BY CATEGORY BY PRODUCT
ON TABLE SUBHEAD
"Sales Report - <+0>All Products<+0> 1st Qtr 2001"
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET SQUEEZE ON
ON TABLE SET STYLESHEET *
TYPE = TABHEADING, LINE=1, ITEM=2, POSITION=UNITS, $
ENDSTYLE
END

The output is:

You can employ several types of spot markers to refine the positioning of headings and
footings, and elements within them, in HTML and PDF reports that use proportional fonts.
For maximum control, you can combine spot markers with other alignment techniques.

You can also use spot markers to position heading and footing elements at fixed and relative
column locations. Several spot markers control positioning based on the pre-defined width
of a character in a monospace font. This formatting technique is not supported for proportional
fonts.

How to Add Blank Space Around a Report ComponentSyntax:

In a PDF or PostScript report, you can add space around report components.

714 Information Builders

Positioning a Report Component

Use the TOPGAP and BOTTOMGAP attributes to control spacing between heading or footing
lines, and between heading or footing text and the grid lines above and below them.

Note: You can use TOPGAP and BOTTOMGAP with multi-line headings. Keep in mind that
between heading lines, the top and bottom gap will be inserted, making the spacing between
lines greater than the spacing at the top and bottom of the heading.

TYPE=headfoot, {TOPGAP|BOTTOMGAP}=gap, $
TYPE=REPORT, {TOPGAP|BOTTOMGAP}=gap, $
 TYPE=type, [COLUMN=identifier,|ACROSSCOLUMN=acrosscolumn,]
 {LEFTGAP|RIGHTGAP}=gap, $

where:

TOPGAP

Indicates how much space to add above the report.

BOTTOMGAP

Indicates how much space to add below the report.

gap

Is the amount of blank space, in the unit of measurement specified with the UNITS
attribute.

In the absence of grids or background color, the default value is 0. For RIGHTGAP, the
default value is proportional to the size of the text font.

In the presence of grids or background color, the default value increases to provide
space between the grid and the text or to extend the color beyond the text.

The gaps must be the same within a single column or row. That is, you cannot specify
different left or right gaps for individual cells in the same column, or different top and
bottom gaps for individual cells in the same row.

type

Identifies the report component. For valid values, see Identifying Report Components on
page 525.

identifier

Selects one or more columns using the COLUMN attribute described in Identifying an
Entire Report, Column, or Row on page 527.

acrosscolumn

Selects the same column under each occurrence of an ACROSS sort field, using the
ACROSSCOLUMN attribute described in Identifying an Entire Report, Column, or Row on
page 527.

Creating Reports 715

14. Advanced StyleSheet Features

LEFTGAP

Indicates how much space to add to the left of a report component.

RIGHTGAP

Indicates how much space to add to the right of a report component.

Adding Blank Space Above Data ValuesExample:

This request generates one-tenth of an inch of blank space above every data value in a PDF
report.

SET PAGE-NUM = OFF
TABLE FILE GGORDER
"PRODUCTS ORDERED ON 08/01/96"
" "
SUM QUANTITY BY PRODUCT_DESCRIPTION
WHERE ORDER_DATE EQ '080196'
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=DATA, TOPGAP = 0.1, $
ENDSTYLE
END

The data is spaced for readability:

716 Information Builders

Positioning a Report Component

Adding Blank Space to Separate Heading Text From Grid Lines in a PDF ReportExample:

This request generates a PDF report with blank space added above and below the report
heading to separate the text from the upper and lower grid lines. The space above is added
by the TOPGAP attribute; the space below is added by the BOTTOMGAP attribute.

TABLE FILE GGSALES
SUM BUDUNITS UNITS BUDDOLLARS DOLLARS
BY CATEGORY
ON TABLE SUBHEAD
"SALES REPORT <+0>December 2001"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET SQUEEZE ON
ON TABLE SET STYLESHEET *
TYPE = TABHEADING, GRID=ON, JUSTIFY=CENTER, TOPGAP=.25, BOTTOMGAP=.25, $
TYPE = TABHEADING, FONT='TIMES', SIZE=12, STYLE=BOLD, $
TYPE = TABHEADING, ITEM=2, SIZE=10, STYLE=ITALIC, $
ENDSTYLE
END

The output is:

Arranging Pages and Columns on a Page

In this section:

Determining Column Width

Reference:

Column Arrangement Features

How easily a user locates data depends on the arrangement of columns on a page. You
have many design options. Using StyleSheet attributes or commands, you can:

Determine column width.

Creating Reports 717

14. Advanced StyleSheet Features

Control the number of spaces between columns.

Change the order of vertical sort (BY) columns.

Stack columns to reduce report width, or to easily compare values in a report by creating
a matrix.

Specify the absolute or relative starting position for a column.

Column Arrangement FeaturesReference:

Applies toDescriptionFeature

HTML (requires
FONT=DEFAULT-FIXED)

PDF

PS

Sets column width.SQUEEZE

HTML (requires SET
STYLEMODE=FIXED)

Sets number of spaces between
columns.

SET SPACES

PDF

PS

Sets column order.SEQUENCE

PDF

PS

Reduces report width by stacking
columns.

FOLD-LINE

HTML

PDF

PS

Stacks columns by placing them over
one another.

OVER

HTML (requires SET
STYLEMODE=FIXED)

PDF

PS

Sets absolute or relative starting
position of a column.

IN {n|+n}

For more information, see Customizing Tabular Reports on page 357.

718 Information Builders

Arranging Pages and Columns on a Page

Determining Column Width

How to:

Determine Column Width (HTML)

Determine Column Width (PDF or PS)

The value of the SQUEEZE attribute in a StyleSheet determines column width in a report.
You can use a SET parameter instead of a StyleSheet to set the value of SQUEEZE. If there
are conflicting StyleSheet and SET values, the StyleSheet overrides the SET.

When SQUEEZE is set to ON (the default), StyleSheet column width is ignored. Column width
is determined using your browser's default settings for HTML. For PDF, column width is
based on the widest data value or column title, whichever is greater.

SQUEEZE may affect the way headings, footings, and column titles display in your report.

How to Determine Column Width (HTML)Syntax:

This syntax applies to an HTML report. For the syntax for a PDF or PS report, see How to
Determine Column Width (PDF or PS) on page 720.

[TYPE=REPORT,] SQUEEZE={ON|OFF}, $

where:

TYPE=REPORT

Applies the column width to the entire report. Not required, as it is the default.

ON

Determines column width based on the widest data value or column title, whichever is
greater. ON is the default value.

For HTML reports, the Web browser shrinks the column width to the shortest column
title or field value.

OFF

Determines column width based on the field format in the Master File. Blank spaces
pad the column width up to the length of the column title or field format, whichever is
greater.

Creating Reports 719

14. Advanced StyleSheet Features

Using Default Column Width (HTML)Example:

This request uses SQUEEZE=ON (the default) for an HTML report. Column width is based
on the wider of the data value or column title.

SET PAGE-NUM = OFF
TABLE FILE GGSALES
SUM UNITS DOLLARS
BY CATEGORY BY PRODUCT
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, FONT=COURIER, $
ENDSTYLE
END

For Category, Unit Sales, and Dollar Sales, the column title is wider than the corresponding
data values. For Product, the wider data values determine column width. The HTML report
is:

How to Determine Column Width (PDF or PS)Syntax:

This syntax applies to a PDF or PS report. For the syntax for an HTML report, see How to
Determine Column Width (HTML) on page 719.

[TYPE=REPORT,] COLUMN=identifier, SQUEEZE={ON|OFF|width}, $

where:

TYPE=REPORT

Applies the column width to the entire report. Not required, as it is the default.

720 Information Builders

Arranging Pages and Columns on a Page

identifier

Selects a column. If you omit a column identifier, the value for SQUEEZE applies to all
columns in a report. You can also use SET SQUEEZE to set the width of all columns.

ON

Determines column width based on the widest data value or column title, whichever is
greater. ON is the default value.

OFF

Determines column width based on the field format in the Master File. Blank spaces
pad the column width up to the length of the column title or field format, whichever is
greater. OFF is the default value.

width

Is a measurement for the column width, specified with the UNITS attribute.

If the widest data value exceeds the specified measurement:

The following appears ...And the field is ...

As much of the value as will fit in the specified width, followed
by an exclamation mark (!) to indicate truncation.

Alphanumeric

Asterisks (*) in place of the field value.Numeric

Determining Column Width (PDF)Example:

This request uses SQUEEZE=2.5 to increase the default column width of the PRODUCT field
in a PDF report. Note that this feature is used primarily for printed reports. Depending on
your screen resolution, the column width may appear differently than it prints.

TABLE FILE GGSALES
SUM UNITS
BY PRODUCT
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=REPORT, COLUMN=PRODUCT, SQUEEZE=2.5, $
ENDSTYLE
END

Creating Reports 721

14. Advanced StyleSheet Features

The PDF report is:

Wrapping and Justifying Report Components

In this section:

Controlling Wrapping of Report Data

Controlling Wrapping With Alternative Methods

Justifying Report Columns

Justifying a Heading or Footing

Justifying a Column Title

Justifying a Label for a Subtotal or Grand Total

You can position data within a report by specifying whether or not you wish to have data
wrap within a cell or by selecting a justification (right, left or center) of a column or heading.

722 Information Builders

Wrapping and Justifying Report Components

Controlling Wrapping of Report Data

How to:

Control Wrapping of Report Data Using a StyleSheet Attribute

Control Wrapping of Report Data Using a SET Command

Control Spacing Between Wrapped Lines

You can control the wrapping of report data in a report, thus preventing line breaks within
report cells. When using HTML output, most Web browsers will, by default, wrap alphanumeric
report data that does not fit on a single line in a cell.

This bumps the contents of the cell onto a second line. A Web browser wraps data based
on its algorithmic settings. Use the WRAP attribute if you wish to suppress a Web browser's
data wrapping.

For information about wrapping in Excel 2000 reports, see Controlling Column Width and
Wrapping on page 644.

How to Control Wrapping of Report Data Using a StyleSheet AttributeSyntax:

To control wrapping of text inside a report, use the following syntax within a StyleSheet.

TYPE=type, [subtype,] WRAP=value, $

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

subtype

Is any additional attribute, such as COLUMN, ACROSS, ITEM, and so on, that is needed
to identify the report component that you are formatting. See Identifying Report
Components on page 525 for more information about how to specify different report
components.

value

Is one of the following:

ON turns on data wrapping. This is the default.

OFF turns off data wrapping.

n represents a specific numeric value to which the column width can be set. The value
represents the measure specified with the UNITS parameter.

Creating Reports 723

14. Advanced StyleSheet Features

How to Control Wrapping of Report Data Using a SET CommandSyntax:

To control wrapping of text inside a report, use the following syntax

SET WRAP=value, $

where:

value

Is one of the following:

ON turns on data wrapping. This is the default.

OFF turns off data wrapping.

n represents a specific numeric value that the column width can be set to. The value
represents the measure specified with the UNITS parameter.

Allowing the Web Browser to Wrap Report DataExample:

The following example, with WRAP=ON, wraps report data based on the Web browser's
functionality. Note that because this value is the default, there is no need to specify
WRAP=ON in the report request syntax.

TABLE FILE GGPRODS
PRINT SIZE UNIT_PRICE PACKAGE_TYPE
VENDOR_CODE VENDOR_NAME
BY PRODUCT_ID BY PRODUCT_DESCRIPTION
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
ENDSTYLE
END

The output is:

724 Information Builders

Wrapping and Justifying Report Components

Notice that records in the Vendor Name column break to a second line.

How to Control Spacing Between Wrapped LinesSyntax:

You can use the WRAPGAP attribute in a StyleSheet to control spacing between wrapped
lines in PDF and PostScript report output.

type=component, WRAPGAP={ON|OFF|n}

where:

component

Is the component with wrapped lines.

ON

Does not leave any space between wrapped lines. ON is equivalent to specifying 0.0 for
n.

OFF

Places wrapped data on the next line. OFF is the default value.

n

Is a number greater than or equal to zero that specifies how much space to leave between
wrapped lines (using the unit of measurement specified by the UNITS attribute). Setting
n to zero does not leave any space between wrapped lines, and is equivalent to specifying
WRAPGAP=ON.

Specifying Spacing for Wrapped LinesExample:

In the following request, wrapping is turned on for the ADDRESS_LN3 column of the report:

TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3
BY LAST_NAME BY FIRST_NAME
WHERE LAST_NAME LE 'CROSS'
 ON TABLE HOLD FORMAT PDF
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
type=report, grid=on, $
type=data, topgap=0.2, bottomgap=0.2, $
type=data, wrapgap=off, $
type=REPORT, column=ADDRESS_LN3, wrap=1.0 ,$
END

Creating Reports 725

14. Advanced StyleSheet Features

With WRAPGAP=OFF, each wrapped line is placed on the next report line:

726 Information Builders

Wrapping and Justifying Report Components

With WRAPGAP=ON, the wrapped lines are placed directly under each other:

Usage Notes for WRAPGAPReference:

You can only specify WRAPGAP for columns that have wrapping enabled (WRAP attribute
or parameter set to ON or a number). The TOPGAP and BOTTOMGAP attributes specify
how much vertical space to leave above and below a report component. Increasing the
values or these attributes makes a decrease in spacing between wrapped lines more
noticeable.

Creating Reports 727

14. Advanced StyleSheet Features

Controlling Wrapping With Alternative Methods

How to:

Control Wrapping Using SQUEEZE

Control Wrapping Using SQUEEZE as a SET Command

Reference:

Set Commands that Affect Wrapping in a Report

Usage Notes for WRAP and SQUEEZE

Working With Multi-Table HTML Reports

In addition to the WRAP parameter, whether or not text wraps within a cell is affected by the
SQUEEZE and GRID attributes. Both SQUEEZE and GRID can be used as SET commands or
StyleSheet attributes. By specifying a setting other than the default value for these two
attributes, the wrapping behavior in a browser is affected.

Set Commands that Affect Wrapping in a ReportReference:

The following SET commands affect the wrapping of data.

ActionCommand

Forces the browser to display the entire column width and
suppresses the wrapping of column data.

SET SQUEEZE=OFF

Allows the browser to follow its own display behavior. If a
browser's settings so specify, columns will be compressed to
the length of the longest data value, and column data with
embedded blanks will be wrapped.

SET SQUEEZE=ON

Automatically suppresses the wrapping of data.SET GRID=OFF

Has no effect on either wrapping or compressing column width.SET GRID=ON

728 Information Builders

Wrapping and Justifying Report Components

How to Control Wrapping Using SQUEEZESyntax:

SQUEEZE can be used as either a SET parameter or a StyleSheet attribute. To control
wrapping using SQUEEZE, use the following syntax within a StyleSheet.

TYPE =type, SQUEEZE=value, $

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

value

Is one of the following:

ON turns on data wrapping. This is the default for HTML output.

OFF turns off data wrapping. This is the default for PDF and PostScript.

n represents a specific numeric value to which the column width can be set (valid only
in PDS and PostScript) The value represents the measure specified with the UNITS
parameter.

How to Control Wrapping Using SQUEEZE as a SET CommandSyntax:

To suppress the wrapping feature in a report by setting the SQUEEZE paramter to OFF, use
the following syntax

SET SQUEEZE=value, $

where:

value

Is one of the following:

ON turns on data wrapping.

OFF turns off data wrapping. This is the default.

n represents a specific numeric value to which the column width can be set (valid only
in PDS and PS). The value represents the measure specified with the UNITS parameter.

Note: SQUEEZE turns off data wrapping. If a data value is wider than the specified width of
the column, it will be hidden from view. Column width can be adjusted in Excel after the
spreadsheet has been generated.

Creating Reports 729

14. Advanced StyleSheet Features

Usage Notes for WRAP and SQUEEZEReference:

Most Web browsers-by default-determine the width of a report column using an internal
algorithm. If a data value exceeds the column's width, the browser wraps that data onto the
next line of the column. If you want to prevent these line breaks, you can override this browser
behavior by using the WRAP StyleSheet attribute.

Specifying a width is supported in HTML reports that generate an internal Cascading Style
Sheet, as well as in PDF and PostScript reports.

If you do not specify the WRAP attribute in:

An HTML report, it defaults to ON.

A PDF report, it defaults to OFF.

Note that the WRAP and SQUEEZE attributes are incompatible: you should not apply both
of them to the same report component.

The WRAP attribute is for alphanumeric columns, and is not supported for text (TX) columns.

Working With Multi-Table HTML ReportsReference:

You can control where a report breaks using SET LINES or PAGE-BREAK in the request.

If SET LINES=999999, the entire report is matched to a single displayed Web page, even
if SET STYLEMODE=PAGED.

ON sortfield PAGE-BREAK or BY sortfield PAGE-BREAK overrides a SET LINES command
and breaks a report into multiple HTML tables whenever the sort field value changes.

Column titles are generated for every PAGE-BREAK or according to the SET LINES
parameter.

When a report is broken into multiple HTML tables, the browser displays each table
according to its own algorithm. Set SQUEEZE to OFF and/or WRAP to OFF to ensure that
HTML tables are aligned consistently across pages.

730 Information Builders

Wrapping and Justifying Report Components

Displaying a Multiple-Table HTML ReportExample:

In this request, each page is returned to the browser as a separate HTML table. SQUEEZE
is set to OFF for consistent alignment of tables across pages.

SET STYLEMODE = PAGED
SET LINES = 12
TABLE FILE CENTORD
HEADING
"SALES OVER $200,000"
PRINT LINEPRICE AS 'Sales'
BY SNAME BY ORDER_NUM
WHERE LINEPRICE GT 200000
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, SQUEEZE=OFF, $
ENDSTYLE
END

Two pages of the report follow, showing consistent alignment:

Creating Reports 731

14. Advanced StyleSheet Features

The same two pages illustrate inconsistent alignment with SQUEEZE set to ON:

Justifying Report Columns

How to:

Justify a Report Column

You can adjust text within a column by specifying whether report columns are left justified,
right justified, or centered. By default, alphanumeric columns are left justified, numeric
columns are right justified, and heading and footing elements are left justified. However,
you can change the default using the JUSTIFY attribute. You can also justify column titles
using the /R /L and /C formatting options in the report request.

How to Justify a Report ColumnSyntax:

To left justify, right justify, or center a column, use the following syntax within a StyleSheet.

TYPE=type, [subtype,] [COLUMN=column,] JUSTIFY=option, $

where:

type

Is the report component you wish to affect, such as REPORT, HEADING, or TITLE.

732 Information Builders

Wrapping and Justifying Report Components

subtype

Is any additional attribute, such as COLUMN, ACROSS, ITEM, and so on, that is needed
to identify the report component that you are formatting.

column

Is the column or group of columns you wish to justify. This attribute is only necessary if
you wish to justify a specific column or set of columns. Omitting this attribute justifies
the entire report.

option

Is the justification you wish to select:

LEFT specifies that the column will be left justified.

RIGHT specifies that the column will be right justified.

CENTER specifies that the column will be centered.

Justifying Data in a Report ColumnExample:

The following example displays the StyleSheet syntax used to center the data in the Vendor
Name column. The header is also center justified.

TABLE FILE GGPRODS
HEADING
"PRODUCT REPORT"
SUM UNITS BY PRODUCT_DESCRIPTION BY PRODUCT_ID BY VENDOR_NAME
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, COLUMN=VENDOR_NAME, JUSTIFY=CENTER, $
TYPE=HEADING, JUSTIFY=CENTER, $
TYPE=REPORT, GRID=OFF, $
ENDSTYLE
END

Creating Reports 733

14. Advanced StyleSheet Features

The output is:

Justifying a Heading or Footing

How to:

Justify a Heading or Footing in a StyleSheet

Reference:

Justification Regions and Behavior

You can left justify, right justify, or center a heading or footing in a StyleSheet. By default,
a heading or footing is left justified. In addition, you can justify an individual line or lines in
a multiple-line heading or footing.

To center a page heading or footing over the report data, you can use a legacy formatting
technique that does not require a StyleSheet; simply include the CENTER option in a HEADING
or FOOTING command.

734 Information Builders

Wrapping and Justifying Report Components

Justification behavior in HTML and PDF. For HTML reports, justification is implemented
with respect to the report's width. That means a centered heading is centered over the report
content. In contrast, for PDF reports, the default justification area is the page width, rather
than the report width. This results in headings and footings that are not centered on the
report. In most cases, you can achieve justification based on report width in a PDF report
by adding the command SET SQUEEZE=ON to your request. This command improves the
appearance of the report by eliminating excessive white space between columns and
implements justification over the report content. However, if the heading is wider than the
report, it will be centered on the page, even when SQUEEZE=ON.

Tip: You can also use justification syntax in combination with other StyleSheet syntax to
align headings, footings, and items in them with other report elements, based on either unit
measurements or relationships to other columns. For a summary of these options, see
Aligning Heading and Footing Elements on page 742.

How to Justify a Heading or Footing in a StyleSheetSyntax:

TYPE = headfoot, [LINE = line_#,] JUSTIFY = option, $

where:

headfoot

Is the type of heading or footing. Valid values are TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD, and SUBFOOT.

line_#

Optionally identifies a line by its position in the heading or footing so that you can
individually align it. If a heading or footing has multiple lines and you omit this option,
the value supplied for JUSTIFY applies to all lines.

option

Is the type of justification. Valid values are:

LEFT which left justifies the heading or footing. This value is the default.

RIGHT which right justifies the heading or footing.

CENTER which centers the heading or footing.

Creating Reports 735

14. Advanced StyleSheet Features

Centering All Lines in a Multiple-Line Report HeadingExample:

This request centers all lines in a multiple-line report heading using the single StyleSheet
attribute for the entire heading:

TABLE FILE GGSALES
SUM BUDUNITS UNITS BUDDOLLARS DOLLARS
BY CATEGORY
ON TABLE SUBHEAD
"SALES REPORT"
"**(CONFIDENTIAL)**"
"December 2001"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE = REPORT, GRID=OFF, $
TYPE = TABHEADING, JUSTIFY = CENTER, $
ENDSTYLE
END

The output is:

Tip: To run this report in PDF format, add the code ON TABLE SET SQUEEZE ON to eliminate
excessive white space between columns and to center the heading over the report.

Justification Regions and BehaviorReference:

The region in which text is justified depends on the relationship of the sizes of certain
elements in the report:

When SQUEEZE=ON, the maximum width of all the heading types in the report is
calculated. This value is called MaxHeadWidth.

If MaxHeadWidth is less than or equal to the total width of the columns of the report,
headings are justified in the space over the report columns.

736 Information Builders

Wrapping and Justifying Report Components

If MaxHeadWidth exceeds the total width of the columns of the report, headings are
centered and right-justified in the entire width of the page.

When SQUEEZE=OFF, the maximum width of all the headings are not precalculated;
headings are centered in the entire width of the page.

With a styled, multiple-panel report (in which the width exceeds one page), headings can
only appear in the first panel. Thus, the preceding calculations deal with the total width
of the columns in the first panel rather than the total width of all the columns in the
report.

Justifying a Column Title

How to:

Justify a Column Title Using a StyleSheet

You can left justify, right justify, or center a column title for a display field, BY field, ACROSS
field, or calculated value using a StyleSheet.

If a title is specified with an AS phrase in a request, or with the TITLE attribute in a Master
File, that title will be justified, as specified for the field in StyleSheet syntax, if such syntax
exists in the request.

Justification behavior in HTML and PDF. For HTML reports, justification is implemented
with respect to the report's width. That means a centered column title is centered over a
report column. In contrast, for PDF reports the default justification area is the page width,
rather than the report width. This results in column titles that are not centered over the
report column. You can achieve justification based on report width in a PDF report by adding
the command SET SQUEEZE=ON to your request. This command improves the appearance
of the report by eliminating excessive white space between columns and implements
justification over the report content.

How to Justify a Column Title Using a StyleSheetSyntax:

To justify a column title for a vertical sort column (generated by BY) or a display column
(generated by PRINT, LIST, SUM, or COUNT), the StyleSheet syntax is

TYPE=TITLE, [COLUMN=column,] JUSTIFY=option, $

To justify a horizontal sort column title (generated by ACROSS), the StyleSheet syntax is

TYPE=ACROSSTITLE, [ACROSS=column,] JUSTIFY=option, $

To justify an ACROSS value or a ROW-TOTAL column title in an HTML report, use

TYPE=ACROSSVALUE, [COLUMN=column,] JUSTIFY=option, $

Creating Reports 737

14. Advanced StyleSheet Features

where:

TITLE

Specifies a vertical sort (BY) title or a display field title.

column

Specifies the column whose title you wish to justify. If you omit this attribute and value,
the formatting will be applied to all of the report's column titles.

ACROSSTITLE

Specifies a horizontal sort (ACROSS) title.

ACROSSVALUE

Specifies a horizontal sort (ACROSS) value or a ROW-TOTAL column title.

option

Is the type of justification. Valid values are:

LEFT which left justifies the column title. This value is the default for an alphanumeric
field.

RIGHT which right justifies the column title. This value is the default for a numeric or
date field.

CENTER which centers the column title. You cannot center an ACROSSTITLE in a PDF
report.

Using a StyleSheet to Justify Column Titles for Display and BY FieldsExample:

This request identifies each column by its field name and justifies each title separately.

TABLE FILE GGSTORES
PRINT STORE_NAME STATE AS 'St' BY ADDRESS1
WHERE STATE EQ 'CA'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET SQUEEZE ON
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE = REPORT, GRID=OFF, $
TYPE=TITLE, COLUMN=STORE_NAME, JUSTIFY=CENTER, $
TYPE=TITLE, COLUMN=STATE, JUSTIFY=RIGHT, $
TYPE=TITLE, COLUMN=ADDRESS1, JUSTIFY=CENTER, $
ENDSTYLE
END

738 Information Builders

Wrapping and Justifying Report Components

The output is:

Using a StyleSheet to Justify a Column Title for ACROSS and ROW-TOTAL FieldsExample:

This request centers the column title, State, created by the ACROSS phrase over the two
values (MT and WY) and the row total column title, Total by Gender, over the two row totals
(Male Population and Female Population). Notice that each across value functions as a title
for one or more columns in the report.

SET SQUEEZE = ON
TABLE FILE GGDEMOG
SUM MALEPOP98 FEMPOP98
ROW-TOTAL/D12 AS 'Total by Gender'
ACROSS ST
WHERE ST EQ 'WY' OR 'MT';
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=ACROSSTITLE, JUSTIFY=CENTER, FONT='TIMES', SIZE=11, STYLE=BOLD, $
TYPE=ACROSSVALUE, COLUMN=N5, JUSTIFY=CENTER, $
ENDSTYLE
END

The output is:

Creating Reports 739

14. Advanced StyleSheet Features

Using a StyleSheet to Justify a Column Title for a Calculated ValueExample:

This request identifies the column title of the calculated value and left justifies it over the
data.

TABLE FILE SALES
SUM UNIT_SOLD RETAIL_PRICE
COMPUTE REV/D12.2M = UNIT_SOLD * RETAIL_PRICE;
BY PROD_CODE
WHERE CITY EQ 'NEW YORK'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=TITLE, COLUMN=REV, STYLE=BOLD, JUSTIFY=LEFT, $
ENDSTYLE
END

The output is:

Note: To run this report in PDF format, add the code ON TABLE SET SQUEEZE ON to eliminate
excessive white space between columns and to justify column titles properly over the data.

Justifying a Label for a Subtotal or Grand Total
Although you cannot directly justify a customized label for a subtotal, if columns are being
totaled or subtotaled by the one subtotal command, and you do not specify a column in the
StyleSheet, formatting is applied to the totals and subtotals of all columns and to the labeling
text that introduces the total and subtotal values.

740 Information Builders

Wrapping and Justifying Report Components

Justifying Subtotal and Grand Total LabelsExample:

This request subtotals the numeric columns in the report and right-justifies the output,
including the text of the label that precedes the values for the subtotals. In this example,
since numeric output is right justified by default, the justification specifications in the
StyleSheet are used to reposition the labels. The default label for the automatically generated
grand total is also right-justified.

TABLE FILE EMPLOYEE
SUM DED_AMT BY DED_CODE BY DEPARTMENT
BY BANK_ACCT
WHERE DED_CODE EQ 'CITY'
WHERE BANK_ACCT NE 0
ON DEPARTMENT SUBTOTAL AS 'Total City Deduction for'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=SUBTOTAL, STYLE=BOLD, JUSTIFY=RIGHT,$
TYPE=GRANDTOTAL, STYLE=BOLD, JUSTIFY=RIGHT,$
ENDSTYLE
END

The output is:

Creating Reports 741

14. Advanced StyleSheet Features

Aligning Heading and Footing Elements

In this section:

Aligning a Heading or Footing Element in an HTML Report

Aligning a Heading or Footing Element Across Columns in an HTML Report

Aligning Content in a Multi-Line Heading or Footing

Aligning Decimals in a Multi-Line Heading or Footing

Combining Column and Line Formatting in Headings and Footings

To align text and data in headings and footings based on factors other than left, right, and
center justification, consider the following descriptions before deciding which alignment
method best suits your needs.

Related
Methods

When to use...Applies
to ...

Alignment
Method

To align heading or footing items in
HTML and EXL2K reports: If you expect
to display reports in HTML or EXL2K format,
use HEADALIGN options to align heading
and footing items with either columns in
the HTML table for the body of the report
or with cells in an embedded HTML table.
The browser handles alignment based on
your specifications, without requiring unit
measurements, which are required with
WIDTH and JUSTIFY.

To specify a heading or footing item
that spans multiple columns: You can
combine HEADALIGN syntax with the
COLSPAN attribute to achieve this result.
For details, see Aligning a Heading or
Footing Element Across Columns in an HTML
Report on page 747.

HTML

EXL2K

1) StyleSheet
Attributes:

HEADALIGN

COLSPAN

JUSTIFY

Details: See
Aligning a
Heading or
Footing Element
in an HTML
Report on page
744.

742 Information Builders

Aligning Heading and Footing Elements

Related
Methods

When to use...Applies
to ...

Alignment
Method

For an
HTML or
EXL2K
report, you
can align
specific
items with
HEADALIGN
options.

For portability between HTML and PDF:
To code a request that can be used without
revision to produce identical output in HTML
(with internal Cascading Style Sheets) and
in PDF, use WIDTH and JUSTIFY attributes
in your StyleSheet. These settings can be
applied to report, page, and sort headings
and footings.

To align heading or footing items: Used
together, WIDTH and JUSTIFY allow you to
align specific items in the heading, rather
than entire headings or footings or entire
heading or footing lines, where the implied
justification width is the total width of the
report panel. To right- or center-justify an
item in a heading or footing, you must know
the width of the area you want to justify it
in. That information is provided by the
WIDTH attribute.

To align decimal points in a multi-line
heading or footing: Use this technique to
align decimal points in data that has varying
numbers of decimal places. Define the
width of the decimal item, then measure
how far in from the right side of a column
you want to position the decimal point. This
places the decimal point in the same
position in a column, regardless of the
number of decimal places displayed to its
right.

HTML

PDF

PS

2) StyleSheet
Attributes:

WIDTH

JUSTIFY

Details: See
Aligning Content
in a Multi-Line
Heading or
Footing on page
755.

Creating Reports 743

14. Advanced StyleSheet Features

Related
Methods

When to use...Applies
to ...

Alignment
Method

For a PDF
report, you
can
accomplish
most
positioning
with WIDTH
and
JUSTIFY.

For an
HTML
report, you
can align a
heading
item with a
column by
setting the
HEADALIGN
attribute to
BODY.

To set starting positions for headings
or footings, or items within them: Use
POSITION syntax to specify absolute and
relative starting positions.

In HTML, with an internal Cascading Style
Sheet, you can use POSITION to specify the
starting point for a heading or footing line.
You can also position an image in a heading
or footing.

To align heading and footing items with
columns: Use POSITION syntax to align a
heading item with a column position. For
example, the syntax

TYPE=SUBHEAD, LINE=1,
ITEM=3,POSITION=SALES, $

places ITEM 3 of the sort heading at the
horizontal position where the column SALES
is.

PDF

PS

HTML
(limited)

3) StyleSheet
Attribute:

POSITION

Details: See
Positioning a
Report
Component on
page 706.

Aligning a Heading or Footing Element in an HTML Report

How to:

Align a Heading or Footing Element in an HTML Report

For HTML output (and for Excel 2000 output, which uses HTML alignment), you can position
text and field items in headings and footings using HEADALIGN options. These options work
within the limitations of HTML and browser technologies to provide a significant degree of
formatting flexibility. Here is how HEADALIGN works.

When HEADALIGN is set either to BODY or INTERNAL, output is laid out as an HTML table,
which means that the browser determines the widths of the columns, thereby limiting the
precise positioning of items. A basic rule governs the placement of heading or footing items:
each item (text or embedded field) is placed in sequence into the next HTML table cell
(<TD>). When HEADALIGN is set to NONE, the default, all the items in the heading or footing
are strung together, inside a single cell. The browser stretches the heading table and the
report table to accommodate the length of the text.

744 Information Builders

Aligning Heading and Footing Elements

You can exercise control over the placement of items by overriding the default and choosing
either BODY or INTERNAL:

HEADALIGN=BODY puts heading item cells in the same HTML table as the body of the
report, ensuring that the items in the heading and the data in the body of the report line
up naturally since they have the same column widths. This is a simple and useful way
to align heading items with columns of data. For example, suppose that you have
computed subtotal values that you want to include in a sort footing. Using
HEADLIGN=BODY, you can align the subtotals in the same columns as the data that is
being totaled.

HEADALIGN=INTERNAL puts the heading items in an HTML table of its own. This allows
the heading items to be aligned vertically with each other, independent of the data, since
the widths of the heading items do not affect the width of the report columns and vice
versa.

To break a text string into multiple parts for manipulation across columns in an HTML table,
you can use <+0> spot markers in the request.

You can use HEADALIGN options in conjunction with the COLSPAN attribute. COLSPAN allows
heading items to span multiple table columns, thereby providing additional flexibility in how
you can design your headings. For details, see Aligning a Heading or Footing Element in an
HTML Report on page 744.

If there is more than one heading or footing type in a report, you can individually align any
element within each of them using this syntax.

HEADALIGN is not supported for PDF reports. For alignment methods supported by both
HTML and PDF, see Aligning Content in a Multi-Line Heading or Footing on page 755.

How to Align a Heading or Footing Element in an HTML ReportSyntax:

TYPE = {REPORT|headfoot}, HEADALIGN = option, $

where:

REPORT

Applies the chosen alignment to all heading and footing elements in a report.

headfoot

Is the type of heading or footing. Valid values are TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD, and SUBFOOT.

Creating Reports 745

14. Advanced StyleSheet Features

option

Is the type of alignment. Valid values are:

NONE which places heading items in an embedded HTML table inside the main (body)
table, and strings together, in a single cell of the embedded table, all the heading items
(text and fields) on a line. This value is the default.

INTERNAL which places heading items in an HTML table of its own, with each item in a
separate cell. This allows the heading items to be aligned vertically with each other,
independent of the data columns. The widths of the heading items do not affect the
widths of the report columns and vice versa.

BODY which aligns heading items with data columns by placing the items in the cells of
the same HTML table as the body of the report. Since they have the same column widths,
the items in the heading and the data in the body of the report line up naturally.

Aligning Elements in a Page Heading Using a Separate HTML TableExample:

This request creates an embedded HTML table for a page heading, within the HTML table
that governs alignment in the body of the report. This table has three rows and three columns
to accommodate all the heading elements.

In the first line of the heading, a spot marker (<+0>) creates two text elements: the first
element is blank, and the second element is Gotham Grinds, Inc. In the output, the second
element appears in the second cell of the first row of the embedded table.

The second and fourth lines of the heading are blank.

The spot markers in the third line of the heading split it into three text elements: Orders
Report, blank, Run on: &DATE. In the output, each element appears in a cell in the third row
of the embedded HTML table, in the order specified in the request.

TABLE FILE GGORDER
HEADING
" <+0>Gotham Grinds, Inc."
" "
"Orders Report <+0> <+0> Run on: &DATE"
" "
PRINT ORDER_NUMBER ORDER_DATE STORE_CODE QUANTITY
BY PRODUCT_CODE BY PRODUCT_DESCRIPTION
IF RECORDLIMIT EQ 10
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE = REPORT, GRID = ON, $
TYPE = HEADING, HEADALIGN = INTERNAL, STYLE = BOLD, $
ENDSTYLE
END

746 Information Builders

Aligning Heading and Footing Elements

GRID=ON in the request enables you to see the embedded HTML table for the heading, and
the main HTML table for the body of the report. The positioning is maintained when the grid
lines are hidden (off).

The output is:

Aligning a Heading or Footing Element Across Columns in an HTML Report

How to:

Align a Heading or Footing Element Across Columns

With HEADALIGN=BODY, each heading or footing element is aligned with a data column in
an HTML report; with HEADALIGN=INTERNAL, each element is continued in a column of an
HTML table created and aligned specifically for the report heading or footing. By default,
every heading or footing element (ITEM) is placed in the first available column. However,
you can position an item to span multiple columns using the COLSPAN attribute. For details
about HEADALIGN options, see Aligning a Heading or Footing Element in an HTML Report on
page 744.

Creating Reports 747

14. Advanced StyleSheet Features

You must specify the HEADALIGN and COLSPAN attributes in two separate StyleSheet
declarations, since HEADALIGN applies to an entire heading or footing, while COLSPAN
applies to a specific item in a heading or footing. This feature is supported for HTML only.
PDF display format does not support the COLSPAN attribute.

How to Align a Heading or Footing Element Across ColumnsSyntax:

TYPE = headfoot, [subtype,] COLSPAN = n, $

where:

headfoot

Is the type of heading or footing. Valid values are TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD, and SUBFOOT.

subtype

Are additional attributes that identify the report component. These options can be used
separately or in combination, depending upon the degree of specificity required to identify
an element. Valid values are:

LINE which identifies a line by its position in a heading or footing. Identifying individual
lines enables you to format each line differently.

If a heading or footing has multiple lines and you apply a StyleSheet declaration that
does not specify LINE, the declaration is applied to all lines. Blank lines are counted
when interpreting the value of LINE.

OBJECT which identifies an element in a heading or footing as a text string or field value.
Valid values are TEXT or FIELD. TEXT may represent free text or a Dialogue Manager
amper (&) variable.

It is not necessary to specify OBJECT=TEXT unless you are styling both text strings and
embedded fields in the same heading or footing.

ITEM which identifies an item by its position in a line. To divide a heading or footing line
into items, you can use the <+0> spot marker.

To determine the ITEM for an OBJECT, follow these guidelines:

When used with OBJECT=TEXT, count only the text strings from left to right.

When used with OBJECT=FIELD, count only values from left to right.

When used without OBJECT, count text strings and field values from left to right.

748 Information Builders

Aligning Heading and Footing Elements

If you apply a StyleSheet declaration that specifies ITEM, the number is counted from
the beginning of each line in the heading or footing, not just from the beginning of
the first line.

COLSPAN

Is an attribute that aligns an item in the width spanned by multiple columns.

n

Is the column with which the specified item is aligned.

Comparing Output Generated With HEADALIGN OptionsExample:

The requests that follow illustrate the differences in alignment with each HEADALIGN setting.
The grid lines are exposed in the output to help distinguish the HTML table created for the
body of the report from the embedded HTML tables created for the heading in some variations.

All HEADALIGN settings are compatible with COLSPAN syntax, which allows heading items
to span multiple columns.

TABLE FILE CAR
SUM SALES BY COUNTRY BY CAR BY MODEL
ON COUNTRY SUBHEAD
"This is my subhead"
" "
"Country is:<COUNTRY Car is:<CAR"
"Model is:<MODEL"
IF COUNTRY EQ 'ENGLAND'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=SUBHEAD, HEADALIGN=OPTION, $
TYPE=SUBHEAD, LINE=1, ITEM=1, COLSPAN=4, JUSTIFY=CENTER, $
ENDSTYLE
END

Creating Reports 749

14. Advanced StyleSheet Features

HEADALIGN=NONE creates a separate table with default left alignment. The text and fields
in each heading line are strung together in a single HTML table cell. In order to get this
result, do not include the TYPE=SUBHEAD line that contains the COLSPAN=R,
JUSTIFY=CENTER attributes in the StyleSheet:

TYPE=SUBHEAD, HEADALIGN=NONE, $

HEADALIGN=NONE with COLSPAN

TYPE=SUBHEAD, HEADALIGN=NONE, $
TYPE=SUBHEAD, LINE=1, ITEM=1, COLSPAN=4, JUSTIFY=CENTER, $

The first line is centered across all four columns of the internal table, based on the
COLSPAN=4 setting.

750 Information Builders

Aligning Heading and Footing Elements

HEADALIGN=INTERNAL creates a separate HTML table. Columns are generated based on
the number of items (text and fields) in the heading; each item is placed in a separate cell.
These columns do not correspond to those in the HTML table for the report body.

TYPE=SUBHEAD, HEADALIGN=INTERNAL, $

Country is aligned with Model in the first column of the internal table. The value of <COUNTRY
is aligned with the value of <MODEL in the second column.

HEADALIGN=INTERNAL with COLSPAN

TYPE=SUBHEAD, HEADALIGN=INTERNAL, $
TYPE=SUBHEAD, LINE=1, ITEM=1, COLSPAN=4, JUSTIFY=CENTER, $

The first line is centered across all 4 columns of the internal table, based on the COLSPAN=4
setting.

Creating Reports 751

14. Advanced StyleSheet Features

HEADALIGN=BODY places the heading lines within the cells of the main HTML table. As a
result, the columns of the heading correspond to the columns of the main table.

TYPE=SUBHEAD, HEADALIGN=BODY, $

Country is aligned with Model in the first column of the main (body) HTML table. The value
of <COUNTRY is aligned with the value of <MODEL in the second column.

HEADALIGN=BODY with COLSPAN

TYPE=SUBHEAD, HEADALIGN=BODY, $
TYPE=SUBHEAD, LINE=1, ITEM=1, COLSPAN=4, JUSTIFY=CENTER, $

COLSPAN controls the cross-column alignment of the first row of the heading.

752 Information Builders

Aligning Heading and Footing Elements

Aligning and Styling a Text Field in a Sort FootingExample:

This example uses the following Master File and MODIFY procedure to create a data source
with a text field:

Master File:

FILENAME = TXTFLD, SUFFIX = FOC,$
SEGNAME=TXTSEG, SEGTYPE = S1,$
 FIELDNAME = CATALOG, FORMAT = A10, $
 FIELDNAME = TEXTFLD, FORMAT = TX50,$

MODIFY Procedure to create the TXTFLD data source:

CREATE FILE TXTFLD
MODIFY FILE TXTFLD
FIXFORM CATALOG/10 TEXTFLD
DATA
COURSE100 This course provides the junior programmer
with the skills needed to code simple reports.%$
COURSE200 This course provides the advanced programmer with
techniques helpful in developing complex
applications.%$
END

This request applies boldface type to the second line of a multiple-line sort footing, which
includes the text Course Description as well as the text of the field TEXTFLD. Line 1 of the
sort footing is the text Evening Course.

TABLE FILE TXTFLD
BY CATALOGA SUBFOOT
"Evening Course"
"Course Description: <TEXTFLD"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE = REPORT, GRID = OFF, $
TYPE = SUBFOOT, HEADALIGN = BODY, $
TYPE = SUBFOOT, LINE = 2, STYLE = BOLD, $
ENDSTYLE
END

Creating Reports 753

14. Advanced StyleSheet Features

The output is:

If the StyleSheet instead identifies the text field as an object for styling

TYPE = SUBFOOT, HEADALIGN = BODY, $
TYPE = SUBFOOT, LINE = 2, OBJECT = FIELD, STYLE = BOLD, $

then only the text in TEXTFLD is bold:

754 Information Builders

Aligning Heading and Footing Elements

Aligning Content in a Multi-Line Heading or Footing

How to:

Align Heading Text and Data in Columns

Reference:

Line and Item Formatting in a Multi-Line Heading or Footing

The HEADALIGN and COLSPAN syntax described in Aligning a Heading or Footing Element in
an HTML Report on page 744 is specific to HTML reports. This topic describes how you can
design reports that are printable across HTML and PDF formats. Using the WIDTH and JUSTIFY
syntax in a StyleSheet, you can:

Align vertical sets of text or data as columnar units. .

Combine columnar formatting with line-by-line formatting. See Combining Column and
Line Formatting in Headings and Footings on page 762.

Align decimal points when the data displayed has varying numbers of decimal places.
See Aligning Decimals in a Multi-Line Heading or Footing on page 760.

You can apply WIDTH and JUSTIFY attributes to report headings and footings, page headings
and footings, and sort headings and footings, using either mono-space or proportional fonts.

These techniques rely on internal Cascading Style Sheets, which support FOCUS StyleSheet
attributes that were not previously available for HTML reports. The syntax associated with
these techniques resolves the problem of having to format headings differently for HTML
reports (using HEADALIGN and COLSPAN) and PDF and PS reports (using POSITION and spot
markers).

While the WIDTH and JUSTIFY attributes are particularly useful when you need to format a
multi-line heading or footing, or align stacked decimals, you can also use this syntax to
position items in an individual heading or footing line.

How to Align Heading Text and Data in ColumnsSyntax:

For a multi-line report or page heading or footing, use the syntax:

TYPE=headfoot, WRAP=OFF, $
TYPE=headfoot, [LINE=line_#,] ITEM=item_#, [OBJECT={TEXT|FIELD}],
 WIDTH=width, [JUSTIFY=option,] $

For a multi-line sort heading or footing, use the syntax

TYPE=headfoot, WRAP=OFF, $
TYPE={SUBHEAD|SUBFOOT}, [BY=sortfield] [LINE=line_#,] ITEM=item_#,
 [OBJECT={TEXT|FIELD}], WIDTH=width, [JUSTIFY=option,] $

Creating Reports 755

14. Advanced StyleSheet Features

where:

headfoot

Is the type of heading or footing. Valid values are TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD, and SUBFOOT.

sortfield

When TYPE=SUBHEAD or SUBFOOT, you can specify alignment for the sort heading or
sort footing associated with a particular sort field. If no sort field is specified, formatting
is applied to the sort headings or footings associated with all sort fields.

LINE

Is an optional entry that identifies a line by its position in a heading or footing. Identifying
individual lines enables you to format each one differently.

If a heading or footing has multiple lines and you apply a StyleSheet declaration that
does not specify LINE, the declaration is applied to all lines. Blank lines are counted
when interpreting the value of LINE.

You can use LINE in combination with ITEM.

ITEM

Is a required entry when you are using WIDTH to control alignment. An item can identify
either:

A vertical set of text or data that you wish to align as a columnar unit. You must
identify each vertical unit as an item.

An item's position in a line. You must identify each line element as an item. See Line
and Item Formatting in a Multi-Line Heading or Footing on page 757 for information
about acceptable variations.

You can use either or both approaches for a single heading or footing.

To divide a heading or footing line into items, you can use the <+0> spot marker. The
number of items you can identify is limited by the cumulative widths of the items in the
heading or footing, within the physical boundaries of the report page.

You can use ITEM in conjunction with OBJECT to refine the identification of an element
whose width you want to define. To determine the ITEM for an OBJECT, follow these
guidelines:

When used with OBJECT=TEXT, count only the text strings from left to right.

When used with OBJECT=FIELD, count only values from left to right.

When used without OBJECT, count text strings and field values from left to right.

756 Information Builders

Aligning Heading and Footing Elements

If you apply a StyleSheet declaration that specifies ITEM, the number is counted from
the beginning of each line in the heading or footing, not just from the beginning of the
first line

OBJECT

Is an optional entry that identifies an element in a heading or footing as a text string or
field value. Valid values are TEXT or FIELD. TEXT may represent free text or a Dialogue
Manager amper (&) variable.

It is not necessary to specify OBJECT=TEXT unless you are styling both text strings and
embedded fields in the same heading or footing.

width

Is the measurement expressed in units (inches by default), which is required to
accommodate the longest text string or field value associated with a numbered item.
For details, see How to Measure for Column Width and Decimal Alignment on page 761.

option

Is the type of justification. Valid values are:

LEFT which left justifies the heading or footing. This value is the default.

RIGHT which right justifies the heading or footing.

CENTER which centers the heading or footing.

DECIMAL (n)

Is the measurement expressed in units (inches by default), which specifies how far in
from the right side of a column to place the decimal point. With this specification, you
can locate the decimal point in the same position within a column, regardless of the
number of decimal places displayed to its right.

The measurement will be a portion of the width specified for this item. For details, see
How to Measure for Column Width and Decimal Alignment on page 761.

Line and Item Formatting in a Multi-Line Heading or FootingReference:

Line formatting maximizes your control over the items you identify on each line:

You can align and stack the same number of items with uniform widths. For example,

Item 3item 2Item 1Line 1

Item 3Item 2Item 1Line 2

Creating Reports 757

14. Advanced StyleSheet Features

You can also align different numbers of items as long as the items on each line have
the same starting point and the same cumulative width.

item 2Item 1Line 1

Item 3Item 2Item 1Line 2

Do not use HEADALIGN or COLSPAN syntax, which are specific to HTML reports and may
conflict with WIDTH and JUSTIFY settings.

For HTML reports, turn WRAP OFF (ON is the default) to ensure proper processing of WIDTH
and JUSTIFY.

Aligning Data and Text in a Multi-Line Heading or FootingExample:

In the following free-form report, content is defined entirely in the sort heading, where text
and data are stacked to support comparison among manufacturing plants. Each set of data
is aligned vertically, to appear as a column. To achieve this affect, each vertical unit is
identified as an item: the first column of text is item 1; the next column of data is item 2,
and so on.

758 Information Builders

Aligning Heading and Footing Elements

Note especially the last column, in which decimal data with different numbers of decimal
places is lined up on the decimal point to facilitate reading and comparison.

The chart below breaks out the structure of the previous report:

Item 4:
Values with decimal
places

Item 3:
Text

Item 2:
Data values

Item1:
Text

n,nnn,nnnQuantityBOSDAL, and so onPlant

nnn,nnn,nnn.dddddCost of Goods2002/01/02Order Date

$nnn,nnn,nnn.ddLine Total1003MDStore Code

Creating Reports 759

14. Advanced StyleSheet Features

For each item, you specify the width of the column and the justification of its content, as
illustrated in the following code.

DEFINE FILE CENTORD
COST/D20.5 = LINE_COGS * .75 ;
END

TABLE FILE CENTORD
BY PLANT NOPRINT SUBHEAD
"Plant: <PLANT Quantity: <QUANTITY"
"Order Date: <ORDER_DATE Cost of Goods: <COST"
"Store Code: <STORE_CODE Line Total: <LINEPRICE"
ON TABLE SET PAGE-NUM OFF
ON TABLE SET HTMLCSS ON
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLESHEET *
TYPE=REPORT, FONT='TIMES', $
TYPE=REPORT, GRID=OFF, $
TYPE=SUBHEAD, ITEM=1, WIDTH=1.00, JUSTIFY=RIGHT, $
TYPE=SUBHEAD, ITEM=2, WIDTH=1.25, JUSTIFY=RIGHT, $
TYPE=SUBHEAD, ITEM=3, WIDTH=1.25, JUSTIFY=RIGHT,$
TYPE=SUBHEAD, ITEM=4, WIDTH=2.0, JUSTIFY=DECIMAL(.6),$
ENDSTYLE
END

This procedure produces a three-line sort heading, broken out as four items, each with a
measured width and defined justification. The decimal item (4) uses a variation on standard
justification to line up the decimal points. For details, see How to Align Heading Text and
Data in Columns on page 755 and Aligning Decimals in a Multi-Line Heading or Footing on
page 760.

Note: To take advantage of this feature for an HTML report, turn on internal Cascading Style
Sheets (SET HTMLCSS=ON). This command enables FOCUS StyleSheet attributes that were
not previously available for HTML reports. This line of code is ignored for a PDF report.

Aligning Decimals in a Multi-Line Heading or Footing

How to:

Measure for Column Width and Decimal Alignment

The ability to align heading content in a multi-line heading based on width and justification
values has special benefit in reports that contain data with different numbers of decimal
places. For example, if a figure is in dollars, it is formatted with a decimal point and two
places for zeroes; if in Swiss francs, it is formatted with a decimal place and four zeroes; if
in yen, the decimal is at the end with no zeroes. In addition, sometimes the currency or units
do not vary, but the number of digits of decimal precision varies.

760 Information Builders

Aligning Heading and Footing Elements

By aligning the decimal points in a vertical stack, you can more easily read and compare
these numbers, as illustrated in the following output:

Aligned decimal pointsFloating decimal points

 Face Value

 22375.5784596
1212345.457
 232.45484

Bond

Galosh Ltd.
Mukluk Inc.
Overshoe Inc.

 Face Value

22375.5784596
 1212345.457
232.45484

Bond

Galosh Ltd.
Mukluk Inc.
Overshoe Inc.

The technique uses a width specification for the item that contains decimals, combined with
a variation on standard left/right/center justification to achieve the proper decimal alignment.
For the syntax that generates this output, see How to Align Heading Text and Data in Columns
on page 755.

How to Measure for Column Width and Decimal AlignmentProcedure:

Measuring Width. Determining the width of a heading or footing item is a three-step process:

1. Identify the maximum number of characters in a text string or field.

2. For a text string, simply count the characters. For a field, refer to the format specification
in the Master File or in a command such as a DEFINE.

3. Measure the physical space in units (for example, in inches) that is required to display
the number of characters identified in step 1, based on the size of the font you are using.
For example, the following value of the COUNTRY field would measure as follows:

InchesComparisonFont sizeFont

.5England10Helvetica

.44England10Times New Roman

.56England10Courier

Tip: Consider using a consistent set of fonts in your reports to make your measurements
reusable.

Creating Reports 761

14. Advanced StyleSheet Features

Measuring for Decimal Alignment. After you have determined the width of an item, you
can do a related measurement to determine the physical space required to display decimal
data with a varying number of digits to the right of the decimal point.

1. Determine the maximum number of decimal places you need to accommodate to the
right of the decimal place, plus the decimal point itself.

2. Measure the physical space in units (for example, in inches) that is required to display
the number of characters identified in step 1, based on the size of the font you are using.

Combining Column and Line Formatting in Headings and Footings
By combining column and line formatting, you can create complex reports in which different
ranges of lines in the same heading or footing have different numbers of aligned columns
in different locations.

Combining Column and Line Formatting to Align Items in a Sort HeadingExample:

This request produces a free-form report in which content is defined in a seven-line sort
heading. Data is stacked in two groupings:

The first grouping identifies the regions and state.

The second grouping provides other information for each region/state pair.

Although this is a single sort heading, our goal is to format the information in each grouping
a bit differently to provide emphasis and facilitate comparison. The request also demonstrates
a coding technique that makes formatting changes easier for the report designer. See the
annotations following the code for details.

As you review the sample request, keep in mind that a heading can contain two kinds of
items: text and embedded fields. A text item consists of any characters, even a single blank,
between embedded fields and/or spot markers. In particular, if you have a single run of text
that you want to treat as two items, you can separate the two items using a <+0> spot
marker. For example, in the heading line:

" <+0>Region:<REGION"

item #1 is a single blank space.

item #2, separated by the <+0> spot marker, is the text Region:

item #3 is the embedded field <REGION.

762 Information Builders

Aligning Heading and Footing Elements

Request and annotations:

 TABLE FILE CENTORD
 BY REGION NOPRINT SUBHEAD
1. " <+0>Region:<REGION"
2. " <+0>State :<STATE"
 " "
3. "Product Number:<PROD_NUM <+0>Quantity:<QUANTITY"
4. "Product Type:<PRODCAT <+0>Price:<PRICE"
5. "Product Category:<PRODTYPE <+0>Cost:<COST"
 " "
 ON TABLE SET PAGE-NUM OFF
6. ON TABLE SET HTMLCSS ON
 ON TABLE HOLD FORMAT HTML AS NF958055
 ON TABLE SET STYLESHEET *
 TYPE=REPORT, FONT='TIMES', $
 TYPE=REPORT, GRID=OFF, $
 -* Bottom section of subhead:
7. TYPE=SUBHEAD, ITEM=1, WIDTH=1.25, JUSTIFY=RIGHT, $
8. TYPE=SUBHEAD, ITEM=2, WIDTH=1.00, JUSTIFY=RIGHT, $
9. TYPE=SUBHEAD, ITEM=3, WIDTH=1.0, $
10. TYPE=SUBHEAD, ITEM=4, WIDTH=1.00, JUSTIFY=RIGHT,$
11. TYPE=SUBHEAD, ITEM=5, WIDTH=1.5, JUSTIFY=DECIMAL(.6),$
 -* Top section of subhead (overrides above ITEM defaults
 -* for lines 1 and 2):
12. -SET &INDENT = 1.5;
13. TYPE=SUBHEAD, LINE=1, ITEM=1, WIDTH=&INDENT, $
14. TYPE=SUBHEAD, LINE=1, ITEM=2, WIDTH=1, JUSTIFY=LEFT, $
15. TYPE=SUBHEAD, LINE=1, ITEM=3, SIZE=14, WIDTH=2, JUSTIFY=LEFT, $
16. TYPE=SUBHEAD, LINE=2, ITEM=1, WIDTH=&INDENT, $
17. TYPE=SUBHEAD, LINE=2, ITEM=2, WIDTH=1, JUSTIFY=LEFT, $
18. TYPE=SUBHEAD, LINE=2, ITEM=3, WIDTH=1.25, JUSTIFY=LEFT, $
 ENDSTYLE
 END

Creating Reports 763

14. Advanced StyleSheet Features

Here is the output generated by this request. It highlights the key information and its
relationship by aligning text and data, including decimal data in which decimal points are
aligned for easy comparison.

DescriptionLine #

Defines the content for the top, two-line section of the sort heading. Each line
contains three items: the first is a blank area (denoted by a space, separated
from the next item by a <+0> spot marker); the second contains text; the third
contains data values related to the text.

1-2

764 Information Builders

Aligning Heading and Footing Elements

DescriptionLine #

Defines the content for the bottom, three-line section of the sort heading. Each
line contains five items: text; data values related to the text; a blank column
(denoted by a space, separated from the next item by a null spot marker);
text; data values related to the text.

3-5

Turns on internal Cascading Style Sheets, a requirement for these formatting
options. This command enables FOCUS StyleSheet attributes that were not
previously available for HTML reports. This line of code is ignored for a PDF
report.

6

Specifies the basic formatting characteristics for the sort heading by breaking
the content into five columns, each identified as an item with a defined width,
and justification information for all but the empty column.

Important: Had additional formatting code (annotated as 12-17) not been
included in the request, the specifications annotated as 7-11 would have
applied to the entire sort heading"that is, the formatting of the three columns
in the top section of the heading would have been based on the specifications
for the first three columns described below. However, that is not the desired
effect, so a second section of StyleSheet code is defined to override this
formatting for lines 1 and 2 of the sort heading. See annotations 12-18.

The formatting of the bottom, three-line section of the heading is controlled
by the following specifications:

Item 1 identifies a columnar unit that contains text (that is, Product Number,
Product Type, Product Category; it has a defined width of 1.25 inches and the
text is right justified.

Item 2 identifies a columnar unit that contains data values related to the text
in item 1; it has a defined width of 1 inch and the data is right justified.

Item 3 identifies a columnar unit that contains blank space and serves as a
separator between columns; it has a width of 1 inch. Justification is not
relevant.

Item 4 identifies a columnar unit that contains text (Quantity, Price, Cost); it
has a defined width of 1 inch and the text is right justified.

Item 5 identifies a columnar unit that contains a decimal value; the width of
the column that contains the value is 1.5 inches, with the decimal point
anchored .6 inches in from the right edge of that column.

The common width and justification definitions enforce the proper alignment
of each item.

7-11

Creating Reports 765

14. Advanced StyleSheet Features

DescriptionLine #

Defines a variable called &INDENT, with a width setting of 1.5 inches. This
variable defines the width of the blank area (item 1) at the beginning of lines
1 and 2 of the sort heading.

Defining the width as a variable enables you to experiment with different widths
simply by changing the value in one location. For a complex report, this
technique can potentially save development time.

12

Specifies line-by-line formatting for the top, two-line section of the sort heading.
This code overrides the previous formatting for lines 1 and 2 of the sort heading
because it specifies a line number.

Item 1 on each line refers to the blank area. The width is defined as a variable
and implemented based on the current value of &INDENT.

Item 2 on each line refers to the text area; it has a defined width of 1 inch
and the text is left justified.

Item 3 on each line refers to the data values; it has a defined width of 2 inches
and the data is left justified.

The common width and justification definitions enforce the proper alignment
of each item.

Notice that item 1 in line 15 defines a font size for the data values associated
with the REGION field. All other items on both lines use a default font. Line-
by-line formatting enables you to define a unique characteristic for a single
item.

13-18

766 Information Builders

Aligning Heading and Footing Elements

Adding Grids and Borders

How to:

Control Grid Display in HTML Reports

Add and Format Borders

Add and Adjust Grid Lines (PDF or PS)

Reference:

Grid Display Attributes

By default, an HTML report contains horizontal and vertical grid lines. You can remove the
grid lines or adjust their use on a horizontal (BY) sort field. Grid characteristics apply to an
entire HTML report, not to individual components of a report.

You can emphasize headings, footings, and column titles in a report by adding borders and
grid lines around them. Borders: In an HTML, PDF, or PS report, you can use BORDER
attributes in a StyleSheet to specify the weight, style, and color of border lines. If you wish,
you can specify formatting variations for the top, bottom, left, and right borders.

Grids: In an HTML report, you can use the GRID attribute in a StyleSheet to turn grid lines
on and off for the entire report. When used in conjunction with internal Cascading StyleSheets,
GRID produces a thin grid line rather than a thick double line (the HTML default). In PDF
reports you can use the HGRID and VGRID attributes to add horizontal or vertical grid lines
and adjust their density.

Note: The SET GRID parameter, which applies to graphs, is not the same as the GRID
StyleSheet attribute.

Grid Display AttributesReference:

Applies toDescriptionAttribute

HTMLControls grid display.GRID

PDFPSControls horizontal grid display and grid line density.HGRID

PDFPSControl vertical grid display and grid line density.VGRID

Creating Reports 767

14. Advanced StyleSheet Features

How to Control Grid Display in HTML ReportsSyntax:

[TYPE=REPORT,] GRID= option, $

where:

TYPE=REPORT

Applies the grid to the entire report. Not required, as it is the default.

option

Is one of the following:

ON applies a grid to a report. Does not apply grid lines to cells underneath a BY field
value until the value changes. Column titles are not underlined. This value is the default.

OFF disables the default grid. Column titles are underlined. You can include blank lines
and underlines. You cannot wrap cell data. With this setting, a report may be harder to
read.

FILL applies grid lines to all cells of a report. Column titles are not underlined.

How to Add and Format BordersSyntax:

To request a uniform border, use this syntax:

TYPE=type, BORDER=option, [BORDER-STYLE=line_style,]
 [BORDER-COLOR={color|RGB(r g b)},] $

To specify different characteristics for the top, bottom, left, and/or right borders, use the
syntax

TYPE=type, BORDER-position=option,
 [BORDER[-position]-STYLE=line_style,]
 [BORDER[-position]-COLOR={color|RGB(r g b)},] $

where:

type

Identifies the report component to which borders are applied.

option

Can be one of the following values:

ON turns borders on. ON generates the same line as MEDIUM.

Note: The MEDIUM line setting ensures consistency with lines created with GRID
attributes.

OFF turns borders off. OFF is the default value.

LIGHT specifies a thin line.

768 Information Builders

Adding Grids and Borders

MEDIUM identifies a medium line. ON sets the line to MEDIUM.

HEAVY identifies a thick line.

width specifies the line width in points, where 72 pts=1 inch.

Tip: Line width specified in points is displayed differently in HTML and PDF output. For
uniform appearance, regardless of display format, use LIGHT, MEDIUM, or HEAVY.

position

Specifies which border line to format. Valid values are: TOP, BOTTOM, LEFT, RIGHT.

You can specify a position qualifier for any of the BORDER attributes. This enables you
to format line width, line style, and line color individually, for any side of the border.

line_style

Sets the style of the border line. FOCUS StyleSheets support all of the standard Cascading
Style Sheet line styles. Several 3-dimensional styles are available only in HTML, as noted
by asterisks. Valid values are:

DescriptionStyle

No border is drawn.NONE

Solid line.SOLID

Dotted line.DOTTED

Dashed line.DASHED

Double line.DOUBLE

3D groove.GROOVE*

3D ridge.RIDGE*

3D inset.INSET*

3D outset.OUTSET*

color

Is one of the preset color values. The default value is BLACK.

If the display or output device does not support colors, it substitutes shades of gray.
For a complete list of available color values, see Color Values in a Report on page 522.

Creating Reports 769

14. Advanced StyleSheet Features

RGB

Specifies the font color using a mixture of red, green, and blue.

(r g b)

Is the desired intensity of red, green, and blue, respectively. The values are on a scale
of 0 to 255, where 0 is the least intense and 255 is the most intense. Using the three
color components in equal intensities results in shades of gray.

Inserting and Formatting a BorderExample:

This request generates an HTML report with a heavy red dotted line around the entire report
heading.

TABLE FILE GGSALES
SUM BUDUNITS UNITS BUDDOLLARS DOLLARS
BY CATEGORY
ON TABLE SUBHEAD
"</1 Sales Report"
"**CONFIDENTIAL**"
"December 2002 </1"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET HTMLCSS ON
ON TABLE SET STYLESHEET *
TYPE=REPORT, GRID=OFF, $
TYPE=TABHEADING, STYLE=BOLD, JUSTIFY=CENTER, BORDER=HEAVY,
 BORDER-COLOR=RED, BORDER-STYLE=DOTTED, $
ENDSTYLE
END

The output is:

770 Information Builders

Adding Grids and Borders

Tip: You can use the same BORDER syntax to generate this output in a PDF or PS report.

Applying Grid Lines to All Cells of an HTML ReportExample:

This request uses GRID=FILL to apply grid lines to all cells, including those underneath the
sort field CATEGORY. With GRID=ON, the cells underneath the sort field value do not have
grid lines until the sort field value changes.

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY CATEGORY BY PRODUCT
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=FILL, $
ENDSTYLE
END

All cells have grid lines:

Creating Reports 771

14. Advanced StyleSheet Features

How to Add and Adjust Grid Lines (PDF or PS)Syntax:

This syntax applies to a PDF or PS report.

TYPE=type, {HGRID|VGRID}={ON|OFF|HEAVY}, $

where:

type

Identifies the report component to which grid lines are applied.

HGRID

Specifies horizontal grid lines.

VGRID

Specifies vertical grid lines.

ON

Applies light grid lines.

OFF

Suppresses grid lines. This is the default.

HEAVY

Applies heavy grid lines.

Applying Grid Lines to Report Data (PDF)Example:

This request applies light, horizontal grid lines to report data.

TABLE FILE GGDEMOG
HEADING
"State Statistics"
" "
SUM HH AS 'Number of,Households' AVGHHSZ98 AS 'Avg.,Size'
MEDHHI98 AS 'Avg.,Income'
BY ST
WHERE ST EQ 'CA' OR 'FL' OR 'NY'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=DATA, HGRID=ON, $
END

772 Information Builders

Adding Grids and Borders

In the PDF report, the lines make it easier to distinguish the data by state:

Adding an Image to a Report

How to:

Add an Image to an HTML Report

Add a Background Image

Add an Image to a PDF, PS, or HTML Report With Internal Cascading Style Sheet

Reference:

Image Attributes

Specifying a URL

With a StyleSheet you can add and position an image in a report. An image, such as a logo,
gives corporate identity to a report, or provides visual appeal. You can add more than one
image by creating multiple declarations.

You can also add an image as background to a report. A background image is tiled or
repeated, covering the entire area on which the report appears. An image attached to an
entire report, or an image in a heading or footing, can appear with a background image.

Images must exist in a file format your browser supports, such as GIF (Graphic Interchange
Format) or JPEG (Joint Photographic Experts Group). PDF and PS reports only support GIF
files.

In an HTML report, the Web browser locates and displays the image, so it must be in a
location that the browser can find. If the file is not on the search path, supply the full path
name.

Creating Reports 773

14. Advanced StyleSheet Features

In a PDF or PS report, FOCUS reads the image and places it in the PDF or PS output file.
Thus, the GIF file must reside on the CMS search path in z/VM or in a data set allocated to
ddname GIF in z/OS.

Image AttributesReference:

DescriptionAttribute

Adds an image.IMAGE

Positions an image. This applies only to HTML reports.IMAGEALIGN

Positions an image.POSITION

Controls generation of a line break after an image. This applies only to
HTML reports without internal Cascading Style Sheets.

IMAGEBREAK

Sizes an image.SIZE

Supplies a description of an image for compliance with Section
accessibility (Workforce Investment Act of 1998). ALT only applies to
HTML reports.

ALT

Adds a background image.BACKIMAGE

How to Add an Image to an HTML ReportSyntax:

This syntax applies to an HTML report. For details on adding an image to a PDF, PS, or an
HTML report with internal CSS, see How to Add an Image to an HTML Report on page 774.

TYPE={REPORT|heading}, IMAGE={url|(column)} [,IMAGEALIGN=position]
 [,IMAGEBREAK={ON|OFF}] [,ALT='description'], $

where:

REPORT

Embeds an image in the body of a report. This value is the default. Note: The
IMAGE=(column) option is not supported with TYPE=REPORT.

heading

Embeds an image in a heading or footing. Valid values are TABHEADING, TABFOOTING,
HEADING, FOOTING SUBHEAD, and SUBFOOT.

774 Information Builders

Adding an Image to a Report

url

Is the URL for the image file. The image must exist in a separate file in a format that
your browser supports, such as GIF or JPEG. The file can be on your local Web server,
or on any server or directory accessible from your network. For details, see Specifying a
URL on page 776.

column

Is an alphanumeric field in a request (for example, a display field or a BY field) whose
value is a URL that points to an image file. Specify a value using the COLUMN attribute
described in Identifying Report Components on page 525. Enclose column in parentheses.

This option enables you to add different images to a heading or footing, depending on
the value of the field.

position

Is the position of the image. Valid values are:

TOP where the top right corner of the image aligns with heading or footing text. If the
image is attached to the entire report, it appears on top of the report.

MIDDLE where the image appears in the middle of the heading or footing text. If the
image is attached to the entire report, it appears in the middle of the report.

BOTTOM where the bottom right corner of the image aligns with heading or footing text.
If the image is attached to the entire report, it appears at the bottom of the report.

LEFT where the image appears to the left of heading or footing text. If the image is
attached to the entire report, it appears to the left of the report.

RIGHT where the image appears to the right of heading or footing text. If the image is
attached to the entire report, it appears to the right of the report.

IMAGEBREAK

Controls generation of a line break after the image. Valid values are:

ON which generates a line break after the image so that an element following it (such
as report heading text) appears on the next line.

OFF which suppresses a line break after the image so that an element following it is on
the same line. This value is the default.

description

Is a textual description of an image for compliance with Section 508 accessibility. Enclose
the description in single quotation marks.

Creating Reports 775

14. Advanced StyleSheet Features

Specifying a URLReference:

The following guidelines are the same for IMAGE=url and IMAGE=(column) syntax. In the
latter case, they apply to a URL stored in a data source field.

Specify a URL by:

Supplying an absolute or relative address that points to an image file, for example:

TYPE=TABHEADING,IMAGE=http://www.ibi.com/images/logo_wf3.gif,$
TYPE=TABHEADING, IMAGE=/ibi_html/ggdemo/gotham.gif,$

Using the SET BASEURL parameter to establish a URL that is logically prefixed to all
relative URLs in the request. With this feature, you can add an image by specifying just
its file name in the IMAGE attribute. For example:

SET BASEURL=D:\ibi\apps\SESSION\
.
.
.
TYPE=REPORT, IMAGE=gotham.gif,$

The following conditions apply:

A base URL must end with a slash (/) or backslash (\).

An absolute URL (which begins with http://) overrides a base URL.

A URL is case sensitive when referring to a UNIX server.

If the name of the image file does not contain an extension, GIF is used.

Adding an Image to an HTML Report HeadingExample:

This request adds the Gotham Grinds logo to a report heading. The logo is in a separate
image file identified by a relative URL in the IMAGE attribute.

TABLE FILE GGORDER
ON TABLE SUBHEAD
"PRODUCTS ORDERED ON 08/01/96"
SUM QUANTITY AS 'Ordered Units' BY PRODUCT
WHERE PRODUCT EQ 'Coffee Grinder' OR 'Coffee Pot'
WHERE ORDER_DATE EQ '08/01/96'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=TABHEADING, IMAGE=C:\IMAGES\GOTHAM.GIF, IMAGEBREAK=ON, $
ENDSTYLE
END

776 Information Builders

Adding an Image to a Report

IMAGEBREAK, set to ON, generates a line break between the logo and the heading text:

Using a File Name in a Data Source Field in an HTML ReportExample:

The following illustrates how to embed an image in a SUBHEAD, and use a different image
for each value of the BY field on which the SUBHEAD occurs.

SET BASEURL=c:\images\

DEFINE FILE CAR
FLAG/A12=
DECODE COUNTRY ('ENGLAND' 'uk' 'ITALY' 'italy'
 'FRANCE' 'france' 'JAPAN' 'japan');
END

Creating Reports 777

14. Advanced StyleSheet Features

TABLE FILE CAR
PRINT FLAG NOPRINT AND MODEL AS '' BY COUNTRY NOPRINT AS '' BY CAR AS ''
WHERE COUNTRY EQ 'ENGLAND' OR 'FRANCE' OR 'ITALY' OR 'JAPAN'
ON COUNTRY SUBHEAD
" <+0>Cars produced in <ST.COUNTRY"
HEADING CENTER
"Car Manufacturer Report"
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=SUBHEAD, IMAGE=(FLAG), IMAGEALIGN=TOP, $
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, SIZE=12, STYLE=BOLD, $
TYPE=SUBHEAD, STYLE=BOLD, $
ENDSTYLE
END

The output is:

778 Information Builders

Adding an Image to a Report

Supplying an Image Description Using the ALT AttributeExample:

The following illustrates how to use the ALT attribute. The ALT attribute supplies a description
of an image that screen readers can interpret to comply with Section 508 accessibility
(Workforce Investment Act of 1998).

SET BASEURL=C:\images\
TABLE FILE GGSALES
SUM UNITS BY PRODUCT
ON TABLE SUBHEAD
"Report on Units Sold"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=TABHEADING, IMAGE=gglogo, IMAGEBREAK=ON, POSITION=(.25 .25),
 SIZE=(.5 .5), ALT='Gotham Grinds Logo Image', $
GRID=OFF, $
ENDSTYLE
END

The output is:

Creating Reports 779

14. Advanced StyleSheet Features

How to Add a Background ImageSyntax:

This syntax applies to an HTML report.

[TYPE=REPORT,] BACKIMAGE=url, $

where:

TYPE=REPORT

Applies the image to the entire report. Not required, as it is the default.

url

Is the URL of a GIF or JPEG file. Specify a file on your local Web server, or on a server
accessible from your network.

The URL can be an absolute or relative address. See Image Attributes on page 774.

When specifying a GIF file, you can omit the file extension.

Adding a Background ImageExample:

This request adds a background image to a report. The image file CALM_BKG.GIF resides
in the relative address shown.

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY CATEGORY BY PRODUCT
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, STYLE=BOLD, GRID=OFF, $
TYPE=REPORT, BACKIMAGE=C:\IMAGES\CALM_BKG.GIF, $
ENDSTYLE
END

780 Information Builders

Adding an Image to a Report

The background is tiled across the report area:

How to Add an Image to a PDF, PS, or HTML Report With Internal Cascading Style
Sheet

Syntax:

This syntax applies to a PDF, PS, or HTML report with internal Cascading Style Sheet.

TYPE={REPORT|heading}, IMAGE={url|file|(column)}
[,POSITION=([+|-]x [+|-]y)] [,SIZE=(w h)] , $

where:

REPORT

Embeds an image in the body of a report. The image appears in the background of the
report. This value is the default.

heading

Embeds an image in a heading or footing. Valid values are TABHEADING, TABFOOTING,
FOOTING, HEADING, SUBHEAD, and SUBFOOT.

Provide sufficient blank space in the heading or footing so that the image does not
overlap the heading or footing text. Also, you may want to place heading or footing text
to the right of the image using spot markers or the POSITION attribute in the StyleSheet.

Creating Reports 781

14. Advanced StyleSheet Features

url

HTML report with internal Cascading Style Sheet:

Is the absolute or relative address for the image file. The image must exist in a separate
file in a format that your browser supports, such as GIF or JPEG. The file can be on your
local Web server, or on any server accessible from your network. For details, see
Specifying a URL on page 776.

file

PDF or PS report:

Is the name of the image file. On VM, the file must be on the CMS search path. On z/OS,
the file must reside in the PDS allocated to DDNAME GIF (with DCB attributes
RECFM=FB,LRECL=1024). To transfer a GIF image to the Mainframe, use FTP in BINARY
mode.

When specifying a GIF file, you can omit the file extension.

column

Is an alphanumeric field in the data source that contains the name of an image file. Use
the COLUMN attribute described in Identifying an Entire Report, Column, or Row on page
527. Enclose column in parentheses.

The field containing the file name must be a display field or BY field referenced in the
request.

Note that the value of the field is interpreted exactly as if it were typed as the URL of
the image in the StyleSheet. If you omit the suffix, '.GIF' is supplied by default. SET
BASEURL can be useful for supplying the base URL of the images; if you do this, the
value of the field doesn't have to include the complete URL.

This syntax is useful, for example, if you want to embed an image in a SUBHEAD, and
you want a different image for each value of the BY field on which the SUBHEAD occurs.

POSITION

Is the starting position of the image.

+|-

Measures the horizontal or vertical distance from the upper left corner of the report
component in which the image is embedded.

x

Is the horizontal starting position of the image from the upper left corner of the physical
report page, expressed in the unit of measurement specified by the UNITS parameter.

Enclose the x and y values in parentheses; do not include a comma between them.

782 Information Builders

Adding an Image to a Report

y

Is the vertical starting position of the image from the upper left corner of the physical
report page, expressed in the unit of measurement specified by the UNITS parameter.

SIZE

Is the size of the image. By default, an image is added at its original size.

w

Is the width of the image, expressed in the unit of measurement specified by the UNITS
parameter.

Enclose the w and h values in parentheses; do not include a comma between them.

h

Is the height of the image, expressed in the unit of measurement specified by the UNITS
parameter.

Adding a GIF Image to an HTML Report With Internal Cascading Style SheetExample:

The TYPE attribute adds the image to the report heading. POSITION places the image .35
inch horizontally and .25 inch vertically from the upper left corner of the report page. The
image is one inch wide and one inch high as specified by SIZE.

SET HTMLCSS = ON
TABLE FILE GGSALES
SUM UNITS BY PRODUCT
ON TABLE SUBHEAD
"REPORT ON UNITS SOLD"
" "
" "
" "
" "
" "
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=TABHEADING, IMAGE=C:\IMAGES\GOTHAM.GIF,
POSITION=(.35 .25), SIZE=(1 1), $
ENDSTYLE
END

Creating Reports 783

14. Advanced StyleSheet Features

The company logo is positioned and sized in the report heading:

Adding a GIF Image to a PDF ReportExample:

The image file for this example is GOTHAM.GIF. The POSITION attribute places the image
one-quarter inch horizontally and one-quarter vertically from the upper left corner of the report
page. The image is one-half inch wide and one-half inch high as specified by SIZE.

TABLE FILE GGSALES
SUM UNITS BY PRODUCT
ON TABLE SUBHEAD
"Report on Units Sold"
" "
" "
" "
" "
" "
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
TYPE=TABHEADING, IMAGE=GOTHAM.GIF, POSITION=(.25 .25), SIZE=(.5 .5), $
ENDSTYLE
END

784 Information Builders

Adding an Image to a Report

The output is:

Linking in a Report

In this section:

Linking to a URL

Linking to a JavaScript Function

Linking With Conditions

Linking From a Graphic Image

Specifying a Base URL

Specifying a Target Frame

Linking Report Pages

You can use StyleSheet declarations to define links from any report component. You can
create links from report data (including headings and footings) as well as graphic images
(such as a company logo or product image).

Creating Reports 785

14. Advanced StyleSheet Features

Linking to a URL

How to:

Link to a URL

You can define a link from any report component to any URL. Once you have defined a link,
you can select the report component to access the URL.

How to Link to a URLSyntax:

TYPE=type, [subtype], URL=url[(parameters ...)], [TARGET=frame,]$

where:

type

Identifies the report component that you select in the Web browser to execute the link.
The TYPE attribute and its value must appear at the beginning of the declaration.

subtype

Are any additional attributes, such as COLUMN, LINE, or ITEM, that are needed to identify
the report component that you are formatting.

url

Identifies any valid URL, including a URL that specifies a CGI program, or the name of
a report column enclosed in parentheses whose value is a valid URL to which the link
will jump.

Note:

The maximum length of a URL=url argument, including any associated variable=object
parameters, is 2400 characters. The URL argument can span more than one line.

If the URL refers to a CGI program that takes parameters, the URL must end with a
question mark (?).

parameters

Values that are passed to the URL.

frame

Identifies the target frame in the Web page in which the output from the link is displayed.
For details, see Specifying a Target Frame on page 794.

786 Information Builders

Linking in a Report

Linking to a URLExample:

The following example illustrates how to link to a URL from a report. The heading Click here
to access the IB homepage is linked to the URL http://www.ibi.com. The relevant StyleSheet
declarations are highlighted in the request.

TABLE FILE GGSALES
ON TABLE SET PAGE-NUM OFF
SUM UNITS AND DOLLARS
BY CATEGORY BY REGION
HEADING
"Regional Sales Report"
"Click here to access the IB homepage."
" "
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=HEADING, LINE=2, OBJECT=TEXT, ITEM=1,
 URL=http://www.ibi.com, $
ENDSTYLE
END

The output is:

When you click the link, the site appears in your browser.

Creating Reports 787

14. Advanced StyleSheet Features

Linking to a JavaScript Function

How to:

Link to a JavaScript Function

You can use a StyleSheet to define a link to a JavaScript function from any report component.
Once you have defined the link, you can select the report component to execute the JavaScript
function.

You can specify optional parameters that allow values to be passed to the JavaScript function.
The function will use the passed value to dynamically determine the results that are returned
to the browser.

Note:

JavaScript functions can, in turn, call other JavaScript functions.

You cannot specify a target frame if you are executing a JavaScript function. However,
the JavaScript function itself can specify a target frame for its results.

How to Link to a JavaScript FunctionSyntax:

TYPE=type, [subtype], JAVASCRIPT=function[(parameters ...)], $

where:

type

Identifies the report component that you select in the Web browser to execute the link.
The TYPE attribute and its value must appear at the beginning of the declaration.

subtype

Are any additional attributes, such as COLUMN, LINE, or ITEM, that are needed to identify
the report component that you are formatting.

function

Identifies the JavaScript function to run when you select the report component.

788 Information Builders

Linking in a Report

The maximum length of a JAVASCRIPT=function argument, including any associated
parameters, is 2400 characters and can span more than one line. If you split a single
argument across a line, you must use the \ character at the end of the first line, as
continuation syntax. If you split an argument at a point where a space is required as a
delimiter, the space must be before the \ character or be the first character on the next
line. The \ character does not act as the delimiter.

parameters

Values that are passed to the JavaScript function.

Linking With Conditions

How to:

Link With Conditions

You can create conditions when linking from a report. For example, you may be interested
in displaying only current salaries for a particular department. You can accomplish this by
creating a WHEN condition.

How to Link With ConditionsSyntax:

To specify a conditional link to a URL use:

TYPE=type, [subtype], URL=url[(parameters...)],
 WHEN=expression,[TARGET=frame,] $

To specify a conditional link to a JavaScript function use

TYPE=type, [subtype], JAVASCRIPT=function[(parameters...)],
 WHEN=expression,[TARGET=frame,] $

where:

type

Identifies the report component that you select in the Web browser to execute the link.
The TYPE attribute and its value must appear at the beginning of the declaration.

subtype

Are any additional attributes, such as COLUMN, LINE, or ITEM, that are needed to identify
the report component that you are formatting.

url

Identifies any valid URL, or the name of a report column enclosed in parentheses whose
value is a valid URL.

Creating Reports 789

14. Advanced StyleSheet Features

function

Identifies the JavaScript function to run when you select the report component.

parameters

Values that are passed to the URL.

expression

Is any Boolean expression that would be valid on the right side of a COMPUTE expression.

Note: IF... THEN... ELSE logic is not necessary in a WHEN clause and is not supported.
All non-numeric literals in a WHEN expression must be specified within single quotation
marks.

frame

Identifies the target frame in the Web page in which the output from the link is displayed.
For details, see Specifying a Target Frame on page 794.

Linking With ConditionsExample:

Assume you want to link only the MIS value of the DEPARTMENT field to the URL. To do this
we include the phrase WHEN=DEPARTMENT EQ 'MIS' in the StyleSheet declaration. The
relevant declarations are highlighted in the requests.

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'Total,Current,Salaries'
BY DEPARTMENT AS 'Department'
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=DATA, COLUMN=N1, URL=http://www.informationbuilders.com,
 WHEN=DEPARTMENT EQ 'MIS', $
ENDSTYLE
END

In the following output, note that only the MIS department is linked:

790 Information Builders

Linking in a Report

Linking From a Graphic Image

How to:

Specify Links From a Graphic Image

You can link from an image in an HTML report. The image can be attached to the entire
report or to the report heading or footing (this includes table headings/table footings, and
sub-headings/sub-footings).

The syntax for linking from a graphic image is the same as when linking from a report
component. The only difference is that you add IMAGE=image to the StyleSheet declaration.

Note: You can only link from an image when you are using HTML format.

How to Specify Links From a Graphic ImageSyntax:

TYPE=type, [subtype], IMAGE=image, URL=url
 [(parameters ...)],[TARGET=frame,] $

where:

type

Identifies the report component that the user selects to execute the link. The TYPE
attribute and its value must appear at the beginning of the declaration. You can specify
the following types of components:

TABHEADING or TABFOOTING enables you to link from a graphical image that is attached
to a report heading or footing.

HEADING or FOOTING enables you to link from a graphical image that is attached to a
page heading or footing.

SUBHEAD or SUBFOOT enables you to link from a graphical image that is attached to a
sub heading or sub footing.

subtype

Are any additional attributes, such as COLUMN, LINE, or ITEM, that are needed to identify
the report component that you are formatting.

image

Specifies the file name of a graphical image file. The image must exist as a separate
graphic file in a format that your browser supports. Most browsers support GIF and JPEG
file types.

Creating Reports 791

14. Advanced StyleSheet Features

You can specify a local image file, or identify an image elsewhere on the network using
a URL. URLs can be absolute, such as http://www.ibi.com/graphic.gif, or relative aliases
that can be identified to the Web server, such as /approot/ibinccen/graphic.gif.

Alternatively, you can specify an alphanumeric field in the report (either a BY sort field
or a display field) whose value corresponds to the name of the image file.

url

Identifies any valid URL, or the name of a report column enclosed in parentheses whose
value is a valid URL.

parameters

Are values that are passed to the URL. You can pass one or more parameters. The entire
string of parameters must be enclosed in parentheses, and separated from each other
by a blank space.

frame

Identifies the target frame in the Web page in which the output from the link is displayed.
For details, see Specifying a Target Frame on page 794.

Specifying a Link From an ImageExample:

The following example illustrates how to link a URL from an image. The relevant StyleSheet
declarations are highlighted in the request.

TABLE FILE EMPLOYEE
PRINT LAST_NAME BY EMP_ID
HEADING
"List Of Employees By Employee ID"
ON TABLE SET PAGE-NUM OFF
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=HEADING, STYLE=BOLD, $
TYPE=REPORT, GRID=OFF, $
TYPE=REPORT, IMAGE=C:\IMAGES\LEFTLOGO.GIF,
 URL=HTTP://INFORMATIONBUILDERS.COM, $
ENDSTYLE
END

792 Information Builders

Linking in a Report

The output is:

When you click the graphic, the Information Builders Web site opens.

Specifying a Base URL

How to:

Specify a Base URL

If you want to create a link but do not know the full, physical URLs, you can specify a default
location where the browser searches for relative URLs.

To specify a default URL location, use the SET BASEURL command. Using SET BASEURL
puts <BASE HREF="url"> into the HTML file that FOCUS generates. When a report is run,
the specified directory is searched for the files that are called by the generated Web page.

Creating Reports 793

14. Advanced StyleSheet Features

How to Specify a Base URLSyntax:

SET BASEURL=url

where:

url

Is the fully-qualified directory in which additional files reside. If it points to a Web server,
the URL must begin with http://. The URL MUST end with a closing delimiter (/ or \).

Specifying a Base URLExample:

The following illustrates how to specify a base URL:

SET BASEURL=http://www.informationbuilders.com/ibi_html/newcentcorp/
 images/

If you are including a graphic image in your report that is stored in the specified base URL,
you can add the following declaration to your StyleSheet instead of typing the entire URL:

TYPE=HEADING, IMAGE=leftlogo.gif, ..., $

Note: If the URL is at a remote website, it may take longer to retrieve. Whenever possible,
store graphic image files on your system.

Specifying a Target Frame

How to:

Specify a Target Frame

Specify a Default Target Frame

You can use frames to subdivide application HTML pages into separate scrollable sections.
Frames enable users to explore various information items on a page by scrolling through a
section, instead of linking to a separate page. When defining a link from a report component,
you can specify that the results of the link be displayed in a target frame on a Web page.

There are two ways to specify a target frame. You can specify:

A target frame in a StyleSheet declaration using the TARGET attribute. You can use
StyleSheets to specify that links from a report or graph are displayed in a target frame
on the Web page displaying the report or graph. However, using StyleSheets to specify
target frames adds extra HTML syntax to every HREF that is generated.

A default target frame with a SET command. SET TARGETFRAME puts the HTML code
<BASE TARGET="framename"> into the header of the HTML file that FOCUS opens. All
links from the report are directed to the specified frame, unless overridden by the TARGET
attribute in the StyleSheet.

794 Information Builders

Linking in a Report

To use the TARGET attribute or the SET TARGETFRAME command, you must create multiple
frames on the Web page.

How to Specify a Target FrameSyntax:

To specify a target frame for a URL, use

TYPE=type, [subtype], URL=url[(parameters ...)], [TARGET=frame,] $

where:

type

Identifies the report component that the user selects in the Web browser to execute the
link. The TYPE attribute and its value must appear at the beginning of the declaration.

subtype

Are any additional attributes, such as COLUMN, LINE, or ITEM, that are needed to identify
the report component that you are formatting.

url

Identifies any valid URL, or the name of a report column enclosed in parentheses whose
value is a valid URL to which the link will jump. For details about linking to an URL, see
Linking to a URL on page 786.

parameters

Are values being passed to the URL. You can pass one or more parameters. The entire
string of values must be enclosed in parentheses, and separated from each other by a
blank space.

frame

Identifies the target frame in the Web page in which the output from the link is displayed.

If the name of the target frame contains embedded spaces, the name will be correctly
interpreted without enclosing the name in quotation marks. For example:

TYPE=DATA, COLUMN=N1,
FOCEXEC=MYREPORT, TARGET=MY FRAME, $

The name of the target frame is correctly interpreted to be MY FRAME.

You can also use the following standard HTML frame names: _BLANK, _SELF, _PARENT,
_TOP.

Creating Reports 795

14. Advanced StyleSheet Features

How to Specify a Default Target FrameSyntax:

SET TARGETFRAME=frame

where:

frame

Identifies the target frame in the Web page in which the output from the link is displayed.

Specifying a Target FrameExample:

The following illustrates how to specify a default target frame:

SET TARGETFRAME=_SELF

The following illustrates how to specify a target frame in a request. The relevant StyleSheet
declaration is highlighted in the request.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY DEPARTMENT
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=DATA, COLUMN=N1, URL=http:\\www.informationbuilders.com,
 TARGET=_SELF, $
ENDSTYLE
END

Linking Report Pages

How to:

Link Report Pages

With a StyleSheet, you can insert one or more navigational hyperlinks in a multi-page HTML
report. This feature makes it easy for you to link consecutive report pages together without
creating individual hyperlinks for each page.

You can define any report component as a hyperlink.

796 Information Builders

Linking in a Report

How to Link Report PagesSyntax:

Use the following syntax in an HTML report

URL=#_destination, $

where:

destination

Is one of the following:

#_next goes to the top of the next report page.

#_previous goes to the top of the previous report page.

#_top goes to the top of the current report page.

#_start goes to the first page of the report.

#_end goes to the last page of the report.

Linking Report Pages Through Images in a HeadingExample:

This request displays two images in the page heading of a long report. It creates a link
between BULLET.GIF and the next page of the report, and GOBACK.GIF and the previous
page of the report.

TABLE FILE GGORDER
ON TABLE SUBHEAD
"COFFEE GRINDER SALES BY STORE"
" "
HEADING
"Next page or previous page."
PRINT QUANTITY AS 'Ordered Units' BY STORE_CODE BY PRODUCT NOPRINT
BY ORDER_NUMBER
WHERE PRODUCT EQ 'Coffee Grinder'
ON STORE_CODE PAGE-BREAK
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=TABHEADING, STYLE=BOLD,$
TYPE=HEADING, IMAGE=C:\IMAGES\BULLET, URL=#_next, IMAGEALIGN=LEFT,$
TYPE=HEADING, IMAGE=C:\IMAGES\GOBACK, URL=#_previous, IMAGEALIGN=RIGHT,$
ENDSTYLE
END

Creating Reports 797

14. Advanced StyleSheet Features

The images display in each page heading.

Click the image on the left of page 1 to display page 2:

Click the "go back" image on page 2 to redisplay page 1.

798 Information Builders

Linking in a Report

Linking Pages Through Page Number and Heading ElementsExample:

This request creates hyperlinks from the page number to the next page in the report, and
from the text of the page heading, which appears at the top of every report page, back to
the previous page or to the first page.

TABLE FILE GGORDER
ON TABLE SUBHEAD
"COFFEE GRINDER SALES BY STORE"
" "
HEADING
"return to previous page"
"return to beginning"
PRINT QUANTITY AS 'Ordered Units' BY STORE_CODE BY PRODUCT NOPRINT
BY ORDER_NUMBER
WHERE PRODUCT EQ 'Coffee Grinder'
ON STORE_CODE PAGE-BREAK
ON TABLE HOLD FORMAT HTML
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
TYPE=TABHEADING, STYLE=BOLD,$
TYPE=PAGENUM, URL=#_next, $
TYPE=HEADING, LINE=1, URL=#_previous, $
TYPE=HEADING, LINE=2, URL=#_start, $
ENDSTYLE
END

Creating Reports 799

14. Advanced StyleSheet Features

The first page is:

Click the page number three times to move to PAGE 4:

Click previous page to return to PAGE 3. Click return to beginning to go directly to PAGE 1.

800 Information Builders

Linking in a Report

Working With Mailing Labels and Multi-Pane Pages

How to:

Set Up a Report to Print Mailing Labels

Print Mailing Labels or a Multi-Pane Report

Reference:

Attributes for Mailing Labels and Multi-Pane Printing

You can print sheets of mailing labels by dividing each page into a matrix of sub-pages, each
corresponding to a single label. Each page break in the report positions the printer at the
top of the next label.

Multi-pane printing places a whole report on a single printed page. You can create columns
or rows so that when text overflows on one page, it appears in the next column or row on
the same page rather than on the next page.

These features apply to a PDF or PS report.

Attributes for Mailing Labels and Multi-Pane PrintingReference:

In addition to the attributes in the table, you can use standard margin attributes (for example,
LEFTMARGIN or TOPMARGIN) to position the entire sheet of labels at once, creating an
identical margin for each sheet.

Applies toDescriptionAttribute

PDF

PS

Sets the number of columns and rows of labels on a
page.

PAGEMATRIX

PDF

PS

Sets the width and height of each label, expressed
in the unit of measurement specified by the UNITS
parameter.

ELEMENT

PDF

PS

Sets the horizontal and vertical distance between
each label, expressed in the unit of measurement
specified by the UNITS parameter.

GUTTER

PDF

PS

Sets the order in which the labels are printed.MATRIXORDER

Creating Reports 801

14. Advanced StyleSheet Features

Applies toDescriptionAttribute

PDF

PS

Sets the position of the first label on the mailing label
sheet.

LABELPROMPT

How to Set Up a Report to Print Mailing LabelsProcedure:

1. Create the label as a page heading.

2. Sort the labels but use NOPRINT to suppress sort field display. Only the fields embedded
in the page heading will print.

3. Insert a page break on a sort field to place each new field value on a separate label.

4. Suppress default page numbers and associated blank lines from the beginning of each
page (SET PAGE-NUM=NOPAGE).

How to Print Mailing Labels or a Multi-Pane ReportSyntax:

[TYPE=REPORT,] PAGEMATRIX=(cr), ELEMENT=(w h), [GUTTER=(x y),]
 [MATRIXORDER={VERTICAL|HORIZONTAL},] [LABELPROMPT={OFF|ON},] $

where:

TYPE=REPORT

Applies the settings to the entire report. Not required, as it is the default.

c

Is the number of columns of labels across the page.

Enclose the values c and r in parentheses, and do not include a comma between them.

r

Is the number of rows of labels down the page.

w

Is the width of each label.

Enclose the values w and h in parentheses, and do not include a comma between them.

h

Is the height of each label.

GUTTER

Is the distance between each label.

802 Information Builders

Working With Mailing Labels and Multi-Pane Pages

x

Is the horizontal distance between each label.

Enclose the values x and y in parentheses, and do not include a comma between them.

y

Is the vertical distance between each label.

MATRIXORDER

Is the order in which the labels are printed.

VERTICAL

Prints the labels down the page.

HORIZONTAL

Prints the labels across the page.

LABELPROMPT

Is the position of the first label on the mailing label sheet.

OFF

Starts the report on the first label on the sheet. This value is the default.

ON

Prompts you at run time for the row and column number at which to start printing. All
remaining labels follow consecutively. This feature allows partially used sheets of labels
to be reused.

Printing Mailing LabelsExample:

The following report prints on 81/2 x 11 sheets of address labels.

TABLE FILE EMPLOYEE
BY LAST_NAME NOPRINT BY FIRST_NAME NOPRINT
ON FIRST_NAME PAGE-BREAK
HEADING
"<FIRST_NAME <LAST_NAME"
"<ADDRESS_LN1"
"<ADDRESS_LN2"
"<ADDRESS_LN3"
ON TABLE SET PAGE-NUM NOPAGE
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE LABEMP
END

Creating Reports 803

14. Advanced StyleSheet Features

The labels have the following dimensions, defined in the StyleSheet LABEMP:

UNITS=IN, PAGESIZE=LETTER, LEFTMARGIN=0.256, TOPMARGIN=0.5,
PAGEMATRIX=(2 5), ELEMENT=(4 1), GUTTER=(0.188 0), $

The first page of labels prints as follows:

Printing a Multi-Page ReportExample:

This request divides the first report page in two columns so that the second report page
appears in the second column of the first page. A PAGE-BREAK creates a multi-page report
for the purpose of this example.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND CURR_SAL BY DEPARTMENT
ON DEPARTMENT PAGE-BREAK
HEADING
"PAGE <TABPAGENO"
ON TABLE HOLD FORMAT PDF
ON TABLE SET STYLE *
UNITS=IN, PAGESIZE=LETTER, PAGEMATRIX=(2 1), ELEMENT=(3.5 8.0),
MATRIXORDER=VERTICAL, $
TYPE=REPORT, SIZE=8, $
END

804 Information Builders

Working With Mailing Labels and Multi-Pane Pages

The report prints as:

Creating Reports 805

14. Advanced StyleSheet Features

806 Information Builders

Working With Mailing Labels and Multi-Pane Pages

FOCUS

Handling Records With Missing Field Values15
Topics:

Missing data is defined as data that is
missing from a report because it is not
relevant or does not exist in the data
source. Report output that involves
averaging and counting calculations or
the display of parent segment instances
may be affected by missing data. Data
can be missing from reports and
calculations for the following reasons:

Irrelevant Report Data

Missing Field Values

Handling a Missing Segment Instance

Setting the NODATA Character String

Data is not relevant to a particular
row and column in a report. See
Irrelevant Report Data on page 808.

A field in a segment instance does
not have a data value. See Missing
Field Values on page 809.

A parent segment instance does not
have child instances (missing
segment instances). See Handling a
Missing Segment Instance on page
822.

Note: To run the examples in this topic,
you must run the stored procedures
EMPMISS and SALEMISS to add missing
data to the EMPLOYEE and SALES data
sources, respectively.

Creating Reports 807

Irrelevant Report Data
Data can be missing from a report row or column because it is not relevant. The missing or
inapplicable value is indicated by the NODATA default character, a period (.).

Tip: You may specify a more meaningful NODATA value by issuing the SET NODATA command
(see Setting the NODATA Character String on page 828).

Irrelevant Report DataExample:

The following request shows how the default NODATA character displays missing data in a
report.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
BY FIRST_NAME
ACROSS DEPARTMENT
END

The output is:

 DEPARTMENT
 MIS PRODUCTION
LAST_NAME FIRST_NAME

BANNING JOHN . $29,700.00
BLACKWOOD ROSEMARIE $21,780.00 .
CROSS BARBARA $27,062.00 .
DAVIS ELIZABETH $.00 .
GARDNER DAVID . $.00
GREENSPAN MARY $9,000.00 .
IRVING JOAN . $26,862.00
JONES DIANE $18,480.00 .
MCCOY JOHN $18,480.00 .
MCKNIGHT ROGER . $16,100.00
ROMANS ANTHONY . $21,120.00
SMITH MARY $13,200.00 .
 RICHARD . $9,500.00
STEVENS ALFRED . $11,000.00

The salary for an employee working in the production department displays in the PRODUCTION
column. The salary for an employee working in the MIS department displays in the MIS
column. The corresponding value in the PRODUCTION or MIS column, respectively, is missing
because the salary displays only under the department where the person is employed.

808 Information Builders

Irrelevant Report Data

Missing Field Values

In this section:

MISSING Attribute in the Master File

MISSING Attribute in a DEFINE or COMPUTE Command

Testing for a Segment With a Missing Field Value

Preserving Missing Data Values in an Output File

Propagating Missing Values to Reformatted Fields in a Request

Missing values within segment instances occur when the instances exist, but some of the
fields lack values.

When fields in instances lack values, numeric fields are assigned the value 0, and
alphanumeric fields, the value blank. These default values appear in reports and are used
in all calculations performed by the SUM and COUNT display commands, DEFINE commands,
and prefix operators such as MAX. and AVE.

To prevent the use of these default values in calculations (which might then give erroneous
results), you can add the MISSING attribute to the field declaration in the Master File, for
either a real or a virtual field. When the MISSING attribute is set to ON, the missing values
are marked with a special internal code to distinguish them from blanks or zeros, and the
missing values are ignored in calculations. In reports, the internal code is represented by
the SET NODATA value, a period (.), by default. See Setting the NODATA Character String on
page 828.

For example, missing data for a field in a segment instance may occur when the data values
are unknown, as in the following scenario. Suppose that the employees recorded in the
EMPLOYEE data source are due for a pay raise by a certain date, but the amount of the raise
has not yet been determined. The company enters the date for each employee into the data
source without the salary amounts; the salaries will be entered later. Each date is an
individual instance in the salary history segment, but the new salary for each date instance
is missing. Suppose further that a report request averages the SALARY field (SUM
AVE.SALARY). The accuracy of the resulting average depends on whether the missing values
for the SALARY field are treated as zeros (MISSING=OFF), or as internal codes (MISSING=ON).

Creating Reports 809

15. Handling Records With Missing Field Values

Counting With Missing ValuesExample:

Suppose the CURR_SAL field appears in 12 segment instances. In three of those instances,
the field was given no value. Nevertheless, the display command

COUNT CURR_SAL

counts 12 occurrences of the CURR_SAL field. This occurs because the MISSING attribute
is OFF by default, so the missing values are included in the count. If you wanted to exclude
the missing data from the count, you could set MISSING ON.

Averaging With Missing ValuesExample:

Suppose you have the following records of data for a field:

.

.
1
3

The numeric values in the first two records are missing (indicated by the periods). The last
two records have values of 1 and 3. If you average these fields without the MISSING attribute
(MISSING OFF), the value 0 is supplied for the two records that are missing values. Thus,
the average of the records is (0+0+1+3)/4, or 1. If you use the MISSING ON attribute, the
two missing values are ignored, calculating the average as (1+3)/2, or 2.

MISSING Attribute in the Master File
In some applications, the default values (blanks and zeros) may represent valid data rather
than the absence of information. However, if this is not the case, you can include the MISSING
attribute after the field format in the Master File declaration for the field with the missing
values. The MISSING attribute can be used with an actual field in the data source, or a
virtual field that you are defining in the Master File.

For example, the following field declaration specifies the MISSING attribute for the RETURNS
field:

FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I4, MISSING=ON,$

The next declaration specifies the MISSING attribute for a virtual field called PROFIT:

DEFINE PROFIT/D7 MISSING ON NEEDS SOME DATA = RETAIL_COST - DEALER_COST;$

To ensure that missing values are handled properly for virtual fields, you can set the MISSING
attribute ON for the virtual field in the DEFINE command, and specify whether you want to
apply the calculation if some or all values are missing. For related information on the SOME
and ALL phrases, see How to Specify Missing Values in a DEFINE or COMPUTE Command on
page 812.

810 Information Builders

Missing Field Values

When the MISSING attribute is set to ON in a field declaration, the field containing no data
is marked with a special internal code, rather than with blanks or zeros. During report
generation, the SUM and COUNT commands and all prefix operators (for example, AVE.,
MAX., MIN.) exclude the missing data in their computations. For related information about
the MISSING attribute and field declarations, see the Describing Data manual.

Note:

You may add MISSING field attributes to the Master File at any time. However, MISSING
attributes only affect data entered into the data source after the attributes were added.

Key fields are needed to identify a record. Therefore, key fields should not be identified
as missing.

Handling Missing Values With the MISSING AttributeExample:

This example illustrates the difference between a field with MISSING ON and one without.
In it a virtual field, X_RETURNS, without the MISSING attribute, is set to equal a real field,
RETURNS, with the MISSING attribute declared in the Master File. When the field with the
MISSING attribute (RETURNS) is missing a value, the corresponding value of X_RETURNS
is 0, since a data source field that is missing a value is evaluated as 0 (or blank) for the
purpose of computation (see MISSING Attribute in a DEFINE or COMPUTE Command on page
812).

The following request defines the virtual field:

DEFINE FILE SALES
X_RETURNS/I4 = RETURNS;
END

Now issue the following report request:

TABLE FILE SALES
SUM CNT.X_RETURNS CNT.RETURNS AVE.X_RETURNS AVE.RETURNS
END

Remember that the field X_RETURNS has the same value as RETURNS except when RETURNS
is missing a value, in which case, the X_RETURNS value is 0.

The output is:

X_RETURNS RETURNS AVE AVE
COUNT COUNT X_RETURNS RETURNS
--------- ------- --------- -------
 22 20 2 3

The count for the RETURNS field is lower than the count for X_RETURNS and the average
for RETURNS is higher than for X_RETURNS because the missing values in RETURNS are
not part of the calculations.

Creating Reports 811

15. Handling Records With Missing Field Values

For an illustration in which the MISSING attribute is set for a virtual field, see Handling
Missing Values for Virtual Fields With SOME and ALL on page 814.

MISSING Attribute in a DEFINE or COMPUTE Command

How to:

Specify Missing Values in a DEFINE or COMPUTE Command

You can set the MISSING attribute ON in a DEFINE or COMPUTE command to enable a
temporary field with missing values to be interpreted and represented correctly in reports.

An expression used to derive the values of the temporary field can contain real fields that
have missing values. However, when used to derive the value of a temporary field, a data
source field that is missing a value is evaluated as 0 or blank for computational purposes,
even if the MISSING attribute has been set to ON for that field in the Master File.

To ensure that missing values are handled properly for temporary fields, you can set the
MISSING attribute ON for the virtual field in the DEFINE or COMPUTE command, and specify
whether you want to apply the calculation if some or all values are missing. See How to
Specify Missing Values in a DEFINE or COMPUTE Command on page 812.

How to Specify Missing Values in a DEFINE or COMPUTE CommandSyntax:

field[/format] MISSING {ON|OFF} [NEEDS] {SOME|ALL} [DATA] = expression;

where:

field

Is the name of the virtual field created by the DEFINE command.

/format

Is the format of the virtual field. The default is D12.2.

MISSING

ON enables the value of the temporary field to be interpreted as missing (that is,
distinguished by the special internal code from an intentionally entered zero or blank),
and represented by the NODATA character in reports.

OFF treats missing values for numeric fields as zeros, and missing values for
alphanumeric fields as blanks. This is the default value.

NEEDS

Is optional. It helps to clarify the meaning of the command.

812 Information Builders

Missing Field Values

SOME

Indicates that if at least one field in the expression has a value, the temporary field has
a value (the missing values of the field are evaluated as 0 or blank in the calculation).
If all of the fields in the expression are missing values, the temporary field is missing
its value. SOME is the default value.

ALL

Indicates that if all the fields in the expression have values, the temporary field has a
value. If at least one field in the expression has a missing value, the temporary field
also has a missing value.

DATA

Is optional. It helps to clarify the meaning of the command.

expression

Is a valid expression from which the temporary field derives its value.

Handling Missing Values for a Virtual Field With MISSING OFFExample:

The following request illustrates the use of two fields, RETURNS and DAMAGED, to define
the NO_SALE field. Both the RETURNS and DAMAGED fields have the MISSING attribute set
to ON in the SALES Master File, yet whenever one of these fields is missing a value, that
field is evaluated as 0.

DEFINE FILE SALES
NO_SALE/I4 = RETURNS + DAMAGED;
END
TABLE FILE SALES
PRINT RETURNS AND DAMAGED AND NO_SALE
BY CITY BY DATE BY PROD_CODE
END

Creating Reports 813

15. Handling Records With Missing Field Values

The output is:

CITY DATE PROD_CODE RETURNS DAMAGED NO_SALE
---- ---- --------- ------- ------- -------
NEW YORK 10/17 B10 2 3 5
 B17 2 1 3
 B20 0 1 1
 C13 . 6 6
 C14 4 . 4
 C17 0 0 0
 D12 3 2 5
 E1 4 7 11
 E2 . . 0
 E3 4 2 6
NEWARK 10/18 B10 1 1 2
 10/19 B12 1 0 1
STAMFORD 12/12 B10 10 6 16
 B12 3 3 6
 B17 2 1 3
 C13 3 0 3
 C7 5 4 9
 D12 0 0 0
 E2 9 4 13
 E3 8 9 17
UNIONDALE 10/18 B20 1 1 2
 C7 0 0 0

Notice that the products C13, C14, and E2 in the New York section all show missing values
for either RETURNS or DAMAGED, because the MISSING ON attribute has been set in the
Master File. However, the calculation that determines the value of NO_SALE interprets these
missing values as zeros, because MISSING ON has not been set for the virtual field.

Handling Missing Values for Virtual Fields With SOME and ALLExample:

The following request illustrates how to use the DEFINE command with the MISSING attribute
to specify that if either some or all of the field values referenced in a DEFINE command are
missing, the virtual field should also be missing its value.

The SOMEDATA field contains a value if either the RETURNS or DAMAGED field contains a
value. Otherwise, SOMEDATA is missing its value. The ALLDATA field contains a value only
if both the RETURNS and DAMAGED fields contain values. Otherwise, ALLDATA is missing
its value.

DEFINE FILE SALES
SOMEDATA/I5 MISSING ON NEEDS SOME=RETURNS + DAMAGED;
ALLDATA/I5 MISSING ON NEEDS ALL=RETURNS + DAMAGED;
END

TABLE FILE SALES
PRINT RETURNS AND DAMAGED SOMEDATA ALLDATA
BY CITY BY DATE BY PROD_CODE
END

814 Information Builders

Missing Field Values

The output is:

CITY DATE PROD_CODE RETURNS DAMAGED SOMEDATA ALLDATA
---- ---- --------- ------- ------- -------- -------
NEW YORK 10/17 B10 2 3 5 5
 B17 2 1 3 3
 B20 0 1 1 1
 C13 . 6 6 .
 C14 4 . 4 .
 C17 0 0 0 0
 D12 3 2 5 5
 E1 4 7 11 11
 E2
 E3 4 2 6 6
NEWARK 10/18 B10 1 1 2 2
 10/19 B12 1 0 1 1
STAMFORD 12/12 B10 10 6 16 16
 B12 3 3 6 6
 B17 2 1 3 3
 C13 3 0 3 3
 C7 5 4 9 9
 D12 0 0 0 0
 E2 9 4 13 13
 E3 8 9 17 17
UNIONDALE 10/18 B20 1 1 2 2
 C7 0 0 0 0

Testing for a Segment With a Missing Field Value

How to:

Test for a Segment With a Missing Field Value

You can specify WHERE criteria to identify segment instances with missing field values.

You cannot use these tests to identify missing instances. However, you can set the ALL
parameter to PASS to test for missing instances. See Handling a Missing Segment Instance
on page 822.

How to Test for a Segment With a Missing Field ValueSyntax:

To test for a segment with missing field values, the syntax is:

WHERE field {IS|EQ} MISSING

To test for the presence of field values, the syntax is:

WHERE field {NE|IS-NOT} MISSING

A WHERE criterion that tests a numeric field for 0 or an alphanumeric field for blanks also
retrieves instances for which the field has a missing value.

Creating Reports 815

15. Handling Records With Missing Field Values

Testing for a Missing Field ValueExample:

The following request illustrates the use of MISSING to display grocery items (by code) for
which the number of packages returned by customers is missing.

TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS IS MISSING
END

The output is:

CITY DATE PROD_CODE RETURNS
---- ---- --------- -------
NEW YORK 10/17 C13 .
 E2 .

Testing for an Existing Field ValueExample:

The following request illustrates the use of MISSING to display only those grocery items for
which the number of packages returned by customers is not missing.

TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS IS-NOT MISSING
END

The output is:

CITY DATE PROD_CODE RETURNS
---- ---- --------- -------
NEW YORK 10/17 B10 2
 B17 2
 B20 0
 C14 4
 C17 0
 D12 3
 E1 4
 E3 4
NEWARK 10/18 B10 1
 10/19 B12 1
STAMFORD 12/12 B10 10
 B12 3
 B17 2
 C13 3
 C7 5
 D12 0
 E2 9
 E3 8
UNIONDALE 10/18 B20 1
 C7 0

816 Information Builders

Missing Field Values

Testing for a Blank or ZeroExample:

The following request displays grocery items that either were never returned or for which the
number of returned packages was never recorded:

TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS EQ 0
END

The output is:

CITY DATE PROD_CODE RETURNS
---- ---- --------- -------
NEW YORK 10/17 B20 0
 C13 .
 C17 0
 E2 .
STAMFORD 12/12 D12 0
UNIONDALE 10/18 C7 0

Excluding Missing Values From a TestExample:

To display only those items that have not been returned by customers, you need two WHERE
criteria. The first to restrict the number of returns to 0, the other to exclude missing values,
as in the following request.

TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS EQ 0
WHERE RETURNS IS-NOT MISSING
END

The output is:

CITY DATE PROD_CODE RETURNS
---- ---- --------- -------
NEW YORK 10/17 B20 0
 C17 0
STAMFORD 12/12 D12 0
UNIONDALE 10/18 C7 0

Creating Reports 817

15. Handling Records With Missing Field Values

Preserving Missing Data Values in an Output File

How to:

Distinguish Missing Data in an Extract File

Store Missing Data in HOLD Files

Reference:

Usage Notes for Holding Missing Values

The ability to distinguish between missing data and default values (blanks and zeros) in
fields can be carried over into output files. If the retrieved and processed information
displayed the NODATA string in a report, by default the NODATA string can be stored in the
output file. You can also use the SET HOLDMISS command to store the missing values
rather than the NODATA character in an output file. For related information, see Saving and
Reusing Your Report Output on page 421.

How to Distinguish Missing Data in an Extract FileSyntax:

ON TABLE {HOLD|SAVE|SAVB} MISSING {ON|OFF}

where:

HOLD

Creates an extract file for use in subsequent reports. The default for MISSING is ON.

SAVE

Creates a text extract file for use in other programs. The default for MISSING is OFF.

SAVB

Creates a binary extract file for use in other programs. The default for MISSING is OFF.

HOLD files can be created with both the MISSING and FORMAT ALPHA options, specified in
any order. For example:

ON TABLE HOLD FORMAT ALPHA MISSING OFF
ON TABLE HOLD MISSING OFF FORMAT ALPHA

Incorporating MISSING Values in an Extract FileExample:

The following request specifies MISSING ON in the HOLD phrase:

TABLE FILE SALES
SUM RETURNS AND HOLD FORMAT ALPHA MISSING ON
BY CITY BY DATE BY PROD_CODE
END

818 Information Builders

Missing Field Values

The MISSING=ON attribute for the RETURNS field is propagated to the HOLD Master File.
In addition, the missing data symbols are propagated to the HOLD file for the missing field
values:

FILENAME=HOLD , SUFFIX=FIX , $
 SEGMENT=HOLD, SEGTYPE=S3, $
 FIELDNAME=CITY, ALIAS=E01, USAGE=A15, ACTUAL=A15, $
 FIELDNAME=DATE, ALIAS=E02, USAGE=A4MD, ACTUAL=A04, $
 FIELDNAME=PROD_CODE, ALIAS=E03, USAGE=A3, ACTUAL=A03, $
 FIELDNAME=RETURNS, ALIAS=E04, USAGE=I3, ACTUAL=A03,
 MISSING=ON, $

With MISSING OFF in the HOLD phrase, the MISSING=ON attribute is not propagated to the
HOLD Master File and the missing data symbols are replaced with default values.

How to Store Missing Data in HOLD FilesSyntax:

SET HOLDMISS={ON|OFF}
ON TABLE SET HOLDMISS {ON|OFF}

where:

ON

Allows you to store missing data in a HOLD file. When TABLE generates a default value
for data not found, it generates missing values.

OFF

Does not allow you to store missing data in a HOLD file. OFF is the default value.

Usage Notes for Holding Missing ValuesReference:

Setting HOLDMISS ON adds the MISSING=ON attribute to every field in the extract file.

Data is not found if:

ALL is set to ON.

The request is multi-path.

An ACROSS statement has been issued.

Creating Reports 819

15. Handling Records With Missing Field Values

Holding Missing Values Using HOLDMISSExample:

SET HOLDMISS=ON
TABLE FILE MOVIES
 SUM WHOLESALEPR
BY CATEGORY ACROSS RATING
 ON TABLE HOLD AS HLDM
END
TABLE FILE HLDM
 PRINT *
 END

The output is:

CATEGORY WHOLESALEPR WHOLESALEPR WHOLESALEPR WHOLESALEPR WHOLESALEPR
-------- ----------- ----------- ----------- ----------- -----------
ACTION . . 20.98 . 34.48
CHILDREN 54.49 51.38 . . .
CLASSIC 40.99 160.80 . . .
COMEDY . . 46.70 30.00 13.75
DRAMA 10.00
FOREIGN 13.25 . 62.00 . 70.99
MUSICALS 15.00 . 13.99 9.99 13.99
MYSTERY . 9.00 18.00 9.00 80.97
SCI/FI . . . 35.99 43.53
TRAIN/EX . 60.98 . .
.

Propagating Missing Values to Reformatted Fields in a Request

How to:

Control Missing Values in Reformatted Fields

Reference:

Usage Notes for SET COMPMISS

When a field is reformatted in a request (for example, SUM field/format), an internal
COMPUTE field is created to contain the reformatted field value and display on the report
output. If the original field has a missing value, that missing value can be propagated to the
internal field by setting the COMPMISS parameter ON. If the missing value is not propagated
to the internal field, it displays a zero (if it is numeric) or a blank (if it is alphanumeric). If
the missing value is propagated to the internal field, it displays the missing data symbol on
the report output.

820 Information Builders

Missing Field Values

How to Control Missing Values in Reformatted FieldsSyntax:

SET COMPMISS = {ON|OFF}

where:

ON

Propagates a missing value to a reformatted field.

OFF

Displays a blank or zero for a reformatted field. OFF is the default value.

Note: The COMPMISS parameter cannot be set in an ON TABLE command.

Controlling Missing Values in Reformatted FieldsExample:

The following procedure prints the RETURNS field from the SALES data source for store 14Z.
With COMPMISS OFF, the missing values display as zeros in the column for the reformatted
field value. (Note: Before trying this example, you must make sure that the SALEMISS
procedure, which adds missing values to the SALES data source, has been run.)

SET COMPMISS = OFF
TABLE FILE SALES
PRINT RETURNS RETURNS/D12.2 AS 'REFORMATTED,RETURNS'
BY STORE_CODE
WHERE STORE_CODE EQ '14Z'
END

The output is:

 REFORMATTED
STORE_CODE RETURNS RETURNS
---------- ------- -----------
14Z 2 2.00
 2 2.00
 0 .00
 . .00
 4 4.00
 0 .00
 3 3.00
 4 4.00
 . .00
 4 4.00

With COMPMISS ON, the column for the reformatted version of RETURNS displays the missing
data symbol when a value is missing:

SET COMPMISS = ON
TABLE FILE SALES
PRINT RETURNS RETURNS/D12.2 AS 'REFORMATTED,RETURNS'
BY STORE_CODE
WHERE STORE_CODE EQ '14Z'
END

Creating Reports 821

15. Handling Records With Missing Field Values

The output is:

 REFORMATTED
STORE_CODE RETURNS RETURNS
---------- ------- -----------
14Z 2 2.00
 2 2.00
 0 .00
 . .
 4 4.00
 0 .00
 3 3.00
 4 4.00
 . .
 4 4.00

Usage Notes for SET COMPMISSReference:

If you create a HOLD file with COMPMISS ON, the HOLD Master File for the reformatted field
indicates MISSING = ON (as does the original field). With COMPMISS = OFF, the reformatted
field does NOT have MISSING = ON in the generated Master File.

Handling a Missing Segment Instance

In this section:

Including Missing Instances in Reports With the ALL. Prefix

Including Missing Instances in Reports With the SET ALL Parameter

Testing for Missing Instances in FOCUS Data Sources

In multi-segment data sources, when an instance in a parent segment does not have
descendant instances, the nonexistent descendant instances are called missing instances.

When you write a request from a data source that has missing segment instances, the
missing instances affect the report. For example, if the request names fields in a segment
and its descendants, the report omits parent segment instances that have no descendants.
It makes no difference whether fields are display fields or sort fields.

When an instance is missing descendants in a child segment, the instance, its parent, the
parent of its parent, and so on up to the root segment, is called a short path. Unique
segments are never considered to be missing.

For example, consider the following subset of the EMPLOYEE data source.

The top segment contains employee names.

The left segment contains addresses.

822 Information Builders

Handling a Missing Segment Instance

The right segment contains the salary history of each employee: the date the employee
was granted a new salary, and the amount of the salary.

Suppose some employees are paid by an outside agency. None of these employees have
a company salary history. Instances referring to these employees in the salary history segment
are missing.

Nonexistent descendant instances affect whether parent segment instances are included
in report results. The SET ALL parameter and the ALL. prefix enable you to include parent
segment data in reports.

For illustrations of how missing segment instances impact reporting, see Reporting Against
Segments Without Descendant Instances on page 823 and Reporting Against Segments With
Descendant Instances on page 824.

Reporting Against Segments Without Descendant InstancesExample:

The following request displays the salary histories for each employee.

TABLE FILE EMPLOYEE
PRINT SALARY
BY LAST_NAME BY FIRST_NAME
BY DAT_INC
END

However, two employees, Davis and Gardner, are omitted from the following report because
the LAST_NAME and FIRST_NAME fields belong to the root segment, and the DAT_INC and
SALARY fields belong to the descendant salary history segment. Since Davis and Gardner
have no descendant instances in the salary history segment, they are omitted from the
report.

Creating Reports 823

15. Handling Records With Missing Field Values

The output is:

LAST_NAME FIRST_NAME DAT_INC SALARY
--------- ---------- ------- ------
BANNING JOHN 82/08/01 $29,700.00
BLACKWOOD ROSEMARIE 82/04/01 $21,780.00
CROSS BARBARA 81/11/02 $25,775.00
 82/04/09 $27,062.00
GREENSPAN MARY 82/04/01 $8,650.00
 82/06/11 $9,000.00
IRVING JOAN 82/01/04 $24,420.00
 82/05/14 $26,862.00
JONES DIANE 82/05/01 $17,750.00
 82/06/01 $18,480.00
MCCOY JOHN 82/01/01 $18,480.00
MCKNIGHT ROGER 82/02/02 $15,000.00
 82/05/14 $16,100.00
ROMANS ANTHONY 82/07/01 $21,120.00
SMITH MARY 82/01/01 $13,200.00
 RICHARD 82/01/04 $9,050.00
 82/05/14 $9,500.00
STEVENS ALFRED 81/01/01 $10,000.00
 82/01/01 $11,000.00

Reporting Against Segments With Descendant InstancesExample:

The following request displays the average salary and second address line of each employee.
The data source contains Davis' address, but not Gardner's.

TABLE FILE EMPLOYEE
SUM AVE.SALARY
AND ADDRESS_LN2
BY LAST_NAME BY FIRST_NAME
END

This report displays Davis' name even though Davis has no salary history, because Davis
has an instance in the descendant address segment. The report omits Gardner entirely,
because Gardner has neither a salary history nor an address.

The output is:

LAST_NAME FIRST_NAME SALARY ADDRESS_LN2
--------- ---------- ------ -----------
BANNING JOHN $29,700.00 APT 4C
BLACKWOOD ROSEMARIE $21,780.00 3704 FARRAGUT RD.
CROSS BARBARA $26,418.50 147-15 NORTHERN BLD
DAVIS ELIZABETH . 2530 AMSTERDAM AVE.
GREENSPAN MARY $8,825.00 13 LINDEN AVE.
IRVING JOAN $25,641.00 123 E 32 ST.
JONES DIANE $18,115.00 235 MURRAY HIL PKWY
MCCOY JOHN $18,480.00 2 PENN PLAZA
MCKNIGHT ROGER $15,550.00 117 HARRISON AVE.
ROMANS ANTHONY $21,120.00 271 PRESIDENT ST.
SMITH MARY $13,200.00 2 PENN PLAZA
 RICHARD $9,275.00 136 E 161 ST.
STEVENS ALFRED $10,500.00 2 PENN PLAZA

824 Information Builders

Handling a Missing Segment Instance

Including Missing Instances in Reports With the ALL. Prefix
If a request excludes parent segment instances that lack descendants, you can include the
parent instances by attaching the ALL. prefix to one of the fields in the parent segment.

Note that if the request contains WHERE or IF criteria that screen fields in segments that
have missing instances, the report omits parent instances even when you use the ALL.
prefix. To include these instances, use the SET ALL=PASS command described in Including
Missing Instances in Reports With the SET ALL Parameter on page 826.

Including Missing Segment Instances With the ALL. PrefixExample:

The following request displays the salary history of each employee. Although employees
Elizabeth Davis and David Gardner have no salary histories, they are included in the report.

TABLE FILE EMPLOYEE
PRINT SALARY
BY ALL.LAST_NAME BY FIRST_NAME
BY DAT_INC
END

The output is:

LAST_NAME FIRST_NAME DAT_INC SALARY
--------- ---------- ------- ------
BANNING JOHN 82/08/01 $29,700.00
BLACKWOOD ROSEMARIE 82/04/01 $21,780.00
CROSS BARBARA 81/11/02 $25,775.00
 82/04/09 $27,062.00
DAVIS ELIZABETH . .
GARDNER DAVID . .
GREENSPAN MARY 82/04/01 $8,650.00
 82/06/11 $9,000.00
IRVING JOAN 82/01/04 $24,420.00
 82/05/14 $26,862.00
JONES DIANE 82/05/01 $17,750.00
 82/06/01 $18,480.00
MCCOY JOHN 82/01/01 $18,480.00
MCKNIGHT ROGER 82/02/02 $15,000.00
 82/05/14 $16,100.00
ROMANS ANTHONY 82/07/01 $21,120.00
SMITH MARY 82/01/01 $13,200.00
 RICHARD 82/01/04 $9,050.00
 82/05/14 $9,500.00
STEVENS ALFRED 81/01/01 $10,000.00
 82/01/01 $11,000.00

Creating Reports 825

15. Handling Records With Missing Field Values

Including Missing Instances in Reports With the SET ALL Parameter

How to:

Include a Parent Instance With Missing Descendants

You can include parent instances with missing descendants by issuing the SET ALL parameter
before executing the request.

Note: A request with WHERE or IF criteria, which screen fields in a segment that has missing
instances, omits instances in the parent segment even if you use the SET ALL=ON command.
To include these instances in the report, use the SET ALL=PASS command.

How to Include a Parent Instance With Missing DescendantsSyntax:

SET ALL= {OFF|ON|PASS}

where:

OFF

Omits parent instances that are missing descendants from the report. OFF is the default
value.

ON

Includes parent instances that are missing descendants in the report. However, if a test
on a missing segment fails, this causes the parent to be omitted from the output. It is
comparable to the ALL. prefix.

PASS

Includes parent instances that are missing descendants, even if WHERE or IF criteria
exist to screen fields in the descendant segments that are missing instances (that is,
a test on a missing segment passes).

826 Information Builders

Handling a Missing Segment Instance

Including Missing Segment Instances With SET ALLExample:

The following request displays all employees, regardless of whether they have taken a course
or not since the ALL=PASS command is set.

If the ALL=ON command had been used, employees that had not taken courses would have
been omitted because of the WHERE criteria.

JOIN EMPDATA.PIN IN EMPDATA TO ALL TRAINING.PIN IN TRAINING AS JOIN1
SET ALL = PASS
TABLE FILE EMPDATA
PRINT LASTNAME AND FIRSTNAME AND COURSECODE AND EXPENSES
BY PIN
WHERE EXPENSES GT 3000
END

The output is:

PIN LASTNAME FIRSTNAME COURSECODE EXPENSES
--- -------- --------- ---------- --------
000000020 BELLA MICHAEL . .
000000040 ADAMS RUTH EDP750 3,400.00
000000050 ADDAMS PETER UMI720 3,300.00
000000060 PATEL DORINA . .
000000070 SANCHEZ EVELYN . .
000000080 SO PAMELA BIT420 3,350.00
 SO PAMELA EDP690 3,200.00
000000090 PULASKI MARIANNE . .
000000100 ANDERSON TIM NAMA930 3,100.00
000000130 CVEK MARCUS . .
000000140 WHITE VERONICA BIT420 3,600.00
000000150 WHITE KARL UNI780 3,400.00
000000170 MORAN WILLIAM . .
000000190 MEDINA MARK EDP690 3,150.00
000000220 LEWIS CASSANDRA . .
000000230 NOZAWA JIM . .
000000300 SOPENA BEN . .
000000340 GOTLIEB CHRIS EDP750 3,450.00
 GOTLIEB CHRIS SSI670 3,300.00
000000350 FERNSTEIN ERWIN UMI720 3,350.00
000000380 ELLNER DAVID UNI780 3,350.00
000000390 GRAFF ELAINE . .
000000400 LOPEZ ANNE . .
000000410 CONTI MARSHALL EDP690 3,100.00

Testing for Missing Instances in FOCUS Data Sources
You can use the ALL PASS parameter to produce reports that include only parent instances
with missing descendant values. To do so, write the request to screen out all existing
instances in the segment with missing instances. After you set the ALL parameter to PASS,
the report displays only the parent instances that are missing descendants.

Creating Reports 827

15. Handling Records With Missing Field Values

Testing for a MISSING InstanceExample:

The following request screens all salary instances, since no SALARY can both be equal to
0 and not equal to 0.

SET ALL = PASS
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
WHERE SALARY EQ 0
WHERE SALARY NE 0
END

The output is:

LAST_NAME FIRST_NAME
--------- ----------
DAVIS ELIZABETH
GARDNER DAVID

Setting the NODATA Character String

How to:

Set the NODATA String

In a report, the NODATA character string indicates no data or inapplicable data. The default
NODATA character is a period. However, you can change this character designation.

How to Set the NODATA StringSyntax:

SET NODATA = string

where:

string

Is the character string used to indicate missing data in reports. The default string is a
period (.). The string may be a maximum of 11 characters. Common choices are NONE,
N/A, and MISSING.

Setting NODATA Not to Display CharactersExample:

If you do not want any characters, issue the command:

SET NODATA = ' '

828 Information Builders

Setting the NODATA Character String

Setting the NODATA Character StringExample:

In the following request, the NODATA character string is set to MISSING. The word MISSING
displays on the report instead of the default period.

SET NODATA=MISSING

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
ACROSS DEPARTMENT
END

The output is:

 DEPARTMENT
 MIS PRODUCTION
LAST_NAME FIRST_NAME

BANNING JOHN MISSING $29,700.00
BLACKWOOD ROSEMARIE $21,780.00 MISSING
CROSS BARBARA $27,062.00 MISSING
DAVIS ELIZABETH $.00 MISSING
GARDNER DAVID MISSING $.00
GREENSPAN MARY $9,000.00 MISSING
IRVING JOAN MISSING $26,862.00
JONES DIANE $18,480.00 MISSING
MCCOY JOHN $18,480.00 MISSING
MCKNIGHT ROGER MISSING $16,100.00
ROMANS ANTHONY MISSING $21,120.00
SMITH MARY $13,200.00 MISSING
 RICHARD MISSING $9,500.00
STEVENS ALFRED MISSING $11,000.00

Creating Reports 829

15. Handling Records With Missing Field Values

830 Information Builders

Setting the NODATA Character String

FOCUS

Joining Data Sources16
Topics:

You can join two or more related data
sources to create a larger integrated data
structure from which you can report in a
single request. The joined structure is
virtual: it is a way of accessing multiple
data sources as if they were a single
data source. Up to 63 joins can be in
effect at one time, for a total of 256
segments, depending on the number of
active segments and the number and
length of the fields (there is a 32K limit
on the length of all fields).

Types of Joins

How the JOIN Command Works

Creating an Equijoin

Using a Conditional Join

Preserving Virtual Fields During Join
Parsing

Displaying Joined Structures

For details about data sources you can
use in a join, see Data Sources You Can
and Cannot Join on page 834.

Clearing Joined Structures

Creating Reports 831

Types of Joins

In this section:

Unique and Non-Unique Joined Structures

Recursive Joined Structures

Reference:

Data Sources You Can and Cannot Join

Notes on DBA Security for Joined Data Structures

When you join two data sources, some records in one of the files may lack corresponding
records in the other file. When a report omits records that are not in both files, the join is
called an inner join. When a report displays all matching records, plus all records from the
host file that lack corresponding cross-referenced records, the join is called a left outer join.

The SET ALL command globally determines how all joins are implemented. If the SET ALL=ON
command is issued, all joins are treated as outer joins. With SET ALL=OFF, the default, all
joins are treated as inner joins.

Each JOIN command can specify explicitly which type of join to perform, locally overruling
the global setting. This syntax is supported for FOCUS, XFOCUS, Relational, VSAM, IMS, and
Adabas. If you do not specify the type of join in the JOIN command, the ALL parameter setting
determines the type of join to perform.

You can also join data sources using one of two techniques for determining how to match
records from the separate data sources. The first technique is known as an equijoin and
the second is known as a conditional join. When deciding which of the two join techniques
to use, it is important to know that when there is an equality condition between two data
sources, it is more efficient to use an equijoin rather than a conditional join.

You can use an equijoin structure when you are joining two or more data sources that have
two fields, one in each data source, with formats (character, numeric, or date) and values
in common. Joining a product code field in a sales data source (the host file) to the product
code field in a product data source (the cross-referenced file) is an example of an equijoin.
For more information on using equijoins, see Creating an Equijoin on page 845.

832 Information Builders

Types of Joins

The conditional join uses WHERE-based syntax to specify joins based on WHERE criteria,
not just on equality between fields. Additionally, the host and cross-referenced join fields
do not have to contain matching formats. Suppose you have a data source that lists
employees by their ID number (the host file), and another data source that lists training
courses and the employees who attended those courses (the cross-referenced file). Using
a conditional join, you could join an employee ID in the host file to an employee ID in the
cross-referenced file to determine which employees took training courses in a given date
range (the WHERE condition). For more information on conditional joins, see Using a
Conditional Join on page 861.

Joins can also be unique or non-unique. A unique, or one-to-one, join structure matches one
value in the host data source to one value in the cross-referenced data source. Joining an
employee ID in an employee data source to an employee ID in a salary data source is an
example of a unique equijoin structure.

A non-unique, or one-to-many, join structure matches one value in the host data source to
multiple values in the cross-referenced field. Joining an employee ID in a company's employee
data source to an employee ID in a data source that lists all the training classes offered by
that company results in a listing of all courses taken by each employee, or a joining of the
one instance of each ID in the host file to the multiple instances of that ID in the cross-
referenced file.

For more information on unique and non-unique joins, see Unique and Non-Unique Joined
Structures on page 835.

Creating Reports 833

16. Joining Data Sources

Joined Data StructureExample:

Consider the SALES and PRODUCT data sources. Each store record in SALES may contain
many instances of the PROD_CODE field. It would be redundant to store the associated
product information with each instance of the product code. Instead, PROD_CODE in the
SALES data source is joined to PROD_CODE in the PRODUCT data source. PRODUCT contains
a single instance of each product code and related product information, thus saving space
and making it easier to maintain product information. The joined structure, which is an
example of an equijoin, is illustrated below:

Data Sources You Can and Cannot JoinReference:

The use of data sources as host files and cross-referenced files in joined structures depends
on the types of data sources you are joining:

Typically, joins can be established between any FOCUS-readable files.

You cannot join token-delimited files.

Data sources protected by DBA security may be joined, with certain restrictions. For
details, see Notes on DBA Security for Joined Data Structures on page 835.

Conditional joins are supported only for FOCUS, VSAM, ADABAS, IMS, and all relational
data sources.

834 Information Builders

Types of Joins

Notes on DBA Security for Joined Data StructuresReference:

You can join a data source with DBA protection to another data source with DBA protection,
as long as they use the same password.

In addition, you can join DBA protected data sources with different passwords by adding
the DBAFILE attribute to your security definition. The DBAFILE attribute names a central
Master File that contains different passwords and restrictions for several Master Files.
If you use a DBAFILE, a user can set separate passwords for each file using the syntax:

SET PASS = pswd1 IN file1, pswd2 IN file2

Individual DBA information remains in effect for each file in the JOIN. For details about
the DBAFILE attribute, see the Describing Data manual.

You can also join a DBA-protected host file to an unprotected cross-referenced file. The
DBA information is taken from the host file.

Unique and Non-Unique Joined Structures

How to:

Correct for Lagging Values With a Unique Join

In a unique joined structure, one value in the host field corresponds to one value in the
cross-referenced field. In a non-unique joined structure, one value in the host field corresponds
to multiple values in the cross-referenced field.

The ALL parameter in a JOIN command indicates that the joined structure is non-unique.

Omit the ALL parameter only when you are sure that the joined structure is unique.
Omitting the ALL parameter reduces overhead.

The ALL parameter does not interfere with the proper creation of the joined structure
even if it is unique. Use the ALL parameter if you are not sure whether the joined structure
is unique. This ensures that your reports contains all relevant data from the
cross-referenced file, regardless of whether the structure is unique.

Creating Reports 835

16. Joining Data Sources

A Unique Equijoin StructureExample:

The following example illustrates a unique joined structure. Two FOCUS data sources are
joined together: an EMPDATA data source and a SALHIST data source. Both data sources
are organized by PIN, and they are joined on a PIN field in the root segments of both files.
Each PIN has one segment instance in the EMPDATA data source, and one instance in the
SALHIST data source. To join these two data sources, issue this JOIN command:

JOIN PIN IN EMPDATA TO PIN IN SALHIST

A Non-Unique Equijoin StructureExample:

If a field value in the host file can appear in many segment instances in the cross-referenced
file, then you should include the ALL phrase in the JOIN syntax. This structure is called a
non-unique joined structure.

For example, assume that two FOCUS data sources are joined together: the JOB data source
and an EDUCFILE data source which records employee attendance at in-house courses. The
joined structure is shown in the following diagram.

The JOB data source is organized by employee, but the EDUCFILE data source is organized
by course. The data sources are joined on the EMP_ID field. Since an employee has one
position but can attend several courses, the employee has one segment instance in the
JOB data source but can have as many instances in the EDUCFILE data source as courses
attended.

836 Information Builders

Types of Joins

To join these two data sources, issue the following JOIN command, using the ALL phrase:

JOIN EMP_ID IN JOB TO ALL EMP_ID IN EDUCFILE

How to Correct for Lagging Values With a Unique JoinSyntax:

If a parent segment has two or more unique child segments that each have multiple children,
the report may incorrectly display a missing value. The remainder of the child values may
then be misaligned in the report. These misaligned values are called lagging values. The
JOINOPT parameter ensures proper alignment of your output by correcting for lagging values.

SET JOINOPT={NEW|OLD}

where:

NEW

Specifies that segments be retrieved from left to right and from top to bottom, which
results in the display of all data for each record, properly aligned. Missing values only
occur when they exist in the data.

OLD

Specifies that segments be retrieved as unique segments, which results in the display
of missing data in a report where all records should have values. This might cause lagging
values. OLD is the default value.

Creating Reports 837

16. Joining Data Sources

Correcting for Lagging Values in a Procedure With Unique Segments and Multiple
Children

Example:

This example is a hypothetical scenario in which you would use the JOINOPT parameter to
correct for lagging values. Lagging values display missing data such that each value appears
off by one line.

A single-segment host file (ROUTES) is joined to two files (ORIGIN and DEST), each having
two segments. The files are joined to produce a report that shows each train number, along
with the city that corresponds to each station.

The following request prints the city of origin (OR_CITY) and the destination city (DE_CITY).
Note that missing data is generated, causing the data for stations and corresponding cities
to lag, or be off by one line.

TABLE FILE ROUTES
PRINT TRAIN_NUM
OR_STATION OR_CITY
DE_STATION DE_CITY
END

The output is:

TRAIN_NUM OR_STATION OR_CITY DE_STATION DE_CITY
--------- ---------- ------- ---------- -------
101 NYC NEW YORK ATL .
202 BOS BOSTON BLT ATLANTA
303 DET DETROIT BOS BALTIMORE
404 CHI CHICAGO DET BOSTON
505 BOS BOSTON STL DETROIT
505 BOS . STL ST. LOUIS

Issuing SET JOINOPT=NEW enables segments to be retrieved in the expected order (from
left to right and from top to bottom), without missing data.

SET JOINOPT=NEW
TABLE FILE ROUTES
PRINT TRAIN_NUM
OR_STATION OR_CITY
DE_STATION DE_CITY
END

The correct report has only 5 lines instead of 6, and the station and city data is properly
aligned. The output is:

TRAIN_NUM OR_STATION OR_CITY DE_STATION DE_CITY
--------- ---------- ------- ---------- -------
101 NYC NEW YORK ATL ATLANTA
202 BOS BOSTON BLT BALTIMORE
303 DET DETROIT BOS BOSTON
404 CHI CHICAGO DET DETROIT
505 BOS BOSTON STL ST. LOUIS

838 Information Builders

Types of Joins

Recursive Joined Structures

Reference:

Usage Notes for Recursive Joined Structures

You can join a FOCUS or IMS data source to itself, creating a recursive structure. In the
most common type of recursive structure, a parent segment is joined to a descendant
segment, so that the parent becomes the child of the descendant. This technique (useful
for storing bills of materials, for example) enables you to report from data sources as if they
have more segment levels than is actually the case.

Understanding Recursive Joined StructuresExample:

For example, the GENERIC data source shown below consists of Segments A and B.

The following request creates a recursive structure:

JOIN FIELD_B IN GENERIC TAG G1 TO FIELD_A IN GENERIC TAG G2 AS RECURSIV

Creating Reports 839

16. Joining Data Sources

This results in the joined structure (shown below).

Note that the two segments are repeated on the bottom. To refer to the fields in the repeated
segments (other than the field to which you are joining), prefix the tag names to the field
names and aliases and separate them with a period, or append the first four characters of
the JOIN name to the field names and aliases. In the above example, the JOIN name is
RECURSIV. You should refer to FIELD_B in the bottom segment as G2.FIELD_B (or
RECUFIELD_B). For related information, see Usage Notes for Recursive Joined Structures on
page 840.

Usage Notes for Recursive Joined StructuresReference:

You must either specify a unique JOIN name, or use tag names in the JOIN command.
Otherwise, you will not be able to refer to the fields in the repeated segments at the
bottom of the join structure.

If you use tag names in a recursive joined structure, note the following guidelines:

If tag names are specified in a recursive join, duplicate field names must be qualified
with the tag name.

If a join name is specified and tag names are not specified in a recursive join, duplicate
field names must be prefixed with the first four characters of the join name.

840 Information Builders

Types of Joins

If both a join name and a tag name are specified in a recursive join, the tag name
must be used as a qualifier.

The tag name must be used as the field name qualifier in order to retrieve duplicate
field names in a non-recursive join. If you do not qualify the field name, the first
occurrence is retrieved.

You may use a DEFINE-based join (see How to Join From a Virtual Field to a Real Field on
page 856) to join a virtual field in a descendant segment to a field in the parent segment.

You can extend a recursive structure by issuing multiple JOIN commands from the bottom
repeat segment in the structure to the parent segment, creating a structure up to 16
levels deep.

For FOCUS data sources, the field in the parent segment to which you are joining must
be indexed.

For IMS data sources, the following applies:

The parent segment must be the root segment of the data source.

The field to which you are joining must be both a key field and a primary or secondary
index.

You need a duplicate PCB in the PSB for every recursive join you create.

Using Recursive Joined StructuresExample:

This example explains how to use recursive joins to store and report on a bill of materials.
Suppose you are designing a data source called AIRCRAFT, that contains the bill of materials
for a company's aircraft. The data source records data on three levels of airplane parts:

Major divisions, such as the cockpit or cabin.

Parts of divisions, such as instrument panels and seats.

Subparts, such as nuts and bolts.

The data source must record each part, the part description, and the smaller parts composing
the part. Some parts, such as nuts and bolts, are common throughout the aircraft. If you
design a three-segment structure, one segment for each level of parts, descriptions of
common parts are repeated in every place they are used.

Creating Reports 841

16. Joining Data Sources

To reduce this repetition, design a data source that has only two segments (shown in the
following diagram). The top segment describes each part of the aircraft, large and small.
The bottom segment lists the component parts without descriptions.

Every part (except for the largest divisions) appears in both the top segment, where it is
described, and in the bottom segment, where it is listed as one of the components of a
larger part. (The smallest parts, such as nuts and bolts, appear in the top segment without
an instance of a child in the bottom segment.) Note that each part, no matter how often it
is used in the aircraft, is described only once.

If you join the bottom segment to the top segment, the descriptions of component parts in
the bottom segment can be retrieved. The first-level major divisions can also be related to
third-level small parts, going from the first level to the second level to the third level. Thus,
the structure behaves as a three-level data source, although it is actually a more efficient
two-level source.

For example, CABIN is a first-level division appearing in the top segment. It lists SEATS as
a component in the bottom segment. SEATS also appears in the top segment. It lists BOLTS
as a component in the bottom segment. If you join the bottom segment to the top segment,
you can go from CABIN to SEATS and from SEATS to BOLTS.

Join the bottom segment to the top segment with this JOIN command:

JOIN SUBPART IN AIRCRAFT TO PART IN AIRCRAFT AS SUB

842 Information Builders

Types of Joins

This creates the following recursive structure.

You can then produce a report on all three levels of data with this TABLE command (the field
SUBDESCRIPT describes the contents of the field SUBPART):

TABLE FILE AIRCRAFT
PRINT SUBPART BY PART BY SUBPART BY SUBDESCRIPT
END

How the JOIN Command Works

Reference:

Increasing Retrieval Speed in Joined Data Sources

The JOIN command enables you to report from two or more related data sources with a
single request. Joined data sources remain physically separate, but are treated as one. Up
to 63 joins can be in effect at any one time.The join applies to all requests run during the
session in which it is issued, unless it is explicitly cleared. For details about session
boundaries in FOCUS, see the Developing Applications manual.

Creating Reports 843

16. Joining Data Sources

When two data sources are joined, one is called the host file; the other is called the cross-
referenced file. Each time a record is retrieved from the host file, the corresponding fields
in the cross-referenced file are identified if they are referenced in the report request. The
records in the cross-referenced file containing the corresponding values are then retrieved.

Two data sources can be joined using a conditional join whenever you can define an
expression that determines how to relate records in the host file to records in the cross-
referenced file. Two data sources can be joined using an equijoin when they have fields in
each data source with formats (character, numeric, or date) and values in common. The
common formats ensure proper interpretation of the values. For example, suppose that you
need to read data from two data sources: one named JOB, containing job information, and
a second named SALARY, containing salary information. You can join these two data sources
if each has a field identifying the same group of employees in the same way: by last name,
serial number, or social security number. The join becomes effective when common values
(for example, common social security numbers) are retrieved for the joined fields.

After you issue the JOIN command, you can issue a single TABLE, TABLEF, MATCH FILE, or
GRAPH request to read the joined data source. You only need to specify the first data source
(host file) to produce a report from two or more data sources. For example, assume you are
writing a report from the JOB and SALARY data sources. You execute the following equijoin:

JOIN EMP_ID IN JOB TO ALL EMP_ID IN SALARY

This command joins the field EMP_ID in the JOB file to the field EMP_ID in the SALARY file.
JOB is the host file and SALARY is the cross-referenced file. You then execute this report
request:

TABLE FILE JOB
PRINT SALARY AND JOB_TITLE BY EMP_ID
END

The first record retrieved is a JOB file record for employee #071382660. Next, all records
in the SALARY data source containing employee #071382660 are retrieved. This process
continues until all the records have been read.

You can base your join on:

Real fields that have been declared in the Master Files of the host and cross-referenced
data sources, respectively. See How to Join Real Fields on page 845.

A virtual field in the host data source (that has either been defined in the Master File or
with a DEFINE command) and a real field that has been declared in the Master File of
the cross-referenced data source. See How to Join From a Virtual Field to a Real Field on
page 856.

A condition you specify in the JOIN command itself. See How to Create a Conditional JOIN
on page 862.

844 Information Builders

How the JOIN Command Works

Increasing Retrieval Speed in Joined Data SourcesReference:

You can increase retrieval speed in joined structures by using an external index. However,
the target segment for the index cannot be a cross-referenced segment. For related
information, see Improving Report Processing on page 903.

Creating an Equijoin

In this section:

Joining From a Virtual Field to a Real Field Using an Equijoin

Data Formats of Shared Fields

Joining Fields With Different Numeric Data Types

How to:

Join Real Fields

Reference:

Requirements for Cross-Referenced Fields in an Equijoin

Restrictions on Group Fields

Usage Notes for Inner and Outer JOIN Command Syntax

The most common joined structures are based on real fields that have been declared in the
Master Files of the host and cross-referenced data sources, respectively.

How to Join Real FieldsSyntax:

The following JOIN syntax requires that the fields you are using to join the files are real fields
declared in the Master File. This join may be a simple one based on one field in each file
to be joined, or a multi-field join for data sources that support this type of behavior. The
following syntax describes the simple and multi-field variations:

JOIN [LEFT_OUTER|INNER] hfld1 [AND hfld2 ...] IN hostfile [TAG tag1]
 TO [UNIQUE|MULTIPLE]

crfield [AND crfld2 ...] IN crfile [TAG tag2] [AS joinname]
END

where:

JOIN hfld1

Is the name of a field in the host file containing values shared with a field in the cross-
referenced file. This field is called the host field.

Creating Reports 845

16. Joining Data Sources

AND hfld2...

Can be an additional field in the host file, with the caveats noted below. The phrase
beginning with AND is required when specifying multiple fields.

When you are joining two FOCUS data sources you can specify up to four alphanumeric
fields in the host file that, if concatenated, contain values shared with the
cross-referenced file. You may not specify more than one field in the cross-referenced
file when the suffix of the file is FOC. For example, assume the cross-referenced file
contains a phone number field with an area code-prefix-exchange format. The host
file has an area code field, a prefix field, and an exchange field. You can specify
these three fields to join them to the phone number field in the cross-referenced file.
The JOIN command treats the three fields as one. Other data sources do not have
this restriction on the cross-referenced file.

For data adapters that support multi-field and concatenated joins, you can specify
up to 16 fields. See your data adapter documentation for specific information about
supported join features. Note that FOCUS data sources do not support these joins.

INNER

Specifies an inner join. If you do not specify the type of join in the JOIN command, the
ALL parameter setting determines the type of join to perform.

LEFT_OUTER

Specifies a left outer join. If you do not specify the type of join in the JOIN command,
the ALL parameter setting determines the type of join to perform.

IN hostfile

Is the name of the host file.

TAG tag1

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in the host file.

The tag name for the host file must be the same in all the JOIN commands of a joined
structure.

846 Information Builders

Creating an Equijoin

TO [UNIQUE|MULTIPLE] crfld1

Is the name of a field in the cross-referenced file containing values that match those of
hfld1 (or of concatenated host fields). This field is called the cross-referenced field.

Note: Unique returns only one instance and, if there is no matching instance in the
cross-referenced file, it supplies default values (blank for alphanumeric fields and zero
for numeric fields).

Use the MULTIPLE parameter when crfld1 may have multiple instances in common with
one value in hfld1. Note that ALL is a synonym for MULTIPLE, and omitting this parameter
entirely is a synonym for UNIQUE. See Unique and Non-Unique Joined Structures on page
835 for more information.

AND crfld2...

Is the name of a field in the cross-referenced file with values in common with hfld2.

Note: crfld2 may be qualified. This field is only available for data adapters that support
multi-field joins.

IN crfile

Is the name of the cross-referenced file.

TAG tag2

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in cross-referenced files. In a recursive
join structure, if no tag name is provided, all field names and aliases are prefixed with
the first four characters of the join name. For related information, see Usage Notes for
Recursive Joined Structures on page 840.

The tag name for the host file must be the same in all the JOIN commands of a joined
structure.

AS joinname

Is an optional name of up to eight characters that you may assign to the join structure.
You must assign a unique name to a join structure if:

You want to ensure that a subsequent JOIN command does not overwrite it.

You want to clear it selectively later.

The structure is recursive. See Recursive Joined Structures on page 839.

Note: If you do not assign a name to the join structure with the AS phrase, the name
is assumed to be blank. A join without a name overwrites an existing join without a name.

END

Required when the JOIN command is longer than one line; it terminates the command.

Creating Reports 847

16. Joining Data Sources

Creating a Simple Unique Joined StructureExample:

An example of a simple unique join is shown below:

JOIN JOBCODE IN EMPLOYEE TO JOBCODE IN JOBFILE AS JJOIN

Creating an Inner JoinExample:

The following procedure creates three FOCUS data sources:

EMPINFO, which contains the fields EMP_ID, LAST_NAME, FIRST_NAME, and
CURR_JOBCODE from the EMPINFO segment of the EMPLOYEE data source.

JOBINFO, which contains the JOBCODE and JOB_DESC fields from the JOBFILE data
source.

EDINFO, which contains the EMP_ID, COURSE_CODE, and COURSE_NAME fields from
the EDUCFILE data source.

848 Information Builders

Creating an Equijoin

The procedure then adds an employee to EMPINFO named Fred Newman who has no matching
record in the JOBINFO or EDINFO data sources.

TABLE FILE EMPLOYEE
SUM LAST_NAME FIRST_NAME CURR_JOBCODE
BY EMP_ID
ON TABLE HOLD AS EMPINFO FORMAT FOCUS INDEX EMP_ID CURR_JOBCODE
END
-RUN

TABLE FILE JOBFILE
SUM JOB_DESC
BY JOBCODE
ON TABLE HOLD AS JOBINFO FORMAT FOCUS INDEX JOBCODE
END
-RUN

TABLE FILE EDUCFILE
SUM COURSE_CODE COURSE_NAME
BY EMP_ID
ON TABLE HOLD AS EDINFO FORMAT FOCUS INDEX EMP_ID
END
-RUN

MODIFY FILE EMPINFO
FREEFORM EMP_ID LAST_NAME FIRST_NAME CURR_JOBCODE
MATCH EMP_ID
ON NOMATCH INCLUDE
ON MATCH REJECT
DATA
111111111, NEWMAN, FRED, C07,$
END

The following request prints the contents of EMPINFO. Note that Fred Newman has been
added to the data source:

TABLE FILE EMPINFO
PRINT *
END

Creating Reports 849

16. Joining Data Sources

The output is:

EMP_ID LAST_NAME FIRST_NAME CURR_JOBCODE
------ --------- ---------- ------------
071382660 STEVENS ALFRED A07
112847612 SMITH MARY B14
117593129 JONES DIANE B03
119265415 SMITH RICHARD A01
119329144 BANNING JOHN A17
123764317 IRVING JOAN A15
126724188 ROMANS ANTHONY B04
219984371 MCCOY JOHN B02
326179357 BLACKWOOD ROSEMARIE B04
451123478 MCKNIGHT ROGER B02
543729165 GREENSPAN MARY A07
818692173 CROSS BARBARA A17
111111111 NEWMAN FRED C07

The following JOIN command creates an inner join between the EMPINFO data source and
the JOBINFO data source.

JOIN CLEAR *
JOIN INNER CURR_JOBCODE IN EMPINFO TO MULTIPLE JOBCODE IN JOBINFO AS J0

Note that the JOIN command specifies a multiple join. In a unique join, the cross-referenced
segment is never considered missing, and all records from the host file display on the report
output. Default values (blank for alphanumeric fields and zero for numeric fields) display if
no actual data exists.

The following request displays fields from the joined structure:

TABLE FILE EMPINFO
PRINT LAST_NAME FIRST_NAME JOB_DESC
END

Fred Newman is omitted from the report output because his job code does not have a match
in the JOBINFO data source:

LAST_NAME FIRST_NAME JOB_DESC
--------- ---------- --------
STEVENS ALFRED SECRETARY
SMITH MARY FILE QUALITY
JONES DIANE PROGRAMMER ANALYST
SMITH RICHARD PRODUCTION CLERK
BANNING JOHN DEPARTMENT MANAGER
IRVING JOAN ASSIST.MANAGER
ROMANS ANTHONY SYSTEMS ANALYST
MCCOY JOHN PROGRAMMER
BLACKWOOD ROSEMARIE SYSTEMS ANALYST
MCKNIGHT ROGER PROGRAMMER
GREENSPAN MARY SECRETARY
CROSS BARBARA DEPARTMENT MANAGER

850 Information Builders

Creating an Equijoin

Creating a Left Outer JoinExample:

The following JOIN command creates a left outer join between the EMPINFO data source
and the EDINFO data source:

JOIN CLEAR *
JOIN LEFT_OUTER EMP_ID IN EMPINFO TO MULTIPLE EMP_ID IN EDINFO AS J1

The following request displays fields from the joined structure:

TABLE FILE EMPINFO
PRINT LAST_NAME FIRST_NAME COURSE_NAME
END

All employee records display on the report output. The records for those employees with no
matching records in the EDINFO data source display the missing data character (.) in the
COURSE_NAME column. If the join were unique, blanks would display instead of the missing
data character.

LAST_NAME FIRST_NAME COURSE_NAME
--------- ---------- -----------
STEVENS ALFRED FILE DESCRPT & MAINT
SMITH MARY BASIC REPORT PREP FOR PROG
JONES DIANE FOCUS INTERNALS
SMITH RICHARD BASIC RPT NON-DP MGRS
BANNING JOHN .
IRVING JOAN .
ROMANS ANTHONY .
MCCOY JOHN .
BLACKWOOD ROSEMARIE DECISION SUPPORT WORKSHOP
MCKNIGHT ROGER FILE DESCRPT & MAINT
GREENSPAN MARY .
CROSS BARBARA HOST LANGUAGE INTERFACE
NEWMAN FRED .

Creating Two Inner Joins With a Multipath StructureExample:

The following JOIN commands create an inner join between the EMPINFO and JOBINFO data
sources and an inner join between the EMPINFO and EDINFO data sources:

JOIN CLEAR *
JOIN INNER CURR_JOBCODE IN EMPINFO TO MULTIPLE JOBCODE IN JOBINFO AS J0
JOIN INNER EMP_ID IN EMPINFO TO MULTIPLE EMP_ID IN EDINFO AS J1

Creating Reports 851

16. Joining Data Sources

The structure created by the two joins has two independent paths:

 SEG01
 01 S1

*EMP_ID **I
*CURR_JOBCODE**I
*LAST_NAME **
*FIRST_NAME **
* **

 I
 +-----------------+
 I I
 I SEG01 I SEG01
 02 I KM 03 I KM
..............
:EMP_ID ::K :JOBCODE ::K
:COURSE_CODE :: :JOB_DESC ::
:COURSE_NAME :: : ::
: :: : ::
: :: : ::
:............:: :............::
: :
 JOINED EDINFO JOINED JOBINFO

The following request displays fields from the joined structure:

SET MULTIPATH=SIMPLE
TABLE FILE EMPINFO
PRINT LAST_NAME FIRST_NAME IN 12 COURSE_NAME JOB_DESC
END

With MULTIPATH=SIMPLE, the independent paths create independent joins. All employee
records accepted by either join display on the report output. Only Fred Newman (who has
no matching record in either of the cross-referenced files) is omitted:

LAST_NAME FIRST_NAME COURSE_NAME JOB_DESC
--------- ---------- ----------- --------
STEVENS ALFRED FILE DESCRPT & MAINT SECRETARY
SMITH MARY BASIC REPORT PREP FOR PROG FILE QUALITY
JONES DIANE FOCUS INTERNALS PROGRAMMER ANALYST
SMITH RICHARD BASIC RPT NON-DP MGRS PRODUCTION CLERK
BANNING JOHN . DEPARTMENT MANAGER
IRVING JOAN . ASSIST.MANAGER
ROMANS ANTHONY . SYSTEMS ANALYST
MCCOY JOHN . PROGRAMMER
BLACKWOOD ROSEMARIE DECISION SUPPORT WORKSHOP SYSTEMS ANALYST
MCKNIGHT ROGER FILE DESCRPT & MAINT PROGRAMMER
GREENSPAN MARY . SECRETARY
CROSS BARBARA HOST LANGUAGE INTERFACE DEPARTMENT MANAGER

852 Information Builders

Creating an Equijoin

With MULTIPATH=COMPOUND, only employees with matching records in both of the cross-
referenced files display on the report output:

LAST_NAME FIRST_NAME COURSE_NAME JOB_DESC
--------- ---------- ----------- --------
STEVENS ALFRED FILE DESCRPT & MAINT SECRETARY
SMITH MARY BASIC REPORT PREP FOR PROG FILE QUALITY
JONES DIANE FOCUS INTERNALS PROGRAMMER ANALYST
SMITH RICHARD BASIC RPT NON-DP MGRS PRODUCTION CLERK
BLACKWOOD ROSEMARIE DECISION SUPPORT WORKSHOP SYSTEMS ANALYST
MCKNIGHT ROGER FILE DESCRPT & MAINT PROGRAMMER
CROSS BARBARA HOST LANGUAGE INTERFACE DEPARTMENT MANAGER

Requirements for Cross-Referenced Fields in an EquijoinReference:

The cross-referenced fields used in a JOIN must have the following characteristics in specific
data sources:

In relational data sources and in a CA-DATACOM/DB data source, the cross-referenced
field can be any field.

In FOCUS and XFOCUS data sources, the cross-referenced field must be indexed. Indexed
fields have the attribute FIELDTYPE=I or INDEX=I or INDEX=ON in the Master File. If the
cross-referenced field does not have this attribute, append the attribute to the field
declaration in the Master File and rebuild the file using the REBUILD utility with the INDEX
option. This adds an index to your FOCUS or Fusion data source.

Note: The indexed fields can be external. See the Describing Data manual for more
information about indexed fields and the Rebuild tool.

In IMS data sources, the cross-referenced field must be a key field in the root segment.
It can be a primary or secondary index.

In fixed format or comma-delimited sequential files, any field can be a cross-referenced
field. However, both the host and cross-referenced file must be retrieved in ascending
order on the named (key) fields. If the data is not in the same sort order, errors are
displayed. A many-to-many join is not supported. A comma-delimited file used as the
cross-referenced file in the join must consist of only one segment. If the join is based
on multiple fields, a fixed format sequential file must consist of a single segment. If the
cross-referenced fixed format sequential file contains only one segment, the host file
must have a segment declaration.

Creating Reports 853

16. Joining Data Sources

Restrictions on Group FieldsReference:

When group fields are used in a joined structure, the group in the host file and the group in
the cross-referenced file must have the same number of elements:

In ISAM data sources, the field must be the full primary key if you issue a unique join,
or an initial subset of the primary key if you issue a non-unique join. In the Master File,
the primary key is described by a key GROUP; the initial subset is the first field in that
group.

In VSAM KSDS data sources, the field must be the full primary or alternate key if you
issue a unique join, or an initial subset of the primary or alternate key if you issue a
non-unique join. In the Master File, the primary key is described by a key GROUP. The
initial subset is the first field in that group.

In VSAM ESDS data sources, the field can be any field, as long as the file is already
sorted on that field.

In Model 204 data sources, the field must be a key field. In the Access File, the types
of key fields are alphanumeric (KEY), ordered character (ORA), ordered numeric (ORN),
numeric range (RNG), invisible (IVK), and invisible range (IVR).

In ADABAS data sources, the field must be a descriptor field, a superdescriptor defined
with the .SPR or .NOP field name suffix, or a subdescriptor defined with the .NOP field
name suffix. The field description in the Master File must contain the attribute
FIELDTYPE=I.

In the Access File, the cross-referenced segment must specify ACCESS=ADBS and either
CALLTYPE=FIND or CALLTYPE=RL. If CALLTYPE=RL, the host field can be joined to the
high-order portion of a descriptor, superdescriptor, or subdescriptor, if the high-order
portion is longer than the host field.

In CA-IDMS/DB data sources, the field must be an indexed field on a network record
identified by the attribute FIELDTYPE=I in the Master File, a CA-IDMS/DB CALC field on
a network record identified by the CLCFLD phrase in the Access File, or any field on an
LRF or ASF record.

Usage Notes for Inner and Outer JOIN Command SyntaxReference:

The SET ALL and SET CARTESIAN commands are ignored by the syntax.

The ALL. parameter is not supported. If the ALL. parameter is used, the following message
displays:

(FOC32452) Use of ALL. with LEFT_OUTER/INNER not allowed

If you define multiple joins, the resulting structure can be a single path or multi-path data
source.

854 Information Builders

Creating an Equijoin

If the setting MULTIPATH=SIMPLE is in effect and the report is based on multiple
paths, each of the individual joins is constructed separately without regard to the
other joins, and the matching records from each of the separate paths displays on
the report output. Therefore, the output can contain records that would have been
omitted if only one of the joins was in effect.

If the setting MULTIPATH=COMPOUND is in effect with a multi-path report, or if the
report displays data only from a single path, the report output displays only those
records that satisfy all of the joins.

Joining From a Virtual Field to a Real Field Using an Equijoin

How to:

Join From a Virtual Field to a Real Field

Reference:

Notes on Using Virtual Fields With Joined Data Sources

You can use DEFINE-based JOIN syntax to create a virtual host field that you can join to a
real cross-referenced field. The DEFINE expression that creates the virtual host field may
contain only fields in the host file and constants. (It may not contain fields in the cross-
referenced file.) You can do more than one join from a virtual field.

You can create the virtual host field in a separate DEFINE command or in a Master File. For
information on Master Files, see the Describing Data manual.

The same report request can use JOIN-based virtual fields, and virtual fields unrelated to
the join.

Note that if you are creating a virtual field in a DEFINE command, you must issue the DEFINE
after the JOIN command, but before the TABLE request since a JOIN command clears all
fields created by DEFINE commands for the host file and the joined structure. Virtual fields
defined in Master Files are not cleared.

Tip: If a DEFINE command precedes the JOIN command, you can set KEEPDEFINES ON to
reinstate virtual fields during the parsing of a subsequent JOIN command. For more
information, see Preserving Virtual Fields Using KEEPDEFINES on page 865.

Creating Reports 855

16. Joining Data Sources

How to Join From a Virtual Field to a Real FieldSyntax:

The DEFINE-based JOIN command enables you to join a virtual field in the host file to a real
field in the cross-referenced file. The syntax is:

JOIN [LEFT_OUTER|INNER] deffld WITH host_field ...
 IN hostfile [TAG tag1]
 TO [UNIQUE|MULTIPLE]

cr_field IN crfile [TAG tag2] [AS joinname]
END

where:

JOIN deffld

Is the name of a virtual field for the host file (the host field). The virtual field can be
defined in the Master File or with a DEFINE command. For related information, see Notes
on Using Virtual Fields With Joined Data Sources on page 857.

WITH host_field

Is the name of any real field in the host segment with which you want to associate the
virtual field. This association is required to locate the virtual field.

The WITH phrase is required unless the KEEPDEFINES parameter is set to ON and deffld
was defined prior to issuing the JOIN command.

To determine which segment contains the virtual field, use the ? DEFINE query after
issuing the DEFINE command. See the Developing Applications manual for details about
Query commands.

INNER

Specifies an inner join. If you do not specify the type of join in the JOIN command, the
ALL parameter setting determines the type of join to perform.

LEFT_OUTER

Specifies a left outer join. If you do not specify the type of join in the JOIN command,
the ALL parameter setting determines the type of join to perform.

IN hostfile

Is the name of the host file.

TAG tag1

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in host files.

The tag name for the host file must be the same in all JOIN commands of a joined
structure.

856 Information Builders

Creating an Equijoin

TO [UNIQUE|MULTIPLE] crfld1

Is the name of a real field in the cross-referenced data source whose values match those
of the virtual field. This must be a real field declared in the Master File.

Note: Unique returns only one instance and, if there is no matching instance in the
cross-referenced file, it supplies default values (blank for alphanumeric fields and zero
for numeric fields).

Use the MULTIPLE parameter when crfld1 may have multiple instances in common with
one value in hfld1. Note that ALL is a synonym for MULTIPLE, and omitting this parameter
entirely is a synonym for UNIQUE. See Unique and Non-Unique Joined Structures on page
835 for more information.

IN crfile

Is the name of the cross-referenced file.

TAG tag2

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in cross-referenced files. In a recursive
joined structure, if no tag name is provided, all field names and aliases are prefixed with
the first four characters of the join name. For related information, see Usage Notes for
Recursive Joined Structures on page 840.

The tag name for the host file must be the same in all JOIN commands of a joined
structure.

AS joinname

Is an optional name of up to eight characters that you may assign to the joined structure.
You must assign a unique name to a join structure if:

You want to ensure that a subsequent JOIN command does not overwrite it.

You want to clear it selectively later.

The structure is recursive, and you do not specify tag names. See Recursive Joined
Structures on page 839.

If you do not assign a name to the joined structure with the AS phrase, the name is
assumed to be blank. A join without a name overwrites an existing join without a name.

END

Required when the JOIN command is longer than one line; terminates the command.

Notes on Using Virtual Fields With Joined Data SourcesReference:

Requests reading joined data sources can contain virtual fields that are defined either:

In the Master File of the host data source.

Creating Reports 857

16. Joining Data Sources

In a DEFINE command, in which the syntax

DEFINE FILE hostfile

identifies the host data source in the joined structure.

Note: The expression defining the host field for the join can use only host fields and
constants.

All other virtual fields can contain real fields from the host file and the cross-referenced
file.

Tip: Since issuing the JOIN command clears all DEFINE commands for the host file and
the joined structure, you must issue the DEFINE command after the JOIN or turn
KEEPDEFINES ON to preserve the virtual fields. For more information, see Preserving
Virtual Fields During Join Parsing on page 865.

Creating a Virtual Host Field for a Joined StructureExample:

Suppose that a retail chain sends four store managers to attend classes. Each person,
identified by an ID number, manages a store in a different city. The stores and the cities in
which they are located are contained in the SALES data source. The manager IDs, the
classes, and dates the managers attended are contained in the EDUCFILE data source.

The following procedure lists the courses that the managers attended, identifying the
managers by the cities in which they work. Note the three elements in the procedure:

The JOIN command joins the SALES data source to the EDUCFILE data source, based on
the values common to the ID_NUM field (which contains manager IDs) in SALES and the
EMP_ID field in EDUCFILE. Note that the ID_NUM field does not exist yet and will be
created by the DEFINE command.

The DEFINE command creates the ID_NUM field, assigning to it the IDs of the managers
working in the four cities.

The TABLE command produces the report.

The procedure is:

JOIN ID_NUM WITH CITY IN SALES TO ALL EMP_ID IN EDUCFILE AS SALEDUC

DEFINE FILE SALES
ID_NUM/A9 = DECODE CITY ('NEW YORK' 451123478 'NEWARK' 119265415
 'STAMFORD' 818692173 'UNIONDALE' 112847612);
END

TABLE FILE SALES
PRINT DATE_ATTEND BY CITY BY COURSE_NAME
END

858 Information Builders

Creating an Equijoin

The output is:

CITY COURSE_NAME DATE_ATTEND
---- ----------- -----------
NEW YORK FILE DESCRPT & MAINT 81/11/15
NEWARK BASIC RPT NON-DP MGRS 82/08/24
STAMFORD BASIC REPORT PREP DP MGRS 82/08/02
 HOST LANGUAGE INTERFACE 82/10/21
UNIONDALE BASIC REPORT PREP FOR PROG 81/11/16
 FILE DESCRPT & MAINT 81/11/15

Data Formats of Shared Fields
Generally, the fields containing the shared values in the host and cross-referenced files
must have the same data formats.

If you specify multiple host file fields, the JOIN command treats the fields as one
concatenated field. Add the field format lengths to obtain the length of the concatenated
field. You must observe the following rules:

If the host field is alphanumeric, the cross-referenced field must also be alphanumeric
and have the same length.

The formats may have different edit options.

Note that a text field cannot be used to join data sources.

If the host field is a numeric field, the host field format, as specified by the USAGE (or
FORMAT) attribute in the Master File, must agree in type (I, P, F, or D) with the format of
the cross-referenced field as specified by the USAGE (or FORMAT) attribute. For details,
see Joining Fields With Different Numeric Data Types on page 860.

The edit options may differ. The length may also differ, but with the following effect:

If the format of the host field (as specified by the USAGE attribute) is packed decimal
(P) or integer (I) and is longer than the cross-referenced field format (specified by the
USAGE attribute for FOCUS data sources or the ACTUAL attribute for other data
sources), only the length of the cross-referenced field format is compared, using only
the right-most digits of the shorter field. For example, if a five-digit packed decimal
format field is joined to a three-digit packed decimal format field, when a host record
with a five-digit number is retrieved, all cross-referenced records with the last three
digits of that number are also retrieved.

If the format of the host field is double precision (D), the left-most eight bytes of each
field are compared.

If the host field is a date field, the cross-referenced field must also be a date field. Date
and date-time fields must have the same components, not necessarily in the same order.

Creating Reports 859

16. Joining Data Sources

The host and cross-referenced fields can be described as groups in the Master File if
they contain the same number of component fields. The corresponding component fields
in each group (for example, the first field in the host group and the first field in the
cross-referenced group) must obey the above rules. For related information, see
Restrictions on Group Fields on page 854.

If the host field is not a group field, the cross-referenced field can still be a group. If the
host field is a group, the cross-referenced field must also be a group.

Joining Fields With Different Numeric Data Types

How to:

Enable Joins With Data Type Conversion

You can join two or more data sources containing different numeric data types. For example,
you can join a field with a short packed decimal format to a field with a long packed decimal
format, or a field with an integer format to a field with a packed decimal format. This provides
enormous flexibility for creating reports from joined data sources.

When joining a shorter field to a longer field, the cross-referenced value is padded to the
length of the host field, adding spaces (for alpha fields) or hexadecimal zeros (for numeric
fields). This new value is used for searches in the cross-referenced file.

When joining a longer field to a shorter field, the FROM value is truncated. If part of your
value is truncated due to the length of the USAGE in the cross-referenced file, only records
matching the truncated value will be found in the cross-referenced file.

Note: For comparison on packed decimal fields to be accomplished properly, all signs for
positive values are converted to hex C and all signs for negative values are converted to hex
D.

How to Enable Joins With Data Type ConversionSyntax:

To enable joins with data type conversion, issue the command

SET JOINOPT = [NEW|OLD]

where:

NEW

Enables joins with data type conversion.

OLD

Disables joins with data type conversion. This value is the default.

860 Information Builders

Creating an Equijoin

Issuing Joins With Data Type ConversionExample:

Since you can join a field with a short packed decimal format to a field with a long packed
decimal format, a join can be defined in the following Master Files:

FILE=PACKED,SUFFIX=FIX,$
 SEGNAME=ONE,SEGTYPE=S0
 FIELD=FIRST,,P8,P4,INDEX=I,$

FILE=PACKED2,SUFFIX=FIX,$
 SEGNAME=ONE,SEGTYPE=S0
 FIELD=PFIRST,,P31,P16,INDEX=I,$

The JOIN command might look like this:

JOIN FIRST IN PACKED TO ALL PFIRST IN PACKED2 AS J1

When joining packed fields, the preferred sign format of X'C' for positive values and X'D' for
negative values is still required. All other non-preferred signs are converted to either X'C' or
X'D'.

Using a Conditional Join

How to:

Create a Conditional JOIN

Using conditional JOIN syntax, you can establish joins based on conditions other than equality
between fields. In addition, the host and cross-referenced join fields do not have to contain
matching formats, and the cross-referenced field does not have to be indexed.

The conditional join is supported for FOCUS and for VSAM, ADABAS, IMS, and all relational
data sources. Because each data source differs in its ability to handle complex WHERE
criteria, the optimization of the conditional JOIN syntax differs depending on the specific
data sources involved in the join and the complexity of the WHERE criteria.

The standard ? JOIN command lists every join currently in effect, and indicates any that are
based on WHERE criteria.

Creating Reports 861

16. Joining Data Sources

How to Create a Conditional JOINSyntax:

The syntax of the conditional (WHERE-based) JOIN command is

JOIN [LEFT_OUTER|INNER] FILE hostfile AT hfld1 [WITH hfld2] [TAG tag1]

 TO {UNIQUE|MULTIPLE}
 FILE crfile AT crfld [TAG tag2] [AS joinname]
 [WHERE expression1;
 [WHERE expression2;
 ...]
END

where:

INNER

Specifies an inner join. If you do not specify the type of join in the JOIN command, the
ALL parameter setting determines the type of join to perform.

LEFT_OUTER

Specifies a left outer join. If you do not specify the type of join in the JOIN command,
the ALL parameter setting determines the type of join to perform.

hostfile

Is the host Master File.

AT

Links the correct parent segment or host to the correct child or cross-referenced segment.
The field values used as the AT parameter are not used to cause the link. They are
simply used as segment references.

hfld1

Is the field name in the host Master File whose segment will be joined to the cross-
referenced data source. The field name must be at the lowest level segment in its data
source that is referenced.

tag1

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
host data source.

hfld2

Is a data source field with which to associate a DEFINE-based conditional JOIN. For a
DEFINE-based conditional join, the KEEPDEFINES setting must be ON, and you must
create the virtual fields before issuing the JOIN command.

MULTIPLE

Specifies a one-to-many relationship between from_file and to_file. Note that ALL is a
synonym for MULTIPLE.

862 Information Builders

Using a Conditional Join

UNIQUE

Specifies a one-to-one relationship between from_file and to_file. Note that ONE is a
synonym for UNIQUE.

Note: Unique returns only one instance and, if there is no matching instance in the
cross-referenced file, it supplies default values (blank for alphanumeric fields and zero
for numeric fields).

crfile

Is the cross-referenced Master File.

crfld

Is the join field name in the cross-referenced Master File. It can be any field in the
segment.

tag2

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
cross-referenced data source.

joinname

Is the name associated with the joined structure.

expression1, expression2

Are any expressions that are acceptable in a DEFINE FILE command. All fields used in
the expressions must lie on a single path.

Note: Single line JOIN syntax is not supported. The END command is required.

Using a Conditional JoinExample:

The following example joins the VIDEOTRK and MOVIES data sources on the conditions that:

The transaction date (in VIDEOTRK) is more than ten years after the release date (in
MOVIES).

The movie codes match in both data sources.

The join is performed at the segment that contains MOVIECODE in the VIDEOTRK data source,
because the join must occur at the lowest segment referenced.

Creating Reports 863

16. Joining Data Sources

The following request displays the title, most recent transaction date, and release date for
each movie in the join, and computes the number of years between this transaction date
and the release date:

JOIN FILE VIDEOTRK AT MOVIECODE TAG V1 TO ALL
 FILE MOVIES AT RELDATE TAG M1 AS JW1
 WHERE DATEDIF(RELDATE, TRANSDATE,'Y') GT 10;
 WHERE V1.MOVIECODE EQ M1.MOVIECODE;
END
TABLE FILE VIDEOTRK
 SUM TITLE/A25 AS 'Title'
 TRANSDATE AS 'Last,Transaction'
 RELDATE AS 'Release,Date'
 COMPUTE YEARS/I5 = (TRANSDATE - RELDATE)/365; AS 'Years,Difference'
 BY TITLE NOPRINT
 BY HIGHEST 1 TRANSDATE NOPRINT
END

The output is:

 Last Release Years
Title Transaction Date Difference
----- ----------- ------- ----------
ALICE IN WONDERLAND 91/06/22 51/07/21 39
ALIEN 91/06/18 80/04/04 11
ALL THAT JAZZ 91/06/25 80/05/11 11
ANNIE HALL 91/06/24 78/04/16 13
BAMBI 91/06/22 42/07/03 49
BIRDS, THE 91/06/23 63/09/27 27
CABARET 91/06/25 73/07/14 17
CASABLANCA 91/06/27 42/03/28 49
CITIZEN KANE 91/06/22 41/08/11 49
CYRANO DE BERGERAC 91/06/20 50/11/09 40
DEATH IN VENICE 91/06/26 73/07/27 17
DOG DAY AFTERNOON 91/06/23 76/04/04 15
EAST OF EDEN 91/06/20 55/01/12 36
GONE WITH THE WIND 91/06/24 39/06/04 52
JAWS 91/06/27 78/05/13 13
MALTESE FALCON, THE 91/06/19 41/11/14 49
MARTY 91/06/19 55/10/26 35
NORTH BY NORTHWEST 91/06/21 59/02/09 32
ON THE WATERFRONT 91/06/24 54/07/06 36
PHILADELPHIA STORY, THE 91/06/21 40/05/06 51
PSYCHO 91/06/17 60/05/16 31
REAR WINDOW 91/06/17 54/12/15 36
SHAGGY DOG, THE 91/06/25 59/01/09 32
SLEEPING BEAUTY 91/06/24 75/08/30 15
TIN DRUM, THE 91/06/17 80/03/01 11
VERTIGO 91/06/27 58/11/25 32

864 Information Builders

Using a Conditional Join

Preserving Virtual Fields During Join Parsing

In this section:

Preserving Virtual Fields Using KEEPDEFINES

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN

Screening Segments With Conditional JOIN Expressions

Parsing WHERE Criteria in a Join

There are two ways to preserve virtual fields during join parsing. One way is to use
KEEPDEFINES, and the second is to use DEFINE FILE SAVE and DEFINE FILE RETURN.

Preserving Virtual Fields Using KEEPDEFINES

How to:

Use KEEPDEFINES

Reference:

Usage Notes for KEEPDEFINES

The KEEPDEFINES parameter determines if a virtual field created by the DEFINE command
for a host or joined structure is retained or cleared after the JOIN command is run. It applies
when the DEFINE command precedes the JOIN command.

The prior virtual fields constitute what is called a context. Each new context creates a new
layer or command environment. When you first enter the new environment, all virtual fields
defined in the previous layer are available in the new layer. Overwriting or clearing a virtual
field definition affects only the current layer. When you return to the previous layer, its virtual
field definitions are intact.

New DEFINE fields issued after the JOIN command constitute another context, and by so
doing generate a stack of contexts. In each context, all virtual fields of all prior contexts are
accessible.

By default the KEEPDEFINES setting is OFF. With this setting, a JOIN command removes
prior virtual fields.

When KEEPDEFINES is set to ON, virtual fields are reinstated during the parsing of a
subsequent JOIN command.

A JOIN CLEAR as_name command removes all the contexts that were created after the JOIN
as_name was issued.

Creating Reports 865

16. Joining Data Sources

For DEFINE-based conditional joins, the KEEPDEFINES setting must be ON. You then must
create all virtual fields before issuing the DEFINE-based conditional JOIN command. This
differs from traditional DEFINE-based joins in which the virtual field is created after the JOIN
command. In addition, a virtual field may be part of the JOIN syntax or WHERE syntax.

DEFINE commands issued after the JOIN command do not replace or clear the virtual fields
created before the join, since a new file context is created.

How to Use KEEPDEFINESSyntax:

SET KEEPDEFINES = {ON|OFF}

where:

ON

Retains the virtual field after a JOIN command is run.

OFF

Clears the virtual field after a JOIN command is run. This value is the default.

Usage Notes for KEEPDEFINESReference:

Virtual fields defined prior to setting KEEPDEFINES ON are not preserved after a JOIN
command.

Preserving Virtual Fields During Join Parsing With KEEPDEFINESExample:

The first virtual field, DAYSKEPT, is defined prior to issuing any joins, but after setting
KEEPDEFINES to ON. DAYSKEPT is the number of days between the return date and rental
date for a videotape:

SET KEEPDEFINES = ON
DEFINE FILE VIDEOTRK
DAYSKEPT/I5 = RETURNDATE - TRANSDATE;
END

The ? DEFINE query command shows that this is the only virtual field defined at this point:

? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

The following request prints all transactions in which the number of days kept is two:

TABLE FILE VIDEOTRK
PRINT MOVIECODE TRANSDATE RETURNDATE DAYSKEPT
COMPUTE ACTUAL_DAYS/I2 = RETURNDATE-TRANSDATE;
WHERE DAYSKEPT EQ 2
END

866 Information Builders

Preserving Virtual Fields During Join Parsing

The first few lines of output show that each return date is two days after the transaction
date:

MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
001MCA 91/06/27 91/06/29 2 2
692PAR 91/06/27 91/06/29 2 2
259MGM 91/06/19 91/06/21 2 2

Now, the VIDEOTRK data source is joined to the MOVIES data source. The ? DEFINE query
shows that the join did not clear the DAYSKEPT virtual field:

JOIN MOVIECODE IN VIDEOTRK TO ALL MOVIECODE IN MOVIES AS J1
? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

Next a new virtual field, YEARS, is defined for the join between VIDEOTRK and MOVIES:

DEFINE FILE VIDEOTRK
YEARS/I5 = (TRANSDATE - RELDATE)/365;
END

The ? DEFINE query shows that the virtual field created prior to the join was not cleared by
this new virtual field because it was in a separate context:

? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4
VIDEOTRK YEARS I5 5

Next, the field DAYSKEPT is re-defined so that it is the number of actual days plus one:

DEFINE FILE VIDEOTRK
DAYSKEPT/I5 = RETURNDATE - TRANSDATE + 1;
END

The ? DEFINE query shows that there are two versions of the DAYSKEPT virtual field. However,
YEARS was cleared because it was in the same context (after the join) as the new version
of DAYSKEPT, and the DEFINE command did not specify the ADD option:

? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4
VIDEOTRK DAYSKEPT I5 4

Creating Reports 867

16. Joining Data Sources

The same request now uses the new definition for DAYSKEPT. Note that the number of days
between the return date and transaction date is actually one day, not two because of the
change in the definition of DAYSKEPT:

MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
040ORI 91/06/20 91/06/21 2 1
505MGM 91/06/21 91/06/22 2 1
710VES 91/06/26 91/06/27 2 1

Now, J1 is cleared. The redefinition for DAYSKEPT is also cleared:

JOIN CLEAR J1
? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

The report output shows that the original definition for DAYSKEPT is now in effect:

MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
001MCA 91/06/27 91/06/29 2 2
692PAR 91/06/27 91/06/29 2 2
259MGM 91/06/19 91/06/21 2 2

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN
The DEFINE FILE SAVE command forms a new context for virtual fields, which can then be
removed with DEFINE FILE RETURN. For details, see Creating Temporary Fields on page 205.

Preserving Virtual Fields With DEFINE FILE SAVE and RETURNExample:

The following command enables you to preserve virtual fields within a file context:

SET KEEPDEFINES=ON

The following command defines virtual field A for the VIDEOTRK data source and places it
in the current context:

DEFINE FILE VIDEOTRK
 A/A5='JAWS';
 END

The following command creates a new context and saves virtual field B in this context:

DEFINE FILE VIDEOTRK SAVE
 B/A5='ROCKY';
 END
? DEFINE

868 Information Builders

Preserving Virtual Fields During Join Parsing

The output of the ? DEFINE query lists virtual fields A and B:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK A A5
VIDEOTRK B A5

The following DEFINE command creates virtual field C. All previously defined virtual fields
are cleared because the ADD option was not used in the DEFINE command:

DEFINE FILE VIDEOTRK
 C/A10='AIRPLANE';
 END
? DEFINE

The output of the ? DEFINE query shows that C is the only virtual field defined:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

The following JOIN command creates a new context. Because KEEPDEFINES is set to ON,
virtual field C is not cleared by the JOIN command:

JOIN MOVIECODE IN VIDEOTRK TAG V1 TO MOVIECODE IN MOVIES TAG M1 AS J1
? DEFINE

The output of the ? DEFINE query shows that field C is still defined:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

The next DEFINE command creates virtual field D in the new context created by the JOIN
command:

DEFINE FILE VIDEOTRK SAVE
 D/A10='TOY STORY';
 END
? DEFINE

The output of the ? DEFINE query shows that virtual fields C and D are defined:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10
VIDEOTRK D A10

The DEFINE FILE RETURN command clears virtual field D created in the current context (after
the JOIN):

DEFINE FILE VIDEOTRK RETURN
END
? DEFINE

The output of the ? DEFINE query shows that virtual field D was cleared, but C is still defined:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

Creating Reports 869

16. Joining Data Sources

The following DEFINE FILE RETURN command does not clear virtual field C because field C
was not created using a DEFINE FILE SAVE command:

DEFINE FILE VIDEOTRK RETURN
END
? DEFINE

The output of the ? DEFINE query shows that virtual field C is still defined:

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK C A10

Note: DEFINE FILE RETURN is only activated when a DEFINE FILE SAVE is in effect.

Screening Segments With Conditional JOIN Expressions
The conditional JOIN command can reference any and all fields in the joined segment and
any and all fields in the parent segment, or higher on the parent's path.

When active, these join expressions screen the segment on which they reside (the child or
joined segment). That is, if no child segment passes the test defined by the expression, the
join follows the rules of SET ALL=OFF, or SET ALL=ON when no child segment exists. Unlike
WHERE phrases in TABLE commands, JOIN_WHERE screening does not automatically screen
the parent segment when SET ALL=ON.

Parsing WHERE Criteria in a Join
WHERE criteria take effect in a join only when a TABLE request reference is made to a cross-
referenced segment or its children. If no such reference is made, the WHERE has no effect.

The AT attribute is used to link the correct parent segment or host to the correct child or
cross-referenced segment. The field values used as the AT parameter are not used to cause
the link. They are used simply as segment references.

Note: If no WHERE criteria are in effect, you receive a Cartesian product.

870 Information Builders

Preserving Virtual Fields During Join Parsing

Displaying Joined Structures

How to:

Display a Joined Structure

List Joined Structures

When you join two data sources together, they are subsequently treated as one logical
structure. This structure results from appending the structure of the cross-referenced file to
the structure of the host file. The segment in the cross-referenced file containing the shared
value field becomes the child of the segment in the host file with the shared value field.

How to Display a Joined StructureSyntax:

To display the joined structure, issue the following command:

CHECK FILE hostfile PICTURE

where:

hostfile

Is the name of the host file. For an illustration, see Displaying Joined Structures on page
871.

Creating Reports 871

16. Joining Data Sources

Displaying a Joined StructureExample:

Notice that the segments belonging to the host file appear as regular segments outlined by
asterisks. The segments belonging to the cross-referenced file appear as virtual segments
outlined by dots. The segments of the cross-referenced file are also labeled with the cross-
referenced file name below each segment.

JOIN PIN IN EMPDATA TO PIN IN SALHIST
CHECK FILE EMPDATA PICTURE
0 NUMBER OF ERRORS= 0
 NUMBER OF SEGMENTS= 2 (REAL= 1 VIRTUAL= 1)
 NUMBER OF FIELDS= 14 INDEXES= 1 FILES= 2
 NUMBER OF DEFINES= 1
 TOTAL LENGTH OF ALL FIELDS= 132
1SECTION 01.01
 STRUCTURE OF FOCUS FILE EMPDATA ON 03/05/01 AT 12.22.49

 EMPDATA
 01 S1

 *PIN **I
 *LASTNAME **
 *FIRSTNAME **
 *MIDINITIAL **
 * **

 I
 I
 I
 I SLHISTRY
 02 I KU

 :PIN :K
 :EFFECTDATE :
 :OLDSALARY :
 : :
 : :
 :............:
 JOINED SALHIST

The top segment of the cross-referenced file structure is the one containing the shared-value
field. If this segment is not the root segment, the cross-referenced file structure is inverted,
as in an alternate file view.

872 Information Builders

Displaying Joined Structures

The cross-referenced file segment types in the joined structure are the following:

In unique join structures, the top cross-referenced file segment has the segment type
KU. Its unique child segments have segment type KLU. Non-unique child segments have
segment type KL.

In non-unique join structures, the top cross-referenced file segment has the segment
type KM. Its unique child segments have segment type KLU. Non-unique child segments
have segment type KL.

The host file structure remains unchanged. The cross-referenced file may still be used
independently.

How to List Joined StructuresSyntax:

To display a list of joined data sources, issue the following command:

? JOIN

This displays every JOIN command currently in effect. For example:

 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
JOBCODE EMPLOYEE JOBCODE JOBFILE N N

If the joined structure has no join name, the AS phrase is omitted. If two data sources are
joined by multiple JOIN commands, only the first command you issued is displayed. The N
in the WH column indicates that the join is not conditional. A Y indicates that the join is
conditional.

Creating Reports 873

16. Joining Data Sources

Clearing Joined Structures

In this section:

Clearing a Conditional Join

How to:

Clear a Join

You can clear specific join structures, or all existing structures. Clearing deactivates the
designated joins. If you clear a conditional join, all joins issued subsequently to that join
using the same host file are also cleared.

Tip: If you wish to list the current joins before clearing or see details about all active joined
structures, issue the query command ? JOIN. For details and illustrations, see How to List
Joined Structures on page 873.

How to Clear a JoinSyntax:

To clear a joined structure, issue this command:

JOIN CLEAR {joinname|*}

where:

joinname

Is the AS name of the joined structure you want to clear.

*

Clears all joined structures.

Clearing a Conditional Join
You can clear a join by issuing the JOIN CLEAR command. The effect of the JOIN CLEAR
command depends on whether any conditional join exists.

If conditional joins are found and were issued after the join you wish to clear, or if the
join you wish to clear is a conditional join, then the JOIN CLEAR as_name command
removes all joins issued after the specified join.

If no conditional joins were issued after the join you wish to clear, only the join you specify
is cleared. Any virtual fields saved in the context of a join that is cleared are also cleared.
Normal joins may or may not be cleared, depending on the position of the conditional
join. The JOIN CLEAR * command clears every join issued, along with its associated
virtual fields. However, all virtual fields in the null context remain untouched.

Note: The null context is the context of the data source prior to any joins being issued.

874 Information Builders

Clearing Joined Structures

Clearing JoinsExample:

The following request creates three joins using VIDEOTRK as the host data source. The first
two are conditional (JW1, JW2), and the third join is unconditional (J1):

JOIN FILE VIDEOTRK AT PRODCODE TO ALL
 FILE GGSALES AT PCD AS JW1
WHERE PRODCODE NE PCD;
END
JOIN FILE VIDEOTRK AT TRANSDATE TO ALL
 FILE MOVIES AT RELDATE AS JW2
WHERE (TRANSDATE - RELDATE)/365 GT 10;
END
JOIN MOVIECODE IN VIDEOTRK TO MOVIECODE IN MOVIES AS J1

The next request creates a conditional join (JW3) using MOVIES as the host data source:

JOIN FILE MOVIES AT MOVIECODE TO ONE
 FILE VIDEOTRK AT TRANSDATE AS JW3
WHERE (TRANSDATE - RELDATE)/365 LT 2;
END

The last request creates a third conditional join (JW4) that uses VIDEOTRK as the host data
source:

JOIN FILE VIDEOTRK AT LASTNAME TO ALL
 FILE EMPLOYEE AT LAST_NAME AS JW4
WHERE LASTNAME GE LAST_NAME;
END

Following is the output of the ? JOIN query after executing these joins:

? JOIN
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
PRODCODE VIDEOTRK PCD GGSALES JW1 Y Y
TRANSDATE VIDEOTRK RELDATE MOVIES JW2 Y Y
MOVIECODE VIDEOTRK MOVIECODE MOVIES J1 N N
MOVIECODE MOVIES TRANSDATE VIDEOTRK JW3 N Y
LASTNAME VIDEOTRK LAST_NAME EMPLOYEE JW4 Y Y

Creating Reports 875

16. Joining Data Sources

Clearing JW2 clears all joins that were issued after JW2 and that use the same host data
source. JW1 remains because it was issued prior to JW2, and JW3 remains because it uses
a different host data source:

JOIN CLEAR JW2
? JOIN
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
PRODCODE VIDEOTRK PCD GGSALES JW1 Y Y
MOVIECODE MOVIES TRANSDATE VIDEOTRK JW3 N Y

876 Information Builders

Clearing Joined Structures

FOCUS

Merging Data Sources17
Topics:

You can gather data for your reports by
merging the contents of data structures
with the MATCH command, or
concatenating data sources with the
MORE phrase, and reporting from the
combined data.

Merging Data

MATCH Processing

MATCH Processing With Common
High-Order Sort Fields

Fine-Tuning MATCH Processing

Universal Concatenation

Merging Concatenated Data Sources

Cartesian Product

Creating Reports 877

Merging Data

How to:

Merge Data Sources

Reference:

Usage Notes for Match Requests

You can merge two or more data sources, and specify which records to merge and which to
sort out, using the MATCH command. The command creates a new data source (a HOLD
file), into which it merges fields from the selected records. You can report from the new data
source and use it as you would use any other HOLD file. The merge process does not change
the original data sources. For more information on HOLD files, see Saving and Reusing Your
Report Output on page 421

You select the records to be merged into the new data source by specifying sort fields in
the MATCH command. You specify one set of sort fields (using the BY phrase), for the first
data source, and a second set of sort fields for the second data source. The MATCH command
compares all sort fields that have been specified in common for both data sources, and
then merges all records from the first data source whose sort values match those in the
second data source into the new HOLD file. You can specify up to 32 sort sets. This includes
the number of common sort fields.

In addition to merging data source records that share values, you can merge records based
on other relationships. For example, you can merge all records in each data source whose
sort values are not matched in the other data source. Yet another type of merge combines
all records from the first data source with any matching records from the second data source.

You can merge up to 16 sets of data in one Match request. For example, you can merge
different data sources, or data from the same data source.

Note: The limit of 16 applies to the most complex request. Simpler requests may be able
to merge more data sources.

878 Information Builders

Merging Data

How to Merge Data SourcesSyntax:

The syntax of the MATCH command is similar to that of the TABLE command:

MATCH FILE file1
.
.
.
RUN
FILE file2
.
.
.
[AFTER MATCH merge_phrase]
RUN
FILE file3
.
.
.
[AFTER MATCH merge_phrase]
END

where:

file1

Is the first data source from which MATCH retrieves requested records.

merge_phrase

Specifies how the retrieved records from the files are to be compared. For details, see
Merge Phrases on page 882.

file2/file3

Are additional data sources from which MATCH retrieves requested records.

Note that a RUN command must follow each AFTER MATCH command (except for the last
one). The END command must follow the final AFTER MATCH command.

MATCH generates a single-segment HOLD file. You can print the contents of the HOLD file
using the PRINT command with the wildcard character (*). For related information, see
Merging Data Sources on page 877.

Usage Notes for Match RequestsReference:

The ACROSS and WHERE TOTAL phrases, and the COMPUTE command, are not permitted
in a MATCH request. You can, however, use the DEFINE command.

Creating Reports 879

17. Merging Data Sources

A total of 32 BY phrases and the maximum number of display fields can be used in each
MATCH request. The maximum number of display fields is determined by a combination
of factors.

For details, see Displaying Report Data on page 45.

Up to 32 sort sets are supported, including the number of common sort fields.

You must specify at least one BY field for each file used in the MATCH request.

When used with MATCH, the SET HOLDLIST parameter behaves as if HOLDLIST were set
to ALL.

You cannot use BY HIGHEST in a MATCH request.

The following prefix operators are not supported in MATCH requests: DST., DST.CNT.,
RNK., ST., and CT.

Merging Data SourcesExample:

MATCH FILE EDUCFILE
SUM COURSE_CODE
BY EMP_ID
RUN
FILE EMPLOYEE
SUM LAST_NAME AND FIRST_NAME
BY EMP_ID BY CURR_SAL
AFTER MATCH HOLD OLD-OR-NEW
END
-******************************
-* PRINT CONTENTS OF HOLD FILE
-******************************
TABLE FILE HOLD
PRINT *
END

The merge phrase used in this example was OLD-OR-NEW. This means that records from
both the first (old) data source plus the records from the second (new) data source appear
in the HOLD file.

Note that if you are working in an interactive environment, after you enter the command
RUN, a message indicates how many records were retrieved, and if you are entering the
MATCH request at the command line, prompts you for the name of the next data source to
be merged.

880 Information Builders

Merging Data

The output is:

EMP_ID COURSE_CODE CURR_SAL LAST_NAME FIRST_NAME
------ ----------- -------- --------- ----------
071382660 101 $11,000.00 STEVENS ALFRED
112847612 103 $13,200.00 SMITH MARY
117593129 203 $18,480.00 JONES DIANE
119265415 108 $9,500.00 SMITH RICHARD
119329144 $29,700.00 BANNING JOHN
123764317 $26,862.00 IRVING JOAN
126724188 $21,120.00 ROMANS ANTHONY
212289111 103 $.00
219984371 $18,480.00 MCCOY JOHN
315548712 108 $.00
326179357 301 $21,780.00 BLACKWOOD ROSEMARIE
451123478 101 $16,100.00 MCKNIGHT ROGER
543729165 $9,000.00 GREENSPAN MARY
818692173 302 $27,062.00 CROSS BARBARA

MATCH Processing

How to:

Specify Merge Phrases

Reference:

Merge Phrases

The way MATCH merges data depends on the order in which you name data sources in the
request, the BY fields, display commands, and the merge phrases you use. In general,
however, processing is as follows:

1. MATCH retrieves requested records from the first data source you name, and writes them
to a temporary work area.

2. MATCH retrieves requested records from the second data source you name, and writes
them to a temporary work area.

3. It compares the retrieved records common high-order sort fields as specified in the merge
phrase (for example, OLD-OR-NEW). For more information, see Merge Phrases on page
882.

4. It writes the merged results of the comparison to a temporary data source (if there are
more MATCH operations). It cycles through all data sources named until END is
encountered.

5. It writes final records to the HOLD file.

Creating Reports 881

17. Merging Data Sources

Merge PhrasesReference:

MATCH logic depends on the concept of old and new data sources. Old refers to the first
data source named in the request, and new refers to the second data source. The result of
each merge creates a HOLD file until the END command is encountered.

The following diagram illustrates the general merge process:

882 Information Builders

MATCH Processing

How to Specify Merge PhrasesSyntax:

AFTER MATCH HOLD [AS 'name'] mergetype

where:

AS 'name'

Specifies the name of the extract data source created by the MATCH command. The
default is HOLD.

mergetype

Specifies how the retrieved records from the files are to be compared.

The results of each phrase are graphically represented using Venn diagrams. In the
diagrams, the left circle represents the old data source, the right circle represents the
new data source, and the shaded areas represent the data that is written to the HOLD
file.

OLD-OR-NEW specifies that all records from both the old data source and the new data
source appear in the HOLD file. This is the default if the AFTER MATCH line is omitted.

OLD-AND-NEW specifies that records that appear in both the old and new data sources
appear in the HOLD file. (The intersection of the sets.)

OLD-NOT-NEW specifies that records that appear only in the old data source appear in
the HOLD file.

Creating Reports 883

17. Merging Data Sources

NEW-NOT-OLD specifies that records that appear only in the new data source appear in
the HOLD file.

OLD-NOR-NEW specifies that only records that are in the old data source but not in the
new data source, or in the new data source but not in the old, appear in the HOLD file
(the complete set of non-matching records from both data sources).

OLD specifies that all records from the old data source, and any matching records from
the new data source, are merged into the HOLD file.

NEW specifies that all records from the new data source, and any matching records from
the old data source, are merged into the HOLD file.

MATCH Processing With Common High-Order Sort Fields
When you construct your MATCH so that the first sort (BY) field (called the common high-
order sort field) used for both data sources is the same, the match compares the values of
the common high-order sort fields. If the entire sequence of sort fields is common to both
files, all are compared.

884 Information Builders

MATCH Processing With Common High-Order Sort Fields

At least one pair of sort fields is required. Field formats must be the same. In some cases,
you can redefine a field format using the DEFINE command. If the field names differ, use
the AS phrase to rename the second sort field to match the first. When the AS phrase is
used in a MATCH request, the specified field is automatically renamed in the resulting HOLD
file.

When you are merging files with common sort fields, the following assumptions are made:

If one of the sort fields is a subset of the other, a one-to-many relationship is assumed.

If neither of the sort fields is a subset of the other, a one-to-one relationship is assumed.
At most, one matching record is retrieved.

MATCH Processing With Common High-Order Sort FieldsExample:

To understand common high-order sort fields more clearly, consider some of the data from
the following data sources

EDUCFILE Data SourceEMPLOYEE Data Source

COURSE_CODEEMP_IDLAST_NAMEEMP_ID

101071382660STEVENS071382660

103212289111BANNING119329144

103112847612SMITH112847612

and this MATCH request:

MATCH FILE EMPLOYEE
SUM LAST_NAME BY EMP_ID
RUN
FILE EDUCFILE
SUM COURSE_CODE BY EMP_ID
AFTER MATCH HOLD OLD-OR-NEW
END

MATCH processing occurs as follows:

Since there is a common high-order sort field (EMP_ID), the MATCH logic begins by
matching the EMP_ID values in records from the EMPLOYEE and EDUCFILE files.

There are records from both files with an EMP_ID value of 071382660. Since there is a
match, this record is written to the HOLD file:

Record n: 071382660 STEVENS 101

Creating Reports 885

17. Merging Data Sources

There are records from both files with an EMP_ID value of 112847612. Since there is a
match, this record is written to the HOLD file:

Record n: 112847612 SMITH 103

The records do not match where a record from the EMPLOYEE file has an EMP_ID value
of 119329144 and a record from the EDUCFILE file has an EMP_ID value of 212289111.
The record with the lower value is written to the HOLD file and a space is inserted for
the missing value:

Record n: 119329144 BANNING

Similarly, the 212289111 record exists only in the EDUCFILE file, and is written as:

Record n: 212289111 103

The following code produces a report of the records in the HOLD file:

TABLE FILE HOLD
PRINT *
END

The output is:

EMP_ID LAST_NAME COURSE_CODE
------ --------- -----------
071382660 STEVENS 101
112847612 SMITH 103
117593129 JONES 203
119265415 SMITH 108
119329144 BANNING
123764317 IRVING
126724188 ROMANS
212289111 103
219984371 MCCOY
315548712 108
326179357 BLACKWOOD 301
451123478 MCKNIGHT 101
543729165 GREENSPAN
818692173 CROSS 302

886 Information Builders

MATCH Processing With Common High-Order Sort Fields

Merging With a Common High-Order Sort FieldExample:

This request combines data from the JOBFILE and PROD data sources. The sort fields are
JOBCODE and PROD_CODE, renamed as JOBCODE:

MATCH FILE JOBFILE
PRINT JOB_DESC
BY JOBCODE
RUN
FILE PROD
PRINT PROD_NAME
BY PROD_CODE AS 'JOBCODE'
AFTER MATCH HOLD OLD-OR-NEW
END

Merging Without a Common High-Order Sort FieldExample:

If there are no common high-order sort fields, a match is performed on a record-by-record
basis. The following request matches the data and produces the HOLD file:

MATCH FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY EMP_ID
RUN
FILE EMPLOYEE
PRINT EMP_ID
BY LAST_NAME BY FIRST_NAME
AFTER MATCH HOLD OLD-OR-NEW
END
TABLE FILE HOLD
PRINT *
END

The retrieved records from the two data sources are written to the HOLD file; no values are
compared. The output is:

EMP_ID LAST_NAME FIRST_NAME LAST_NAME FIRST_NAME EMP_ID
------ --------- ---------- --------- ---------- ------
071382660 STEVENS ALFRED BANNING JOHN 119329144
112847612 SMITH MARY BLACKWOOD ROSEMARIE 326179357
117593129 JONES DIANE CROSS BARBARA 818692173
119265415 SMITH RICHARD GREENSPAN MARY 543729165
119329144 BANNING JOHN IRVING JOAN 123764317
123764317 IRVING JOAN JONES DIANE 117593129
126724188 ROMANS ANTHONY MCCOY JOHN 219984371
219984371 MCCOY JOHN MCKNIGHT ROGER 451123478
326179357 BLACKWOOD ROSEMARIE ROMANS ANTHONY 126724188
451123478 MCKNIGHT ROGER SMITH MARY 112847612
543729165 GREENSPAN MARY SMITH RICHARD 119265415
818692173 CROSS BARBARA STEVENS ALFRED 071382660

Creating Reports 887

17. Merging Data Sources

Fine-Tuning MATCH Processing
You can fine-tune the MATCH process using the PRINT and SUM commands. To understand
their difference, you should have an understanding of the one-to-many relationship: SUM
generates one record from many, while PRINT displays each individual record. Through proper
choices of BY fields, it is possible to use only the SUM command and get the same result
that PRINT would produce.

Using Display Commands in MATCH ProcessingExample:

To illustrate the effects of PRINT and SUM on the MATCH process, consider data sources
A and B and the series of requests that follow:

 A B

F1 F2 F3 F1 F4 F5

1 x 100 1 a 10
2 y 200 1 b 20
 2 c 30
 2 d 40

Request 1: This request sums the fields F2 and F3 from file A, sums the fields F4 and F5
from file B, and uses F1 as the common high-order sort field.

MATCH FILE A
SUM F2 AND F3 BY F1
RUN
FILE B
SUM F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains the following data:

F1 F2 F3 F4 F5

1 x 100 b 30
2 y 200 d 70

Note that the resulting file contains only 1 record for each common high-order sort field.

888 Information Builders

Fine-Tuning MATCH Processing

Request 2: This request sums fields F2 and F3 from file A, prints fields F4 and F5 from file
B, and uses F1 as the common high-order sort field.

MATCH FILE A
SUM F2 AND F3 BY F1
RUN
FILE B PRINT F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 a 10
1 x 100 b 20
2 y 200 c 30
2 y 200 d 40

Note that the records from file A are duplicated for each record from file B.

Request 3: This request prints fields F2 and F3 from file A, sums fields F4 and F5 from file
B, and uses F1 as the common high-order sort field.

MATCH FILE A
PRINT F2 AND F3 BY F1
RUN
FILE B
SUM F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 b 30
2 y 200 d 70

Note that each record from file A is included, but only the last record from file B for each
common high-order sort field is included.

Request 4: This request prints fields F2 and F3 from file A, prints fields F4 and F5 from file
B, and uses F1 as the common high-order sort field.

MATCH FILE A
PRINT F2 AND F3 BY F1
RUN
FILE B PRINT F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

Creating Reports 889

17. Merging Data Sources

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 a 10
1 0 b 20
2 y 200 c 30
2 0 d 40

Note the blank value for F2 and the 0 for F3.

Request 5: This request sums the fields F2 and F3 from file A, sums the field F5 from file
B and sorts it by field F1, the common high-order sort field, and by F4.

MATCH FILE A
SUM F2 AND F3 BY F1
RUN
FILE B
SUM F5 BY F1 BY F4
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 a 10
1 x 100 b 20
2 y 200 c 30
2 y 200 d 40

Note that the records for file A are printed for every occurrence of the record in file B.

Universal Concatenation

In this section:

Field Name and Format Matching

How to:

Concatenate Data Sources

With universal concatenation, you can retrieve data from unlike data sources in a single
request; all data, regardless of source, appears to come from a single file. The MORE phrase
can concatenate all types of data sources (such as, FOCUS, DB2, IMS, and VSAM), provided
they share corresponding fields with the same format. You can use WHERE and IF selection
tests in conjunction with MORE. For related information, see Selecting Records for Your
Report on page 157.

890 Information Builders

Universal Concatenation

To use MORE, you must divide your request into:

One main request that retrieves the first data source and defines the data fields, sorting
criteria, and output format for all data.

Subrequests that define the data sources and fields to be concatenated to the data of
the main request. The fields printed and sorted by the main request must exist in each
concatenated data source. If they do not, you must create them as virtual fields.

During retrieval, data is gathered from each data source in turn, then all data is sorted and
the output formatted as specified in the main request.

How to Concatenate Data SourcesSyntax:

The MORE phrase, which is accessible within the TABLE and MATCH commands, specifies
how to concatenate data from sources with dissimilar Master Files.

{TABLE|MATCH} FILE file1
main request

MORE
FILE file2

subrequest
MORE
FILE file3

subrequest
MORE
 .
 .
 .
{END|RUN}

where:

TABLE|MATCH

Begins the request that concatenates the data sources.

file1

Is the name of the first data source.

main request

Is a request, without END or RUN, that retrieves the first data source and defines the
data fields, sorting criteria, and output format for all data. WHERE and IF criteria in the
main request apply only to file1.

When concatenating files within the TABLE command, you can also define calculated
values for the first data source.

Creating Reports 891

17. Merging Data Sources

MORE

Begins a subrequest. There is no limit to the number of subrequests, other than available
memory.

FILE file2

Defines file2 as the second data source for concatenation.

subrequest

Is a subrequest. Subrequests can only include WHERE and IF phrases.

END|RUN

Ends the request.

Concatenating Data SourcesExample:

Both the EMPLOYEE and the EXPERSON data sources contain employee information. You
can concatenate their common data into a single file:

EMPLOYEE contains the field values EMP_ID=123456789 and CURR_SAL=50.00.

EXPERSON contains the field values SSN=987654321 and WAGE=100.00.

The following annotated request concatenates the two data sources:

 DEFINE FILE EXPERSON
1. EMP_ID/A9 = SSN;
 CURR_SAL/D12.2 = WAGE;
 END
2. TABLE FILE EMPLOYEE
 PRINT CURR_SAL
 BY EMP_ID
3. MORE
 FILE EXPERSON
 END

1. The request must re-map the field names and formats in the EXPERSON data source to
match those used in the main request.

2. The main request names the first data source in the concatenation, EMPLOYEE. It also
defines the print and sort fields for both data sources.

3. The MORE phrase starts the subrequest that concatenates the next data source,
EXPERSON. No display commands are allowed in the subrequest. IF and WHERE criteria
are the only report components permitted in a subrequest.

892 Information Builders

Universal Concatenation

Field Name and Format Matching
All fields referenced in the main request must either exist with the same names and formats
in all the concatenated files, or be re-mapped to those names and formats using virtual
fields. Referenced fields include those used in COMPUTE commands, headings, aggregation
phrases, sort phrases, and the PRINT, LIST, SUM, COUNT, WRITE, or ADD commands.

A successful format match means that:

CorrespondenceUsage Format Type

Format type and length must be equal.A

Format type must be the same.I, F, D

Format type and scale must be equal.P

Format information (type, length, components, and order)
must always correspond.

DATE (new)

Edit options must be the same.DATE (old)

Format information (type, length, components, and order)
must always correspond.

DATE -TIME

Text (TX) fields and CLOB fields (if supported) cannot be concatenated.

Creating Reports 893

17. Merging Data Sources

Matching Field Names and FormatsExample:

The following annotated example concatenates data from the EMPDATA and PAYHIST data
sources. Master Files and Diagrams on page 1113, contains the Master Files referenced in the
request.

Tip: PAYHIST is a fixed-format file. You need to issue a FILEDEF or ALLOCATE command in
order to use it. See the Overview and Operations manual for more information.

DEFINE FILE EMPDATA
1. NEWID/A11 = EDIT (ID,'999-99-9999');
 END
 DEFINE FILE PAYHIST
1. NEWID/A11 = EDIT (SSN,'999-99-9999');
 CSAL/D12.2M = NEW_SAL;
 END
2. TABLE FILE EMPDATA
 HEADING
 "EMPLOYEE SALARIES"
 " "
3. PRINT CSAL
3. BY NEWID AS 'EMPLOYEE ID'
4. WHERE CSAL GT 65000
5. MORE
 FILE PAYHIST
6. WHERE NEW_SAL GT 500
 END

In the resulting report, the EMPLOYEE ID values that start with 000 are from EMPDATA, and
the values that start with 100 are from PAYHIST:

EMPLOYEE SALARIES
 EMPLOYEE ID SALARY
 ----------- ------
 000-00-0030 $70,000.00
 000-00-0070 $83,000.00
 000-00-0200 $115,000.00
 000-00-0230 $80,500.00
 000-00-0300 $79,000.00
 100-10-1689 $842.90
 $982.90
 100-11-9950 $508.75
 100-14-2166 $876.45
 100-15-5843 $508.75
 100-16-2791 $567.89
 100-16-4984 $1,236.78
 100-17-5025 $734.56
 100-18-9299 $567.89

894 Information Builders

Universal Concatenation

Merging Concatenated Data Sources

In this section:

Using Sort Fields in MATCH Requests

How to:

Merge Concatenated Data Sources

You can use the MORE phrase in a MATCH request to merge up to 16 sets of concatenated
data sources.

You must meet all MATCH requirements in the main request. All data sources to be merged
must be sorted by at least one field with a common format.

The MATCH request results in a HOLD file containing the merged data. You can specify how
you want each successive file merged using an AFTER MATCH command. For example, you
can retain:

All records from both files (OLD-OR-NEW). This is the default.

Only records common to both files (OLD-AND-NEW).

Records from the first file with no match in the second file (OLD-NOT-NEW).

Records from the second file with no match in the first file (NEW-NOT-OLD).

All non-matching records from both files; that is, records that were in either one of the
files but not in both (OLD-NOR-NEW).

All records from the first file with all matching records from the second file (OLD).

All records from the second file with all matching records from the first file (NEW).

Creating Reports 895

17. Merging Data Sources

How to Merge Concatenated Data SourcesSyntax:

1. MATCH FILE file1 main request
 MORE
2. FILE file2 subrequest
 MORE
3. FILE file3 subrequest
 RUN
4. FILE file4 main request
5. [AFTER MATCH merge_phrase]
 MORE
6. FILE file5 subrequest
 MORE
7. FILE file6 subrequest
 RUN
8. FILE file7 main request
9. [AFTER MATCH merge_phrase]
 MORE
10.FILE file8 subrequest
 MORE
11.FILE file9 subrequest
 END

1. Starts the first answer set in the MATCH. File1 is the first data source in the first answer
set.

2. Concatenates file2 to file1 in the first MATCH answer set.

3. Concatenates file3 to file1 and file2 in the first MATCH answer set.

4. Starts the second answer set in the MATCH. File4 is the first data source in the second
answer set.

5. All data concatenated in the first answer set is merged with the data concatenated in
the second answer set using the AFTER MATCH merge_phrase in the second answer set.

6. Concatenates file5 to file4 in the second MATCH answer set.

7. Concatenates file6 to file4 and file5 in the second MATCH answer set.

8. Starts the third answer set in the MATCH. File7 is the first data source in the third answer
set.

9. All merged data from the first and second answer sets, now a HOLD file, is merged with
the data concatenated in the third answer set using the AFTER MATCH merge_phrase in
the third answer set. This final set of merged data is stored in a HOLD file.

10. Concatenates file8 to file7 in the third MATCH answer set.

11. Concatenates file9 to file7 and file8 in the third MATCH answer set.

896 Information Builders

Merging Concatenated Data Sources

Using Sort Fields in MATCH Requests
If the data sources in the MATCH share common high-order sort fields with identical names
and formats, the MATCH process merges records with matching sort field values from each
of the files. If the two data sources in the MATCH have the same sort field with different
names, you can change one of the names with an AS phrase.

If the files in the MATCH do not share a high-order sort field, the fields are not compared.
Instead, the fields from the first record in each data source are merged to create the first
record in the HOLD file, and so on for all remaining records.

Merging Concatenated Data Sources With Common High-Order Sort FieldsExample:

The following annotated sample stored procedure illustrates MATCH with MORE, using a
common sort field:

1. DEFINE FILE EMPDATA
 CURR_SAL/D12.2M = CSAL;
 FIRST_NAME/A10 = FN;
 EID/A9 = PIN;
 END

 -*Start MATCH.

2. MATCH FILE EMPLOYEE
 SUM CURR_SAL AS 'CURRENT'
 FIRST_NAME AS 'FIRST'
 BY EID AS 'SSN'
 -*Concatenate file EMPDATA to EMPLOYEE to form first MATCH answer set.
3. MORE
 FILE EMPDATA
 RUN
 -*Second MATCH answer set:

4. FILE TRAINING
 PRINT EXPENSES
5. BY PIN AS 'SSN'
6. AFTER MATCH HOLD OLD-OR-NEW
 END

 -*Print merged file:

7. TABLE FILE HOLD
 PRINT *
 END

1. Defines the EMPDATA fields needed for concatenating it to EMPLOYEE.

Creating Reports 897

17. Merging Data Sources

2. Starts the MATCH and the main request in the concatenation. The main request defines
all printing and sorting for the concatenated files. The sort field is called SSN in the
resulting file.

3. Concatenates file EMPDATA to EMPLOYEE. This concatenated file becomes the OLD file
in the MATCH.

4. Creates the NEW file in the MATCH.

5. Uses an AS phrase to change the name of the sort field in the NEW file to the same
name as the sort field in the OLD file.

6. Defines the merge procedure. All records from the NEW file, the OLD file, and both files
are included in the final HOLD file.

7. Prints the values from the merged file.

The first page of output is:

SSN CURRENT FIRST EXPENSES
--- ------- ----- --------
000000010 $55,500.00 DANIEL 2,300.00
000000020 $62,500.00 MICHAEL .
000000030 $70,000.00 LOIS 2,600.00
000000030 $70,000.00 LOIS 2,300.00
000000040 $62,500.00 RUTH 3,400.00
000000050 $54,100.00 PETER 3,300.00
000000060 $55,500.00 DORINA .
000000070 $83,000.00 EVELYN .
000000080 $43,400.00 PAMELA 3,200.00
000000080 $43,400.00 PAMELA 3,350.00
000000090 $33,000.00 MARIANNE .
000000100 $32,400.00 TIM 3,100.00
000000110 $19,300.00 ANTHONY 1,800.00
000000110 $19,300.00 ANTHONY 2,500.00
000000110 $19,300.00 ANTHONY 2,400.00
000000120 $49,500.00 KATE 2,200.00
000000130 $62,500.00 MARCUS .

898 Information Builders

Merging Concatenated Data Sources

Merging Concatenated Data Sources Without a Common Sort FieldExample:

In this example, the merged data sources do not share a sort field:

DEFINE FILE EMPDATA
CURR_SAL/D12.2M = CSAL;
FIRST_NAME/A10 = FN;
EID/A9 = PIN;
END

-*Start MATCH

MATCH FILE EMPLOYEE
SUM CURR_SAL AS 'CURRENT'
 FIRST_NAME AS 'FIRST'
BY EID AS 'SSN'

-*Concatenate EMPDATA to EMPLOYEE to form the first MATCH answer set

MORE
FILE EMPDATA
RUN

-*Second MATCH answer set:

FILE TRAINING
PRINT EXPENSES
BY PIN AS 'EID'
AFTER MATCH HOLD OLD-OR-NEW
END

-*Print merged file:

TABLE FILE HOLD
PRINT *
END

The AS phrase changes the answer set. Since the sort fields no longer have the same names,
the fields are merged with no regard to matching records.

Creating Reports 899

17. Merging Data Sources

The first page of output is:

SSN CURRENT FIRST EID EXPENSES
--- ------- ----- --- --------
000000010 $55,500.00 DANIEL 000000010 2,300.00
000000020 $62,500.00 MICHAEL 000000030 2,600.00
000000030 $70,000.00 LOIS 000000030 2,300.00
000000040 $62,500.00 RUTH 000000040 3,400.00
000000050 $54,100.00 PETER 000000050 3,300.00
000000060 $55,500.00 DORINA 000000080 3,200.00
000000070 $83,000.00 EVELYN 000000080 3,350.00
000000080 $43,400.00 PAMELA 000000100 3,100.00
000000090 $33,000.00 MARIANNE 000000110 1,800.00
000000100 $32,400.00 TIM 000000110 2,500.00
000000110 $19,300.00 ANTHONY 000000110 2,400.00
000000120 $49,500.00 KATE 000000120 2,200.00
000000130 $62,500.00 MARCUS 000000140 3,600.00
000000140 $62,500.00 VERONICA 000000150 3,400.00
000000150 $40,900.00 KARL 000000160 1,000.00
000000160 $62,500.00 ROSE 000000180 1,250.00
000000170 $30,800.00 WILLIAM 000000190 3,150.00

Cartesian Product

How to:

Enable/Disable Cartesian Product

Reference:

Usage Notes for Cartesian Product

Cartesian product enables you to generate a report containing all combinations of non-related
records or data instances in a multi-path request. This means that if a parent segment has
three child instances on one path and two child instances on another path, when CARTESIAN
is ON a request that references the parent segment and both children generates 16 records.
When CARTESIAN is OFF, the same request generates only three records.

For related information about controlling how selection tests are applied to child segments
on independent paths, see Selecting Records for Your Report on page 157.

900 Information Builders

Cartesian Product

How to Enable/Disable Cartesian ProductSyntax:

SET CARTESIAN = {OFF|ON}

where:

OFF

Disables Cartesian product. OFF is the default setting.

ON

Enables Cartesian product and generates all possible combinations of non-related
records.

SET CARTESIAN may also be issued within a request.

Usage Notes for Cartesian ProductReference:

Cartesian product is performed on the lowest segment common to all paths, whether or
not a field in that segment is referenced.

Short paths do not display in requests with Cartesian product.

The SET CARTESIAN parameter is disabled when ACROSS is specified, and a warning
message is issued.

The SUM display command and the TOT. prefix operator have no effect on Cartesian
product.

SUM, COMPUTE, and WITHIN in combination with the PRINT display command are
performed on the Cartesian product.

ON TABLE COLUMN-TOTAL is automatically generated on the Cartesian product.

NOSPLIT is disabled if specified in combination with the SET CARTESIAN parameter, and
no warning message is issued.

MATCH is not supported with the SET CARTESIAN parameter. A warning message is not
issued if MATCH is requested, and the request is processed as if CARTESIAN is set to
OFF.

TABLEF is not supported with the SET CARTESIAN parameter.

Creating Reports 901

17. Merging Data Sources

Reporting With Cartesian ProductExample:

When CARTESIAN is set to ON, the following multi-path request produces a report containing
all possible combinations of models and standards for each car:

SET CARTESIAN=ON
TABLE FILE CAR
PRINT MODEL STANDARD
BY CAR
IF CAR EQ 'JAGUAR'
END

The output in an EBCDIC environment is:

CAR MODEL STANDARD
--- ----- --------
JAGUAR V12XKE AUTO POWER STEERING
 V12XKE AUTO RECLINING BUCKET SEATS
 V12XKE AUTO WHITEWALL RADIAL PLY TIRES
 V12XKE AUTO WRAP AROUND BUMPERS
 V12XKE AUTO 4 WHEEL DISC BRAKES
 XJ12L AUTO POWER STEERING
 XJ12L AUTO RECLINING BUCKET SEATS
 XJ12L AUTO WHITEWALL RADIAL PLY TIRES
 XJ12L AUTO WRAP AROUND BUMPERS
 XJ12L AUTO 4 WHEEL DISC BRAKES

When CARTESIAN is set to OFF (the default), the same request results in a report from the
CAR data source containing a list of models and standards without logical relationships.

The output in an EBCDIC environment is:

CAR MODEL STANDARD
--- ----- --------
JAGUAR V12XKE AUTO POWER STEERING
 XJ12L AUTO RECLINING BUCKET SEATS
 . WHITEWALL RADIAL PLY TIRES
 . WRAP AROUND BUMPERS
 . 4 WHEEL DISC BRAKES

902 Information Builders

Cartesian Product

FOCUS

Improving Report Processing18
Topics:

The following high-performance methods
optimize data retrieval and report
processing: Rotating a Data Structure for

Enhanced RetrievalTemporary rotation of network and
hierarchical data sources to create
an alternate view of the data.

Optimizing Retrieval Speed for FOCUS
Data Sources

Automatic alternate file views with the
AUTOPATH feature.

Automatic Indexed Retrieval

Data Retrieval Using TABLEF
Automatic indexed retrieval
(AUTOINDEX). Preserving the Internal Matrix of Your

Last Report
Retrieval of pre-sorted data using the
TABLEF command. Compiling Expressions

Producing Multiple Outputs in One
Pass of a Data Source (Pooled Tables)

Preserving the internal matrix of a
report using the SAVEMATRIX
parameter.

Compiling expressions into machine
code to provide faster processing.

The Pooled Tables option to produce
many reports or extract files in a
single pass of your data source,
reducing database I/O, CPU, and
elapsed time.

Note: These techniques may not be
available for all data sources. See your
data adapter documentation to
determine if a technique is valid for your
data source.

Creating Reports 903

Rotating a Data Structure for Enhanced Retrieval

How to:

Request an Alternate View

Reference:

Usage Notes for Restructuring Data

If you are using certain network or hierarchical data sources such as IMS, CA-IDMS/DB, or
FOCUS, you can rotate the data source, creating an alternate view which changes some of
the segment relationships and enables you to access the segments in a different order. By
reporting from an alternate view, you can do the following:

Change the access path. For example, you can access data in a lower segment more
quickly by promoting that segment to a higher level.

Change the path structure of a data source. This option is especially helpful if you wish
to create a report using several sort fields that are on different paths in the file. By
changing the view of the file hierarchy, all the desired sort fields can be on the same
path.

It should be noted that retrieval is controlled by the minimum referenced subtree. For more
information, see Understanding the Efficiency of the Minimum Referenced Subtree in the
Describing a Group of Fields chapter in the Describing Data manual.

904 Information Builders

Rotating a Data Structure for Enhanced Retrieval

For example, consider the regular and alternate views below:

Since C is the root segment in the alternate view, particular instances of C can be selected
faster.

How to Request an Alternate ViewSyntax:

To request an alternate view, add the name of a field found in the alternate root segment
to the file name in the TABLE command, separated by a period (.):

TABLE FILE filename.fieldname

Usage Notes for Restructuring DataReference:

If you use a non-indexed field, each segment instance is retrieved until the specified
record is found. Therefore, this process is less efficient than using an indexed field.

When you use the alternate view feature on a particular child segment, the data retrieved
from that segment is retrieved in physical order, not logical order. This is because the
child becomes a root segment for the report request, and there are no logical pointers
between the child segments of different parents.

Creating Reports 905

18. Improving Report Processing

Alternate view on an indexed field is a special case that uses the index for retrieval.
When you perform an alternate view on an indexed field, you enhance the speed of
retrieval. However, you must include an equality test on the indexed field, for example
WHERE (MONTH EQ 1) OR (MONTH EQ 2), in order to benefit from the performance
improvement.

A field name specified in an alternate file view may not be qualified or exceed 12
characters.

Automatic Indexed Retrieval (AUTOINDEX) is never invoked in a TABLE request against
an alternate file view.

Restructuring DataExample:

Consider the following data structure, in which PROD_CODE is an indexed field:

You could issue the following request to promote the segment containing PROD_CODE to
the top of the hierarchy, thereby enabling quicker access to the data in that segment.

TABLE FILE SALES.PROD_CODE
"SALES OF B10 DISTRIBUTED BY AREA"
SUM UNIT_SOLD AND RETAIL_PRICE
BY AREA
WHERE PROD_CODE EQ 'B10'
ON TABLE COLUMN-TOTAL
END

906 Information Builders

Rotating a Data Structure for Enhanced Retrieval

Optimizing Retrieval Speed for FOCUS Data Sources
When the AUTOPATH parameter in set ON, an optimized retrieval path—that is, one in which
the lowest retrieved segment is the entry point—is selected dynamically. It is equivalent to
the alternate view syntax

TABLE FILE filename.fieldname

where:

fieldname

Is not indexed. Retrieval starts at the segment in which fieldname resides.

The system determines whether optimized retrieval is appropriate by analyzing the fields
referenced in a request and the data source structure. For more information on the AUTOPATH
parameter, see the Developing Applications manual.

Tip: Another way to optimize data retrieval is by using intelligent partitioning in requests that
do not require retrieval from every partition. For information on efficiency considerations for
FOCUS data sources, including intelligent partitioning, see the Describing Data manual.

Automatic Indexed Retrieval

How to:

Use Indexed Retrieval

Reference:

Usage Notes for Indexed Retrieval

Automatic indexed retrieval (AUTOINDEX) optimizes the speed of data retrieval in FOCUS
data sources. To take advantage of automatic indexed retrieval, a TABLE request must
contain an equality or range test on an indexed field in the highest segment referenced in
the request.

This method is not supported if a:

Range test applies to a packed data value.

Request specifies an alternate view (that is, TABLE FILE filename.fieldname).

Request contains the code BY HIGHEST or BY LOWEST.

For related information on AUTOINDEX, see the Developing Applications manual.

Creating Reports 907

18. Improving Report Processing

How to Use Indexed RetrievalSyntax:

SET AUTOINDEX = {ON|OFF}

where:

ON

Uses indexed data retrieval for optimized speed when possible. The request must contain
an equality or range test on an indexed field in the highest segment referenced in the
request.

OFF

Uses sequential data retrieval unless a request specifies an indexed view (TABLE FILE
filename.indexed_fieldname) and contains an equality test on indexed_fieldname. In that
case, indexed data retrieval is automatically performed. This value is the default. However,
the default may have been changed in a supported profile. You can check your setting
by issuing the ? SET command.

Usage Notes for Indexed RetrievalReference:

AUTOINDEX is never invoked when the TABLE request contains an alternate file view (that
is, TABLE FILE filename.fieldname).

Even if AUTOINDEX is ON, indexed retrieval is not performed when the TABLE request
contains BY HIGHEST or BY LOWEST phrases.

When a request specifies an indexed view (as in TABLE FILE filename.indexed_fieldname),
indexed retrieval is implemented under the following circumstances:

AUTOINDEX is OFF and the request contains an equality test on the indexed field.

AUTOINDEX is ON and the request contains either an equality or a range (FROM ...
TO) test against the indexed field.

908 Information Builders

Automatic Indexed Retrieval

Using Indexed RetrievalExample:

The following Master File is referenced in the examples that follow:

FILENAME=SALES,SUFFIX=FOC,
 SEGNAME=STOR_SEG,SEGTYPE=S1,
 FIELDNAME=AREA,ALIAS=LOC,FORMAT=A1,$
 SEGNAME=DATE_SEG,PARENT=STOR_SEG,SEGTYPE=SH1,
 FIELDNAME=DATE,ALIAS=DTE,FORMAT=A4MD, $
 SEGNAME=DEPT,PARENT=DATE_SEG,SEGTYPE=S1,
 FIELDNAME=DEPARTMENT,ALIAS=DEPT,FORMAT=A5,FIELDTYPE=I,$
 FIELDNAME=DEPT_CODE,ALIAS=DCODE,FORMAT=A3,FIELDTYPE=I,$
 FIELDNAME=PROD_TYPE,ALIAS=PTYPE,FORMAT=A10,FIELDTYPE=I,$
 SEGNAME=INVENTORY,PARENT=DEPT,SEGTYPE=S1,$
 FIELDNAME=PROD_CODE,ALIAS=PCODE,FORMAT=A3,FIELDTYPE=I,$
 FIELDNAME=UNIT_SOLD,ALIAS=SOLD,FORMAT=I5,$
 FIELDNAME=RETAIL_PRICE,ALIAS=RP,FORMAT=D5.2M,$
 FIELDNAME=DELIVER_AMT,ALIAS=SHIP,FORMAT=I5,$

The following procedure contains an equality test on DEPT_CODE and PROD_CODE.
DEPT_CODE is used for indexed retrieval since it is in the higher of the referenced segments.

SET AUTOINDEX=ON
TABLE FILE SALES
SUM UNIT_SOLD RETAIL_PRICE
IF DEPT_CODE EQ 'H01'
IF PROD_CODE EQ 'B10'
END

If your TABLE request contains an equality or range test against more than one indexed field
in the same segment, AUTOINDEX uses the first index referenced in that segment for retrieval.
The following stored procedure contains an equality test against two indexed fields. Since
DEPT_CODE appears before PROD_TYPE in the Master File, AUTOINDEX uses DEPT_CODE
for retrieval.

SET AUTOINDEX=ON
TABLE FILE SALES
SUM UNIT_SOLD AND RETAIL_PRICE
IF PROD_TYPE EQ 'STEREO'
IF DEPT_CODE EQ 'H01'
END

Creating Reports 909

18. Improving Report Processing

Indexed retrieval is not invoked if the equality or range test is run against an indexed field
that does not reside in the highest referenced segment. In the following example, indexed
retrieval is not performed, because the request contains a reference to AREA, a field in the
STOR_SEG segment:

SET AUTOINDEX=ON
TABLE FILE SALES
SUM UNIT_SOLD AND RETAIL_PRICE
BY AREA
IF PROD_CODE EQ 'B10'
IF PROD_TYPE EQ 'STEREO'
END

Data Retrieval Using TABLEF
TABLEF is a variation of the TABLE command that provides a fast method of retrieving data
that is already stored in the order required for printing and requires no additional sorting.

Using TABLEF, records are retrieved in the logical sequence from the data source. The
standard report request syntax applies, subject to the following rules:

Any BY phrases must be compatible with the logical sequence of the data source. BY
phrases are used only to establish control breaks, not to change the order of the records.

ACROSS phrases are not permitted.

Multiple display commands are not permitted. Only one display command may be used.

After the report is executed, RETYPE, HOLD, and SAVE are not available. However, you
can produce an extract file if you include ON TABLE HOLD or ON TABLE SAVE as part of
the request.

NOSPLIT is not compatible with the TABLEF command, and produces a FOC037 error
message.

TABLEF can be used with HOLD files and other non-FOCUS data sources when the natural
sort sequence of both the request and the data are the same.

TABLEF is not supported with SET EMPTYREPORT. When a TABLEF request retrieves zero
records, EMPTYREPORT behaves as if it were set to ON.

The DST. prefix operator is not permitted.

BORDER styling is not supported with TABLEF.

910 Information Builders

Data Retrieval Using TABLEF

Printing Using Fast Table RetrievalExample:

If you previously created a HOLD file from the EMPLOYEE data source, sorted by the
CURR_SAL, LAST_NAME, and FIRST_NAME fields, you can issue the following TABLEF request:

TABLEF FILE HOLD
PRINT CURR_SAL AND LAST_NAME AND FIRST_NAME
END

Preserving the Internal Matrix of Your Last Report

How to:

Save an Internal Matrix

An internal matrix is generated with each TABLE, FML, GRAPH, and MATCH request. These
requests are available for the duration of your session, or until you generate a new report
or graph that overwrites it.

While a report (or graph) request is available, you can:

Extract and save data from it using the HOLD, SAVE, and SAVB commands.

Redisplay it using the RETYPE or REPLOT commands.

If you wish to save the matrix from your last request to protect it from being overwritten when
using Dialogue Manager commands, you can activate the SET SAVEMATRIX feature.

Note: SET SAVEMATRIX is not available with the TABLEF command.

How to Save an Internal MatrixSyntax:

SET SAVEMATRIX = {ON|OFF}

where:

ON

Saves the internal matrix from the last report request, preventing it from being overwritten.

OFF

Overwrites the internal matrix for each request. OFF is the default value.

Creating Reports 911

18. Improving Report Processing

Saving the Internal Matrix of a ReportExample:

The following request creates a report, then executes a procedure that contains a Dialogue
Manager command (which would otherwise overwrite the internal matrix), and recalls the
report using the RETYPE command:

SET SAVEMATRIX = ON
TABLE FILE EMPLOYEE
.
.
.
END
EX DMFEX
RETYPE

Compiling Expressions

In this section:

Compiling Expressions Using the DEFINES Parameter

Compiling Expressions Using the COMPUTE Parameter

Compiling expressions into machine code provides faster processing.

Compiling Expressions Using the DEFINES Parameter

How to:

Compile DEFINE Expressions

Query Compiled DEFINE Expressions

On z/OS and z/VM, two expression compilers are available. By issuing the appropriate
command, you can select one of them or disable compilation of expressions. Both compilers
cannot be active for the same request:

The DEFINE compiler compiles only those expressions that are found in DEFINE fields
referenced in TABLE requests, but it provides much faster execution of those expressions
than the other compiler. It compiles expressions using the arithmetic operations built
into the underlying operating system, and is, therefore, referred to as the native compiler.
Compilation takes place at TABLE run time. This compiler is invoked by issuing the
command SET DEFINES = COMPILED.

912 Information Builders

Compiling Expressions

The other compiler is invoked with the command SET COMPUTE = NEW. This compiler
provides expression compilation for DEFINE, IF, and WHERE commands in TABLE
procedures. Under this compiler, expressions are compiled at DEFINE time. Therefore,
compilation may be invoked for expressions that are never actually used in a request.

Among the benefits of the DEFINE compiler are:

Compilation of only those expressions that are actually used in the TABLE request.

Much faster execution of expressions containing complex calculations on long packed
fields.

Compilation of date expressions.

After the native DEFINE compiler is invoked, any request that uses a DEFINE expression
causes the expression to be compiled and then loaded into the system. For each record of
the request that needs computation, the system executes the generated code. This compiler
is most effective with TABLE requests that include a large number of DEFINE fields and read
a large number of records because the speed of evaluation per record in such requests
offsets the extra compilation and load steps.

Note: To compile expressions in MODIFY procedures in Mainframe environments, use the
SET MODCOMPUTE command.

How to Compile DEFINE ExpressionsSyntax:

Issue the following command FOCPARM, a FOCEXEC, or at the command line:

SET DEFINES = {COMPILED|OLD}

where:

COMPILED

Implements expression compilation at request run time, compiling only those DEFINEs
that are used in the request. COMPILED is the default value.

OLD

Leaves expression compilation up to the control of the current SET COMPUTE value. If
you issue the SET DEFINES = OLD command, the COMPUTE parameter is automatically
set to NEW.

How to Query Compiled DEFINE ExpressionsSyntax:

Issue the following command to query the current setting:

? SET DEFINES

Creating Reports 913

18. Improving Report Processing

Compiling Expressions Using the COMPUTE Parameter

How to:

Control Expression Compilation Using the COMPUTE Parameter

Reference:

Usage Notes for SET COMPUTE

Interaction Between SET DEFINES and SET COMPUTE

Usage Notes for Compiled DEFINEs

The compiler implemented with the SET COMPUTE = NEW command provides expression
compilation for DEFINE, IF, and WHERE commands in TABLE procedures. Under this compiler,
expressions are compiled at DEFINE time. Therefore, compilation may be invoked for
expressions that are never actually used in a request.

How to Control Expression Compilation Using the COMPUTE ParameterSyntax:

SET COMPUTE = {NEW|OLD|NATV}

where:

NEW

Compiles DEFINE calculations when a request is executed.

OLD

Does not compile DEFINE calculations when a request is executed. The old logic is used.

NATV

Compiles DEFINE calculations using the native compiler. This setting is also activated
by the SET DEFINES=COMPILED command, which is the default setting.

Usage Notes for SET COMPUTEReference:

The following calculations are not compiled with SET COMPUTE = NEW:

Calculations that involve any function (for example, user functions), except for EDIT,
DECODE, and LAST.

Calculations that test for existing data (IF field IS-NOT MISSING) or that result in a missing
field (TEMP/A4 MISSING ON= ...).

Calculations that involve fields with date formats. (See the table of date formats in the
FORMAT attribute description in the Describing Data manual.)

Calculations that use exponentiation (10**2).

914 Information Builders

Compiling Expressions

Interaction Between SET DEFINES and SET COMPUTEReference:

Two expression compilers are available, but only one can be activated for any request.
Activating either compiler automatically deactivates the other compiler:

Issuing the SET DEFINES=COMPILED command activates the new compiler and deactivates
the old compiler by automatically setting the value of the COMPUTE parameter to NATV
(native compiler).

Issuing the SET DEFINES=OLD command deactivates the new compiler and automatically
activates the old compiler by automatically setting the value of the COMPUTE parameter
to NEW .

Issuing the SET COMPUTE command with either the OLD or NEW setting deactivates the
new compiler. The OLD setting also deactivates the old compiler.

Therefore, you can select either compiler by issuing the SET DEFINES command.
DEFINES=COMPILED selects the new compiler, DEFINES=OLD selects the old compiler. To
turn compilation off, issue SET COMPUTE=OLD.

The new compiler is recommended for TABLE requests that include a large number of DEFINE
fields (especially those that use packed arithmetic or date expressions) and read a large
number of records.

If a TABLE request retrieves a large number of records or if the DEFINE fields use packed
arithmetic (especially with long packed fields) or date expressions, the new compiler is likely
to provide the most benefit.

Usage Notes for Compiled DEFINEsReference:

Any expression that cannot be compiled runs without compilation. This does not affect
compilation of other expressions. The following elements in an expression disable
compilation with the new compiler:

Functions. However, expressions that use the following functions can be compiled:
YMD, DMY, INT, and DECODE.

CONTAINS, OMITS, LAST.

The SET DEFINES command is not supported in an ON TABLE phrase.

SET DEFINES creates a pool boundary when used in conjunction with Pooled Tables.

If compilation is not possible because of environmental conditions, the processing is handled
without compilation. No message is generated indicating that compilation did not take place.
To determine whether it did take place, issue the ? COMPILE command.

Creating Reports 915

18. Improving Report Processing

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

In this section:

Overview

Sub-Pool Boundaries and Pooling Restrictions

Estimating Memory Requirements

Memory Requirements

Sharing Selection Criteria and Filters Across Requests in a Pool

Criteria When Pooling Non-Relational Database Requests

Criteria When Pooling Relational Database Requests

Criteria When Pooling Batch Requests

Selecting a Sort Utility

Observing the Results of Pooling (TRACEON)

Installing the Pooled Tables Option

The Pooled Tables option permits you to produce many reports or extract files in a single
pass of your data source, dramatically reducing database I/O, CPU, and elapsed time.
Requests against any data source, file, or JOIN structure that FOCUS reads can be pooled
without incurring a penalty, even if the application does not exploit the feature.

Pooling is added with several SET commands, and its analytical functions can automatically
identify reports that can share database I/O and run them concurrently.

Pooling is applicable whenever consecutive report requests run against the same database,
which is ideal for large batch operations, as well as canned FOCUS reporting and data-extract
applications. It also applies in most reporting situations where record-selection costs exceed
the costs for report formatting.

916 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

Overview

How to:

Activate the Pooled Tables Feature

To implement Pooled Tables in an application, you simply add several SET commands; no
other changes are required. As FOCUS runs a group of report requests, it starts pooling as
soon as it encounters a SET POOL=ON command, and pooling continues until it reads a SET
POOL=OFF. During processing, FOCUS searches for consecutive TABLE requests that access
the same data source with the same access method, and it stores those in sub-pools. A
read-ahead feature even crosses FOCEXEC boundaries, dividing commands into retrieval
and non-retrieval sub-pools. These sub-pools are collections of TABLE requests and related
commands against common data sources—only report requests within sub-pools can be
combined. Sub-pool boundaries are established whenever FOCUS encounters commands
that either alter the data or change the processing environment (see Sub-Pool Boundaries
and Pooling Restrictions on page 919).

Sub-pools are further subdivided into clusters, which are sets of consecutive TABLE requests
against the same logical database that employ the same access method. Requests that
cannot be pooled due to syntactical or environmental conditions are executed as single-
TABLE clusters, which execute concurrently and share their data retrieval and screening
processes (as well as related overhead), but do not share sorts or output formatting functions.

You can make processing more efficient if you can estimate the expected number of records
to be read and lines of output. You can also perform a degree of memory management by
limiting the amount of memory made available for pooling. For more information, see
Estimating Memory Requirements on page 922

How to Activate the Pooled Tables FeatureSyntax:

SET POOL = {OFF|ON}

where:

OFF

Ends Pooled Tables and executes any queued requests. OFF is the default value.

ON

Activates Pooled Tables.

Creating Reports 917

18. Improving Report Processing

Using Pooled TablesExample:

The following example illustrates the ease of implementing Pooled Tables. Here a small
amount of memory is provided for Pooled Tables (4,000K); then pooling is turned on and
report size estimates are provided for each report. The report requests are queued until
pooling is turned off. At that time, data is retrieved only once for all report requests in the
pool. They are executed concurrently, and the reports printed one after the other.

SET POOLMEMORY = 4000
SET POOL=ON
TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE BY DEPARTMENT
IF HIRE_DATE GE 820101
ON TABLE SET ESTLINES 10000 AND ESTRECORDS 10000
END

The output is:

 DEPARTMENT LAST_NAME FIRST_NAME HIRE_DATE
 ---------- --------- ---------- ---------
 MIS JONES DIANE 82/05/01
 BLACKWOOD ROSEMARIE 82/04/01
 GREENSPAN MARY 82/04/01
 PRODUCTION SMITH RICHARD 82/01/04
 BANNING JOHN 82/08/01
 IRVING JOAN 82/01/04
 ROMANS ANTHONY 82/07/01
 MCKNIGHT ROGER 82/02/02

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY CURR_JOBCODE
IF CURR_JOBCODE EQ 'A$*'
ON TABLE SET ESTLINES 5 AND ESTRECORDS 4000
END

The output is:

 CURR_JOBCODE CURR_SAL
 ------------ --------
 A01 $9,500.00
 A07 $11,000.00
 $9,000.00
 A15 $26,862.00
 A17 $29,700.00
 $27,062.00

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME BY DEPARTMENT
IF PAY_DATE FROM 820701 TO 820831
ON TABLE SET ESTRECORDS 120000
END

SET POOL=OFF

918 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

The output is:

 DEPARTMENT LAST_NAME FIRST_NAME
 ---------- --------- ----------
 MIS SMITH MARY
 JONES DIANE
 MCCOY JOHN
 BLACKWOOD ROSEMARIE
 GREENSPAN MARY
 CROSS BARBARA
 PRODUCTION STEVENS ALFRED
 SMITH RICHARD
 BANNING JOHN
 IRVING JOAN
 ROMANS ANTHONY
 MCKNIGHT ROGER

Sub-Pool Boundaries and Pooling Restrictions

Reference:

Retrieval Commands Included in Sub-pools

Commands That Cause Sub-Pool Boundaries

SET Commands That Cause Sub-Pool Boundaries

Restrictions for Single TABLE Clusters

Sub-pools are collections of TABLE or GRAPH requests and related commands. Only reports
within a sub-pool can be pooled together to share I/O. Sub-pool boundaries are imposed by
non-retrieval commands that can change the data or retrieval method for the data source.
Therefore, you cannot reliably pool together reports on either side of a sub-pool boundary.
When sub-pool boundary commands are encountered, pooling temporarily halts and all
queued requests are executed.

Sub-pool boundaries are created when:

A FOCEXEC completes execution and control is returned to the command line.

A -RUN or -EXIT command is issued in a FOCEXEC.

A DEFINE FILE filename ADD command is issued.

A non-TABLE or GRAPH command is issued that could change the data (MAINTAIN,
MODIFY, SQL), change the source of the data (DYNAM, USE), change the retrieval method
(JOIN, PASS, FILTER), or change the operating environment (TSO, z/OS, CMS).

Any SET or ON TABLE SET command that can alter retrieval or the Pooled Tables
environment.

Creating Reports 919

18. Improving Report Processing

Retrieval Commands Included in Sub-poolsReference:

The following table lists retrieval commands included in sub-pools.

Note: This list may be subject to change in future releases.

DEFINECHECK?FF?F?
ONLINEOFFLINEHOLDHELPGRAPH
SAVESAVBRETYPEREPLOTPCHOLD

TABLEFTABLE

Commands That Cause Sub-Pool BoundariesReference:

The following table lists commands that cause sub-pool boundaries.

COMBINECMSCALCANALYSE
ENCRYPTDYNAMDECRYPTCREATECOMPILE
FINFILTERFILETALKEXECEX
GRAPHTALKFSCANFSFIXPACKFINISH
MATCHMAINTAINLOADLETJOIN
PASSMVSMPAINTMODIFYTALKMODIFY
RESTRICTREMOTERECALCREBUILDPLOTTALK
TABLETALKSQLSETSCANRUN
WINDOWUSEUNLOADTSOTED

920 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

SET Commands That Cause Sub-Pool BoundariesReference:

The following lists SET commands that cause sub-pool boundaries. SET commands included
in ? SET ALL that are not on this list do not cause sub-pool boundaries.

AUTOINDEXALL.AGGRRATIOADABAS
BINSAUTOTABLEFAUTOSTRATEGYAUTOPATH
CACHEBYSCROLLBYPANEL 2BLKCALC
CALCWAITCALCROWSCALCMEMORYCALC
COMMITCOLUMNSCROLL2CDNCARTESIAN

DATETIMECURRENCYCOMPUTE
EXTSORTESTRECORDS 1ESTLINES 1DEFCENT
FOCSTACKFIXRETRIEVEFILENAMEFIELDNAME
ICUFORMHTMLMODEHIPERFOCUSFOC144 1
LANGUAGELABELPROMPTIMSIMPLIEDLOAD
MAXLRECLLOOKGRAPHLOADLIMITLE370
MPRINTMODE XXXXXXMINIOMAXPOOLMEM
POOLFEATUREPOOLBATCHPOOLPASS
PREVIEWPREFIXPOOLRESERVEPOOLMEMORY
SAVEMATRIXRECORDLIMIT 1QUALCHARPRINTPLUS 2

SQLTCARTESSQLENGINESMSHIFT
SUTABSIZESUSISTYLEMODESQLTOPTTF
TEXTFIELDTERMINALTEMP DISKTCPIPINT
TRMTYPTRMSWTRMSDTRACKIO
YRTHRESHXRETRIEVALWINPFKEYUSER

3DGRAPH

Note:

1 indicates a sub-pool boundary with SET only.

2 indicates a sub-pool boundary with ON TABLE SET only.

Restrictions for Single TABLE ClustersReference:

In certain instances, reports cannot be pooled due to syntactical or environmental conditions.
In this case, they are executed as single TABLE clusters. Reports in this category include:

TABLEF requests.

MATCH requests.

Extended Matrix Reports (EMRs).

Reports using SET ALL=ON or PASS.

Creating Reports 921

18. Improving Report Processing

Reports against FOCUS databases using an explicit indexed view or an implicit indexed
view, using AUTOINDEX.

Reports against relational databases where aggregation is passed to the DBMS.

Reports that use MORE, ON field RECAP, COUNT DISTINCT, DST., INCLUDES, EXCLUDES,
or COUNT as a verb object.

Reports that use a redefined database field.

Reports issued from the FOCUS command line.

Reports that use a self-referential Filter or DBA value restriction.

Reports that have more then 256 values in an equality IF or WHERE test.

Reports executed when $ORTPARM is allocated.

Reports that use a user-written subroutine except those in Table 4. Generally, subroutines
that require initialization and are then reused cannot be pooled. Random-number generator
subroutines are a good example.

The list below provides subroutines and functions that can be pooled.

BARAYMDAYMATODBLARGLEN
CHKFMTCHGDATBYTVALBITVALBITSON
DADYMDADMYCTRFLDCTRANCHKPCK
DMODDAYMDDAYDMDAMYDDAMDY
DTMDYDTDYMDTDMYDOWKLDOWK
FEXERREXPDTYMDDTYDMDTMYD
GETTOKGETPDSFTOAFMODFINDMEM
IMODHHMMSSHEXBYTGREGDTGETUSER
LCWORDJULDATITOZITOPACKITONUM
PCKOUTPARAGOVRLAYLOCASELJUST
TODAYSUBSTRSOUNDEXRJUSTPOSIT

YMUPCASEUFMT

Estimating Memory Requirements
The number of executable reports per cluster depends on how much memory is allocated
to Pooled Tables (POOLMEMORY). To optimize pooling capacity, give POOLMEMORY an
adequate size: z/OS region size, or z/VM virtual memory. Reduce POOLRESERVE after loading
interface and other modules.

To improve the pooling potential of requests, remove unnecessary sub-pool boundary
commands such as extraneous -RUN statements, and consolidate necessary sub-pool
boundary-forcing commands such as DYNAM and SET. You can further improve opportunities
for pooling within clusters by grouping requests with the same source, entry point and retrieval
method.

922 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

For optimal processing, supply accurate estimates for ESTRECORDS, ESTLINES, and
POOLMEMORY for each request. Remember that these estimates apply to each report, not
to the aggregate size of the set of reports in the cluster. To calculate these sizes, issue
? STAT and review the statistics.

Displaying Report StatisticsExample:

The statistical report produced by ? STAT is useful in tuning applications that employ Pooled
Tables.

Note: This annotated sample shows only information concerning Pooled Tables.

 STATISTICS OF LAST COMMAND
.50000RECORDS =
.50000LINES -
..
..
..
.250000READS =1.
..
..
..
..
.= 1SUBPOOL2.

= 1ITERATION8.= 2CLUSTER3.

 = 16# ITER ITEMS9.= 25# CLUSTER ITEMS4.

 = 5SEQ# IN ITER10.= 5SEQ# IN CLUSTER5.

= 50000ESTIMATED LINES11.= 50000ESTIMATED RECS6.

= 148REPORT WIDTH7.

Creating Reports 923

18. Improving Report Processing

For this report:

Total number of read I/O’s.READS1.
This is the first subpool.SUB POOL2.
This is the second cluster in the subpool.CLUSTER3.
Total number of reports in the cluster. There are 25 reports in
the cluster.

CLUSTER ITEMS4.

Sequence number of the current report in the cluster. This is
the fifth report in the cluster.

SEQ # IN CLUSTER5.

ESTRECORDS was set to 50,000. Compare this with RECORDS
at the top of the output. If a discrepancy, exists correct
ESTRECORDS.

ESTIMATED RECS6.

The report width is 148 bytes.REPORT WIDTH7.
Sequence number of the iteration (multiple iterations are used
if pool memory is insufficient to run all reports at once). This
report was produced in the first iteration.

ITERATION8.

Number of reports within the iteration. Sixteen reports are
included in the first iteration.

ITER ITEMS9.

Sequence number of this report within the iteration. This is
the fifth report in iteration number one.

SEQ # IN ITER10.

ESTLINES was set to 50,000. Compare this with LINES at the
top of the output. If a discrepancy exists, correct your ESTLINES
value for this report.

ESTIMATED LINES11.

Memory Requirements

How to:

Supply an Estimate for the Number of Input Records for a Report

Supply an Estimate of the Number of Output Lines Expected for a Report

Limit the Amount of Memory Available for Pooling Within a Cluster (Per User)

Reserve Memory for Other Modules

Pooled Tables memory requirements per report vary depending on numbers of records
selected, output lines produced, and report widths, all of which Pooled Tables calculates
based on the values of ESTLINES and ESTRECORDS. Gather ESTLINES and ESTRECORDS
input from:

The statistical message: NUMBER OF RECORDS IN TABLE= LINES=.

The RECORDS and LINES information available on the ? STAT output.

924 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

Previously gathered information from the &RECORDS and &LINES variables.

When using ACROSS, ESTLINES is the number of lines times the number of unique
ACROSS columns.

When using IF TOTAL or WHERE TOTAL, ESTLINES is the number of lines before the TOTAL
selection is made.

The memory requirement for a small summary report roughly equals:

NUMBER OF LINES OF OUTPUT * REPORT WIDTH.

For large summary reports and detail reports, use:

NUMBER OF RECORDS SELECTED * REPORT WIDTH

In the absence of estimates, Pooled Tables uses the following defaults:

ESTRECORDS=100000.

ESTLINES=0.

POOLMEMORY=16,384K.

POOLRESERVE=100K(z/OS)/1024K (z/VM).

How to Supply an Estimate for the Number of Input Records for a ReportSyntax:

ON TABLE SET ESTRECORDS {m|0}

where:

m

Is the estimate of the number of records being retrieved for a report. The default value
is 0.

Assign a global value for each report in a pool with the following command:

SET ESTRECORDS={m|0}

How to Supply an Estimate of the Number of Output Lines Expected for a ReportSyntax:

ON TABLE SET ESTLINES nSET ESTLINES=n

where:

n

Is a user estimate of the number of output lines for a report. The default value is 0. If
no value is given, Pooled Tables assumes there is no aggregation, and that the number
of lines is the same as the number of records.

Creating Reports 925

18. Improving Report Processing

You can assign a global value for each report in a pool with the following command:

SET ESTLINES=n

When ESTLINES is 0, Pooled Tables uses the current value of ESTRECORDS for ESTLINES.
While adequate for large extract reports, this provide minimal benefit if inaccurate.

How to Limit the Amount of Memory Available for Pooling Within a Cluster (Per
User)

Syntax:

SET POOLMEMORY = n

where:

n

Is the upper limit in kilobytes of memory that FOCUS may use during any cluster for a
user. In z/OS, this is memory above the 16-megabyte line. In z/VM, it represents total
virtual memory.

The default value is 16,384 K (16 M). The minimum value is 1,024 K.

The minimum value for POOLMEMORY is 1,024 K. You can set a maximum threshold for
POOLMEMORY when you install Pooled Tables.

In z/OS, POOLMEMORY represents memory above the 16-megabyte line. You can also
control the total amount of memory available from the operating system above the 16
megabyte line by coding REGION=nM on your JCL job card, where n is greater than 16.

In z/VM, POOLMEMORY represents total virtual memory.

You can also set POOLMEMORY from the command line, during FOCUS initialization (in the
PROFILE FOCEXEC), or within an application.

When POOLMEMORY is insufficient to execute every request in a cluster simultaneously,
Pooled Tables executes them in iterations, producing as many reports as it can in memory
in the first iteration and staging data for the remaining reports in a FOCPOOLT work file it
creates for this use. The remaining reports are produced from FOCPOOLT in subsequent
iterations, so the original data source is still only accessed once at the outset. When a
cluster can be produced directly from memory, no FOCPOOLT file is created.

926 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

How to Reserve Memory for Other ModulesSyntax:

SET POOLRESERVE =n

where:

n

Is an amount of memory (kilobytes) reserved for other modules that Pooled Tables cannot
use.

In z/VM, the default is 1,024K. In z/OS, it is 100K.

POOLRESERVE reserves memory for use by other modules during the Pooled Tables request-
parsing and decision-making processes. For example, initial access to SQL/DS requires
loading of Information Builders interface code and IBM modules (this memory will not be
made available to Pooled Tables).

You can change either at installation time, by setting POOLRESERVE from the command line
during FOCUS initialization (in the PROFILE FOCEXEC), or within your application.

Suggested values for POOLRESERVE are:

Running an interface (not in saved segment): 1024 K
Running an interface (in saved segment): 256 K
Using SyncSort as the external sort: 512 K
Using any other sort: 128 K

Memory for such activities is not used in the Pooled Tables case until the common read is
executed. After loading these modules, you can reduce POOLRESERVE, perhaps to zero. If
the Information Builders interface and IBM load modules are stored in a saved segment,
you can even reduce POOLRESERVE before executing Pooled Tables.

The Pooled Tables Trace facility (see Observing the Results of Pooling (TRACEON) on page
932) displays actual memory allocations for each report and the statistics used to calculate
it.

Using a Temporary FOCPOOLT Work FileExample:

If a cluster contained 30 report requests, each requiring 1megabyte of memory, and 10
megabytes was all the memory allocated for POOLMEMORY, Pooled Tables would retrieve
data for all 30 reports but produce only the first 10 reports directly from memory (the first
iteration), writing the records for the remaining 20 reports to the FOCPOOLT work file. In the
next iteration, Pooled Tables would read data for the next 10 reports from FOCPOOLT and
process those. In a third iteration it would process the data for the final 10 reports.

Creating Reports 927

18. Improving Report Processing

FOCPOOLT retrievals are more efficient than going back to the data source, because the
data is pre-screened and formatted, and because Pooled Tables collected accurate record
counts (ESTRECORDS) when it wrote records for the second and subsequent iterations to
FOCPOOLT. With accurate memory requirements calculated, Pooled Tables performance is
optimized.

Sharing Selection Criteria and Filters Across Requests in a Pool
Selection statements that appear in every report request in a cluster are automatically
applied just once during Pooled Tables retrievals. To qualify, such tests must refer to the
same field and apply an equality test (EQ or IS); however the actual values selected need
not be the same. For example, if the first report tests WHERE FISCAL_YEAR EQ 1997 and
the second tests for WHERE FISCAL_YEAR EQ 1998, Pooled Tables applies the test WHERE
FISCAL_YEAR EQ 1997 OR 1998 during data retrieval. Common selection tests greatly reduce
the size of answer sets returned.

Pooled Tables can also evaluate common selection criteria not based on equality tests
through the FOCUS Filters feature. Filters permit specification of simple or complex selection
tests against a common file for all reports. If, for example, all reports in a cluster use WHERE
DELETE_FLAG NE 'Y', you can create a filter with that test. Alternately, you could change the
test to read WHERE DELETE_FLAG EQ 'N' so that the common selection command is used
in the Pooled Tables common read.

Criteria When Pooling Non-Relational Database Requests
Reports against non-relational databases, such as VSAM, IMS, IDMS, FOCUS, and sequential
files, must meet several simple criteria to be pooled into one cluster. To qualify, all reports
must access the same data source, use the same Master File and share the same access
method. All reports in a cluster must also share the same entry point (the reporting view
must be from the same segment and, in the case of indexed access, from the same field).
Reports against sequential files always meet these criteria and always pool. Reports against
joined structures are pooled if they share the same access method to the host file.

Criteria When Pooling Relational Database Requests
Reports against relational databases, such as UDB (DB2) and SQL/DS, can be pooled into
the same cluster when they share several common attributes. Like non-relational files, all
reports must access the same Master File from the same entry point. Reports requiring SQL
aggregation (the generated SQL statements contain the GROUP BY phrase) are not pooled,
which assures that the set presented to each report in the pool is accurate. Further, requests
against a multi-table relational view must all reference the same tables to be pooled into
the same cluster.

928 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

If a view contains table A and table B, all reports that reference only fields in table A can be
pooled, all reports that reference only fields in table B can be pooled, and all reports
referencing fields in both table A and B can be pooled. However, none of the reports in those
sets could be pooled with reports from the other sets. This limitation insures that the RDBMS
retrieval engine uses the same optimization logic for each report in the set.

Less stringent pooling requirements apply with optimization off (SQL SET OPTIMIZATION
OFF). Since FOCUS manages the retrieval and aggregation operations in this case, pooling
conditions are the same with optimization off as with non-relational databases. Restrictions
regarding common accessed tables and SQL aggregation do not apply.

Pooling benefits obtained with optimization off, versus those gained by allowing the RDBMS
to optimize retrievals, vary from case to case. For example, a request requiring an area
sweep that returns a large answer set (even with optimization), would be a good candidate
to pool with other requests if optimization were turned off.

When the interface trace facility is used for a relational database, the SQL generated for
each request is echoed. The SQL is generated during the Pooled Tables parsing phase but
is not submitted to the RDBMS. Instead, Pooled Tables constructs an internal request to
retrieve all data for the cluster. The SQL SELECT statements generated for the cluster are
echoed in the trace, and these are the statements passed to the RDBMS.

SQL SELECT statements generated by Pooled Tables are optimized by the RDBMS. Therefore,
the best optimization occurs when all requests in a cluster contain the same equality
screening conditions or Filters. In such cases, the screening tests are included in the SQL
and passed to the RDBMS for optimization. Without application of common selections or
Filters, it is possible that efficiencies gained through RDBMS optimization could be lost in
pooling individual requests. Consider these two requests: the first returns a small answer
set based on a selection against a key field named KEY1. The second returns a small answer
set based on a selection against a key field named KEY2. The independent screening
conditions are not included in the SQL generated by Pooled Tables, resulting in an area
sweep and a large answer set for the cluster. If the two tests were included as an OR
condition in a Filter, the screening operation would be passed to the RDBMS and a much
smaller answer set returned to Pooled Tables.

Creating Reports 929

18. Improving Report Processing

Criteria When Pooling Batch Requests

How to:

Control Automatic Application of Pooling for Batch Processing

Pooled Tables automatically pools batch requests wherever possible if the POOLBATCH SET
command is issued in a user's PROFILE or in FOCPARM. A batch is any non-interactive
session. In z/OS, this is whenever ddname SYSIN is allocated to a data set. In z/VM, non-
interactive jobs occur when ddname SYSIN is defined (FILEDEF) to a file, FOCUS is invoked
with the syntax FOCUS IN fileid, or the z/VM session is running disconnected.

How to Control Automatic Application of Pooling for Batch ProcessingSyntax:

SET POOLBATCH = {OFF|ON}

where:

OFF

Disables automatic use of Pooled Tables for batch processing. This is the default.

POOLBATCH can be included in the FOCPARM ERRORS, FOCUS PROFILE, a FOCEXEC,
or issued in the SYSIN input stream.

SET POOLBATCH=ON has the effect of automatically setting POOL=ON for batch execution.
SET POOLBATCH=OFF does not reverse this setting. To disable pooling when
POOLBATCH=ON, issue the command SET POOL=OFF.

ON

Enables automatic use of Pooled Tables for batch processing.

930 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

Selecting a Sort Utility

How to:

Specify a Sort Utility for Use With Pooled Tables

Limit the Number of Concurrent External Sorts That Can Run

Pooled Tables chooses an in-memory FOCUS sort or an external sort based on report-size
estimates. Normally, the FOCUS sort is used for reports under a megabyte, and external
sorts in other cases. The limiting factor on concurrently executing sorts is the amount of
memory available to Pooled Tables. While Pooled Tables can execute up to 26 external sorts,
this is controlled by the MAXEXTSRTS setting and by how much memory is provided below
the 16-megabyte line in z/OS. In z/VM, only one external sort can be executed with SyncSort.
When it is practical, the FOCUS sort is substituted for the external sort when external sorts
are limited but memory is available.

How to Specify a Sort Utility for Use With Pooled TablesSyntax:

SET SORTLIB = sorttype

where:

sorttype

Can be one of the following:

SYNCSORT identifies the external sort utility as SYNCSORT.

DFSORT identifies the external sort utility as DFSORT.

VMSORT identifies the external sort utility as VMSORT.

MVSMSGSS identifies the external sort utility as SYNCSORT and its messages are displayed
(z/OS only).

MVSMSGDF identifies the external sort utility as DFSORT and its messages are displayed
(z/OS only).

How to Limit the Number of Concurrent External Sorts That Can RunSyntax:

SET MAXEXTSRTS=n

where:

n

Is the maximum number (from 1 to 26) of concurrent external sorts permitted. The default
is 26.

Creating Reports 931

18. Improving Report Processing

In z/VM, only one version of SyncSort can run concurrently. If you use SyncSort in z/VM,
the value of MAXEXTSRTS is assumed to be 1.

Observing the Results of Pooling (TRACEON)

How to:

Turn on the Pooled Tables Trace

Turn Off the Trace Facility

Reference:

Trace Output

The Pooled Tables trace facility breaks down pools into sub-pools and clusters, warns when
memory allocation is insufficient, and displays report statistics. The trace facility shows how
pools were executed to help developers tune their applications.

How to Turn on the Pooled Tables TraceSyntax:

SET TRACEUSER=ON
SET TRACEOFF=ALL
SET TRACEON=POOLTABL //{CLIENT|FSTRACE}

where:

CLIENT

Directs trace output to the terminal.

FSTRACE

Is a ddname where trace output can be directed. You must allocate a FILEDEF ddname
FSTRACE to a sequential data source. Recommended DCB attributes are RECFM=F and
LRECL=160.

Note: SET TRACEUSER=ON is required to enable the trace facility. SET TRACEOFF=ALL
ensures that no traces are activated. When you then activate the Pooled Tables trace, it will
be the only trace activated.

How to Turn Off the Trace FacilitySyntax:

SET TRACEOFF=POOLTABL

where:

POOLTABL

Ends the Pooled Tables Trace facility.

932 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

Trace OutputReference:

These messages indicate sub-pool boundary encounters:

Sub pool boundary--prior output required as input
Sub pool boundary--FOCUS/SET command
Sub pool boundary--DEFINE ADD
Sub pool boundary--new MASTER name
Sub pool boundary--new DEFINE clears pre-pool DEFINE
This command will run now, outside of pooling:
A DEFINE ADD will run now, outside of pooling.

These messages indicate cluster boundary encounters:

Cluster boundary--new master name
Cluster boundary--single-table cluster
Cluster boundary--new alternate view
Cluster boundary--new pool flag
Cluster boundary--new pool condition
Cluster boundary--mid-stream DEFINE
Cluster boundary--new entry segment
Cluster boundary--too many verb objects

These messages indicate reports that cannot be pooled (single-table clusters):

Single-table cluster--REDEFINEd real field
Single-table cluster--User subroutine not known safe
Single-table cluster--self-referential DBA/filter
Single-table cluster--INCLUDES/EXCLUDES selection
Single-table cluster--too many test literals
Single-table cluster--complex test on index
Single-table cluster--$ORTPARM allocated
Single-table cluster--REDEFINEd constant real field
Single-table cluster--RANKED BY
Single-table cluster--COUNT DISTINCT
Single-table cluster--RECAP
Single-table cluster--COUNT is a verb object
Single-table cluster--indexed view via AUTOINDEX
Single-table cluster--EMR
Single-table cluster--ON TABLE SET
Single-table cluster--TEXT field
Single-table cluster--PREVIEW mode
Single-table cluster--ALL = ON/PASS
Single-table cluster--per message above
Single-table cluster--indexed view for FOCUS database
Single-table cluster--non-poolable interface request
Single-table cluster--too many verb objects

Creating Reports 933

18. Improving Report Processing

These trace messages appear during the creation and execution of clusters and iterations:

Building cluster x...
Cluster contains n table(s)
Cluster n dedicated to command x
Clusters built; sub pool contains x cluster(s).
****** Stack before 1st cluster: ******
****** Stack before nth cluster: ******
****** Begin union table ******
**** Stack before nth iteration: ****

During the parsing phase of Pooled Tables, the following statistics are displayed for each
report. These indicate whether a report request can be pooled and under what conditions.
All reports with the same pooling criteria can be pooled together.

Entry Segment : x
Relational Flag : y
Pool Flag : z
Condition Length: n
Condition : c

After execution of a pooled report, the output from ? STAT is included in the trace. The
entries for TRACKIO and MINIO are included in the output, but their values are not populated.
In addition, the following statistics are included:

TRAVERSAL MTHD = x ENTRY SEGMENT = I
FOCUS SORT MEM = y1 EXTSORT MEMORY = y2
ALGORITHM USED = z

The following trace messages indicate limitations imposed on Pooled Tables by users in
executing reports under less than the most favorable conditions, based on parameters
provided for POOLMEMORY, POOLRESERVE, ESTRECORDS, and ESTLINES or available
memory. These messages do not inhibit the execution of Pooled Tables, but make it less
efficient. To correct these situations, replace the values for ESTRECORDS and ESTLINES
with accurate values or increase the memory allocated for Pooled Tables.

concurrent external sorts reduced from x to y by below-16M shortage
Minimum sort memory forces iterations
Warning--POOLMEMORY desired = x but only y is available
Warning: actual line count (x) exceeds lines estimate (y) in heavy
aggregation case
Warning: records estimate (x) off by more than 10%-actual record count=y
Warning: lines estimate (x) off by more than 10%-actual line count = y

934 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

Installing the Pooled Tables Option

How to:

Install on All Systems

Install on z/OS

Install on z/VM

Configure Pooled Tables

This section provides installation instructions for all systems: IMS, z/OS, and z/VM.

How to Install on All SystemsProcedure:

Enable Pooled Tables for your release of FOCUS by including the following command in
FOCPARM:

SET POOLFEATURE = ON

To disable Pooled Tables, include the following command in the FOCPARM file:

SET POOLFEATURE = OFF

If FOCPARM does not contain a SET POOLFEATURE command, FOCUS assumes Pooled
Tables is disabled.

The maximum memory above 16 megabytes that can be requested with the SET
POOLMEMORY command can be restricted by including the SET MAXPOOLMEM = n command
in FOCPARM.

To make POOL = ON the default for all batch jobs, include the command SET POOLBATCH
= ON. This must follow the SET POOLFEATURE = ON command in FOCPARM.

Each of the commands is also included in member FOCPARM of ERRORS.DATA (z/OS) or in
the file FOCPARM ERRORS (CMS).

How to Install on z/OSProcedure:

Include the POOLFEATURE, POOLBATCH, and MAXPOOLMEM commands in member FOCPARM
in ERRORS.DATA as outlined above. Refer to your FOCUS documentation to change the
default allocation for the file FOCPOOLT.

If you use DFSort and try to run more than 10 sorts concurrently, DFSort displays this
message:

ICE149A DFSORT IS NOT LICENSED FOR USE ON THIS SYSTEM. RETURN CODE 12,
 REASON CODE 4.

Creating Reports 935

18. Improving Report Processing

This causes FOCUS to ABEND. Issue the command SET MAXEXTSRTS=10 to avoid this
symptom temporarily. IBM has fixed this problem with APAR OW29152. Order IBM PTF
UW41671 if you run SMS Release 1.3. Order IBM PTF UW41672 if you run SMS 1.4.

How to Install on z/VMProcedure:

Include the POOLFEATURE, POOLBATCH, and MAXPOOLMEM commands in the file FOCPARM
ERRORS as outlined above. Change the value of POOLRESERVE in FOCPARM ERRORS if
appropriate for your installation.

How to Configure Pooled TablesSyntax:

To configure Pooled Tables, include the following commands in the FOCPARM file

SET POOLFEATURE = {OFF|ON}

where:

OFF

Disables Pooled Tables for this FOCUS site. OFF is the default value.

ON

Enables Pooled Tables for this FOCUS site.

SET POOLBATCH = {OFF|ON}

where:

OFF

Does not enable automatic use of Pooled Tables for batch processing. This is the default.

POOLBATCH can be included in the FOCPARM ERRORS, FOCUS PROFILE, a FOCEXEC,
or issued in the SYSIN input stream.

SET POOLBATCH=ON has the effect of automatically setting POOL=ON for batch execution.
SET POOLBATCH=OFF will not reverse this setting. To disable pooling when
POOLBATCH=ON, issue the command SET POOL=OFF.

ON

Enables automatic use of Pooled Tables for batch processing.

SET MAXPOOLMEM = n

where:

n

Sets an upper limit in kilobytes for memory above 16 megabytes that users can allocate
in the SET POOLMEMORY command. The default is 32,768 K (32 M) and the minimum
is 1,024K.

936 Information Builders

Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)

FOCUS

Creating Financial Reports With Financial
Modeling Language (FML)

19

The Financial Modeling Language (FML) is designed for the special needs associated with creating,
calculating, and presenting financially oriented data such as balance sheets, consolidations, or budgets.
These reports are distinguished from other reports because calculations are inter-row as well as inter-
column, and each row or line represents a unique entry or series of entries that can be aggregated directly
from the input data or calculated as a function of the data.

Topics:
Inserting Rows of Free Text

Reporting With FML Adding a Column to an FML Report

Creating Rows From Data Creating a Recursive Model

Supplying Data Directly in a Request Reporting Dynamically From a Hierarchy

Performing Inter-Row Calculations Customizing a Row Title

Referring to Rows in Calculations Formatting an FML Report

Referring to Columns in Calculations Suppressing the Display of Rows

Referring to Cells in Calculations Saving and Retrieving Intermediate Report
Results

Using Functions in RECAP Calculations
Creating HOLD Files From FML Reports

Creating Reports 937

Reporting With FML
FML is an integrated extension of the TABLE command. By adding the FOR phrase and the
RECAP command, you can handle an expanded range of applications.

Note: MORE is not supported in FML requests.

In conjunction with Dialogue Manager, FML can be used to evaluate "what if" scenarios and
develop complete decision support systems. These systems can take advantage of business
intelligence features, such as statistical analysis and graphics, in addition to standard
financial statements.

Procedures using FML are not hard-wired to the data. As in any other report request, they
can easily be changed. FML includes the following facilities:

Row/column formatting: You can specify results in a row-by-row, column-by-column fashion
(see Performing Inter-Row Calculations on page 953).

Intermediate results: You can post FML results to an external file and pick them up at a
later time for analysis. This is useful when intermediate results are developed and a final
procedure consolidates the results later (see Saving and Retrieving Intermediate Report
Results on page 1002).

Inline data entry: FML enables you to specify constants from within the procedure, in
addition to the data values retrieved from your data source (see Supplying Data Directly
in a Request on page 952).

Recursive reporting: You can produce reports where the results from the end of one time
period or column become the starting balance in the next. For example, you can use
recursive reports to produce a cash flow projection (see Creating a Recursive Model on
page 973).

Dynamic reporting from a chart of accounts or a similar hierarchy of information. You can
create a report that changes as the organization of information changes, ensuring that
you automatically retrieve information that reflects the latest structure and its values.
There is no need to alter either the Master File or the report request. See Reporting
Dynamically From a Hierarchy on page 975.

938 Information Builders

Reporting With FML

Sample FML RequestExample:

This example produces a simple asset sheet, contrasting the results of two years. It illustrates
many key features of the Financial Modeling Language (FML). Numbers to the left of the
procedure lines correspond to explanations that follow the request.

 TABLE FILE FINANCE
 HEADING CENTER
 "COMPARATIVE ASSET SHEET </2"
 SUM AMOUNT ACROSS HIGHEST YEAR
 WHERE YEAR EQ '1983' OR '1982'
1. FOR ACCOUNT
2. 1000 AS 'UTILITY PLANT' LABEL UTP OVER

2. 1010 TO 1050 AS 'LESS ACCUMULATED DEPRECIATION' LABEL UTPAD OVER

3. BAR OVER

4. RECAP UTPNET=UTP-UTPAD; AS 'TOTAL PLANT-NET' OVER
 BAR OVER
 2000 TO 3999 AS 'INVESTMENTS' LABEL INV OVER

5. "CURRENT ASSETS" OVER
 4000 AS 'CASH' LABEL CASH OVER
 5000 TO 5999 AS 'ACCOUNTS RECEIVABLE-NET' LABEL ACR OVER
 6000 AS 'INTEREST RECEIVABLE' LABEL ACI OVER
 6500 AS 'FUEL INVENTORY' LABEL FUEL OVER
 6600 AS 'MATERIALS AND SUPPLIES' LABEL MAT OVER
 6900 AS 'OTHER' LABEL MISC OVER
 BAR OVER
 RECAP TOTCAS=CASH+ACR+ACI+FUEL+MAT+MISC;AS 'TOTAL CURRENT ASSETS' OVER
 BAR OVER
 7000 AS 'DEFERRED DEBITS' LABEL DEFDB OVER
 BAR OVER

6. RECAP TOTAL=UTPNET+INV+TOTCAS+DEFDB; AS 'TOTAL ASSETS' OVER
 BAR AS '='
 FOOTING
 "</2 *** PRELIMINARY ASSET SHEET BASED ON UNAUDITED FIGURES ***"
 END

1. FOR and OVER are FML phrases that enable you to structure the report on a row-by-row
basis.

Creating Reports 939

19. Creating Financial Reports With Financial Modeling Language (FML)

2. LABEL assigns a variable name to a row item for use in a RECAP calculation.

1000 and 1010 TO 1050 are tags that identify the data values of the FOR field, ACCOUNT
in the FINANCE data source. A report row can be associated with a tag that represents
a single data value (like 1000), multiple data values, or a range of values (like 1010 TO
1050).

3. BAR enables you to underline a column of numbers before performing a RECAP calculation.

4. The RECAP command creates a new value based on values already identified in the report
with LABEL. In this case, the value UTPNET is derived from UTP and UTPAD and is renamed
TOTAL PLANT-NET with an AS phrase to provide it with greater meaning in the report.

5. Free text can be incorporated at any point in an FML report, similar to underlines.

6. Notice that this RECAP command derives a total (TOTAL ASSETS) from values retrieved
directly from the data source, and from values derived from previous RECAP computations
(UTPNET and TOTCAS).

The output is:

PAGE 1
 COMPARATIVE ASSET SHEET
 YEAR
 1983 1982

UTILITY PLANT 1,430,903 1,294,611
LESS ACCUMULATED DEPRECIATION 249,504 213,225
 --------------- ---------------
TOTAL PLANT-NET 1,181,399 1,081,386
 --------------- ---------------
INVESTMENTS 818 5,639
CURRENT ASSETS
CASH 4,938 4,200
ACCOUNTS RECEIVABLE-NET 28,052 23,758
INTEREST RECEIVABLE 15,945 10,206
FUEL INVENTORY 35,158 45,643
MATERIALS AND SUPPLIES 16,099 12,909
*** PRELIMINARY ASSET SHEET BASED ON UNAUDITED FIGURES ***

PAGE 2
 COMPARATIVE ASSET SHEET
 YEAR
 1983 1982

OTHER 1,264 1,743
 --------------- ---------------
TOTAL CURRENT ASSETS 101,456 98,459
 --------------- ---------------
DEFERRED DEBITS 30,294 17,459
 --------------- ---------------
TOTAL ASSETS 1,313,967 1,202,943
 =============== ===============
*** PRELIMINARY ASSET SHEET BASED ON UNAUDITED FIGURES ***

940 Information Builders

Reporting With FML

Creating Rows From Data

In this section:

Creating Rows From Multiple Records

Using the BY Phrase in FML Requests

Combining BY and FOR Phrases in an FML Request

How to:

Retrieve FOR Field Values From a Data Source

A normal TABLE request sorts rows of a report according to the BY phrase you use. The data
retrieved is sorted from either low-to-high or high-to-low, as requested. The rows may be
limited by a screening phrase to a specific subset, but:

They appear in a sort order.

Rows appear only for values that are retrieved from the file.

You can only insert free text between rows when a sort field changes value, such as:

ON DIVISION SUBFOOT

You can only insert calculations between rows when a sort field changes value, such as:

ON DIVISION RECAP

In contrast, the FML FOR phrase creates a matrix in which you can structure your report row-
by-row. This organization gives you greater control over the data that is incorporated into a
report, and its presentation. You can:

Report on specific data values for a field in a data source and combine particular data
values under a common label, for use in calculations.

Type data directly into the request to supplement data retrieved from the data source.

Include text, underlines, and calculations at points in the report that are not related to
sort breaks.

Perform recursive processing, in which the result of an interim calculation is saved and
then used as the starting point for a subsequent calculation.

Suppress the display of rows for which no data is retrieved.

Identify rows by labels and columns by numbers, addresses, and values so that you can
point to the individual cells formed at each intersection (as on a spreadsheet).

Creating Reports 941

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Retrieve FOR Field Values From a Data SourceSyntax:

The syntax for specifying rows is:

FOR fieldname [NOPRINT]
value [OR value OR...] [AS 'text'] [LABEL label] OVER
.
.
[value [OR value ...] [AS 'text'] [LABEL label]
END

where:

fieldname

Is a field name in the data source.

value

Is the value (also known as a tag value) describing the data that is retrieved for this row
of the report.

AS 'text'

Enables you to assign a name to a tag value, which replaces the tag value in the output.
Enclose the text in single quotation marks.

label

Assigns a label to the row for reference in a RECAP expression. The label can be up to
66 characters and cannot have blanks or special characters. Each explicit label you
assign must be unique.

Even if you assign an explicit label, the positional label (R1, R2, etc,) is retained internally.

By default, a tag value for a FOR field (like 1010) may be added only once to the FML matrix.
However, if you wish to add the same value of a FOR field to the matrix more than once, you
can turn on the FORMULTIPLE parameter (the default setting is OFF). See How to Use the
Same FOR Field Value in Multiple Rows on page 948.

See the Using Functions manual for information about the FMLFOR, FMLLIST, and FMLINFO
functions that return the tag values used in an FML request.

942 Information Builders

Creating Rows From Data

Creating Rows From Values in a Data SourceExample:

Assume you have a simple data source with financial data for each corporate account, as
follows:

CHART OF ACCOUNTS

ACCOUNT DESCRIPTION

1010 CASH ON HAND
1020 DEMAND DEPOSITS
1030 TIME DEPOSITS
1100 ACCOUNTS RECEIVABLE
1200 INVENTORY
. .
. .
. .

Using the FOR phrase in FML, you can issue the following TABLE request in which each value
of ACCOUNT is represented by a tag (1010, 1020, etc.), and displays as a separate row:

TABLE FILE LEDGER
SUM AMOUNT
FOR ACCOUNT
1010 OVER
1020 OVER
1030 OVER
1100 OVER
1200
END

The output is:

 AMOUNT

1010 8,784
1020 4,494
1030 7,961
1100 18,829
1200 27,307

Creating Reports 943

19. Creating Financial Reports With Financial Modeling Language (FML)

Creating Rows From Multiple Records

How to:

Sum Values in Rows With the OR Phrase

Identify a Range of Values With the TO Phrase

Use Masking Characters to Retrieve Tag Values

Use the Same FOR Field Value in Multiple Rows

There are different ways to combine multiple values from your data sources into an FML
report row. You can use:

The OR phrase to sum the values of two or more tags in a single expression. See How
to Sum Values in Rows With the OR Phrase on page 945.

The TO phrase to identify a range of tag values on which to report. See How to Identify a
Range of Values With the TO Phrase on page 946.

A mask to specify a group of tag values without having to name each one. See How to
Use Masking Characters to Retrieve Tag Values on page 947.

By default, a FOR field value can only be included in a single row of an FML matrix. However,
by turning on the FORMULTIPLE parameter, you can include the same data value in multiple
rows in the FML matrix. For example, the same value can exist as a solitary value in one
row, be part of a range in another row, and be used in a calculation in a third row. See How
to Use the Same FOR Field Value in Multiple Rows on page 948.

In addition to these methods, you can extract multiple tags for a row from an external file.

944 Information Builders

Creating Rows From Data

How to Sum Values in Rows With the OR PhraseSyntax:

To sum the values of two or more tags in a single report row, use the OR phrase in the FOR
phrase. The syntax is:

FOR fieldname
value1 OR value2 [OR valuen...] [AS 'text'] [LABEL label] [OVER]
.
.
.

where:

fieldname

Is a field name in the data source.

value1, value2, valuen

Are the tag values to be retrieved and summed.

AS 'text'

Assigns a title to the combined tag values. Enclose the text in single quotation marks.

label

Assigns a label to the row for reference in a RECAP expression. The label can be up to
66 characters and cannot have blanks or special characters. Each explicit label you
assign must be unique.

Even if you assign an explicit label, the positional label (R1, R2, etc,) is retained internally.

Summing Values in RowsExample:

The following model sums the values of three tags (1010, 1020, 1030) as CASH.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 OR 1020 OR 1030 AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
END

The output is:

 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

Creating Reports 945

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Identify a Range of Values With the TO PhraseSyntax:

To sum the values of a range of tags in a single report row, use the TO phrase in the FOR
phrase. The syntax is:

FOR fieldname
value1 TO value2 [AS 'text'] [LABEL label] [OVER]

where:

fieldname

Is a field name in the data source.

value1

Is the tag value at the lower limit of the range.

TO

Is the required phrase.

value2

Is the tag value at the upper limit of the range.

AS 'text'

Assigns a title to the combined tag values. Enclose the text in single quotation marks.

label

Assigns a label to the row for reference in a RECAP expression. The label can be up to
66 characters and cannot have blanks or special characters. Each explicit label you
assign must be unique.

Even if you assign an explicit label, the positional label (R1, R2, etc,) is retained internally.

946 Information Builders

Creating Rows From Data

Identifying a Range of ValuesExample:

Since CASH accounts in the LEDGER system are identified by the tags 1010, 1020, and
1030, you can specify the range 1010 to 1030:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 TO 1030 AS 'CASH'
END

How to Use Masking Characters to Retrieve Tag ValuesSyntax:

If the tag field has a character (alphanumeric) format, you can perform a masked match.
Use the dollar sign character ($) as the mask. For instance,

A$$D

matches any four-character value beginning with A and ending with D. The two middle places
can be any character. This is useful for specifying a whole group of tag values without having
to name each one.

Using Masking Characters to Match a Group of TagsExample:

In this example the amounts associated with all four-character accounts that begin with 10,
expressed with a mask as 10$$, are used to produce the CASH row of the report.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
END

The output is:

 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

Creating Reports 947

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Use the Same FOR Field Value in Multiple RowsSyntax:

You can use the same value of a FOR field in many separate rows (whether alone, as part
of a range, or in a calculation) by including the following syntax before or within an FML
request:

SET FORMULTIPLE={ON|OFF}

or

ON TABLE SET FORMULTIPLE {ON|OFF}

where:

ON

Enables you to reference the same value of a FOR field in more than one row in an FML
request.

With FORMULTIPLE set to ON, a value retrieved from the data source is included on every
line in the report output for which it matches the tag references.

OFF

Does not enable you to include the same value in multiple rows. OFF is the default value.

With FORMULTIPLE set to OFF, multiple tags referenced in any of these ways (OR, TO,
*) are evaluated first for an exact reference or for the end points of a range, then for a
mask, and finally within a range. For example, if a value is specified as an exact reference
and then as part of a range, the exact reference is displayed. Note that the result is
unpredictable if a value fits into more than one row whose tags have the same priority
(for example, an exact reference and the end point of a range.)

See Reporting Dynamically From a Hierarchy on page 975.

948 Information Builders

Creating Rows From Data

Referencing the Same Value in More Than One RowExample:

This request retrieves the tag values for accounts 1010, 1020, and 1030, and lists
corresponding values individually. It then aggregates the same values and displays the sum
as TOTAL CASH. Similarly, the tag values for accounts 1100 and 1200 are displayed as
detail items, and then summarized as TOTAL NON-CASH ASSETS.

SET FORMULTIPLE = ON
TABLE FILE LEDGER
SUM AMOUNT
FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
1010 OR 1020 OR 1030 AS 'TOTAL CASH' OVER
" " OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
1100 TO 1200 AS 'TOTAL NON-CASH ASSETS'
END

The output is:

 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

TOTAL CASH 21,239

ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

TOTAL NON-CASH ASSETS 46,136

Creating Reports 949

19. Creating Financial Reports With Financial Modeling Language (FML)

Using Tags From External FilesExample:

In this example, the values for a row of the FML report come from an external file called
CASHSTUF, which contains the tags:

1010
1020
1030

The following TABLE request uses the tag values from the external file, summing the amounts
in accounts 1010, 1020, and 1030 into the CASH row of the FML report:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
(CASHSTUF) AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE'
END

Notice that the file name must be enclosed in parentheses.

Using the BY Phrase in FML Requests
Only one FOR phrase is permitted in a TABLE request. It substitutes in part for a BY phrase,
which controls the sort sequence. However, the request can also include up to 32 BY phrases.
In general, BY phrases specify the major (outer) sort fields in FML reports, and the FOR
phrase specifies the minor (inner) sort field. Note that the BY ROWS OVER phrase is not
supported in a request that uses the FOR phrase.

950 Information Builders

Creating Rows From Data

Combining BY and FOR Phrases in an FML Request
In this example, the report results for ACCOUNT (the inner sort field) are sorted by REGION
(the outer sort field):

DEFINE FILE REGION
CUR_YR=E_ACTUAL;
LAST_YR=.831*CUR_YR;
REGION/A4=IF E_ACTUAL NE 0 OR E_BUDGET NE 0 THEN 'EAST' ELSE 'WEST';
END

TABLE FILE REGION
HEADING CENTER
"CURRENT ASSETS FOR REGION <REGION"
" "
SUM CUR_YR LAST_YR
BY REGION NOPRINT
FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
RECAP CUR_ASSET/I5C = R1 + R2 + R3;
END

The output is:

 CURRENT ASSETS FOR REGION EAST

 CUR_YR LAST_YR
 ------ -------
CASH 9,511.00 7,903.64
ACCOUNTS RECEIVABLE . .
INVENTORY . .
 -------------- --------------
CUR_ASSET 9,511 7,903

Creating Reports 951

19. Creating Financial Reports With Financial Modeling Language (FML)

A sort field value can be used in a RECAP command to allow the model to take different
actions within each major sort break. For instance, the following calculation computes a
non-zero value only for the EAST region:

RECAP X=IF REGION EQ 'EAST' THEN .25*CASH ELSE 0;
AS 'AVAILABLE FOR DIVIDENDS'

See Performing Inter-Row Calculations on page 953.

Supplying Data Directly in a Request

How to:

Supply Data Directly in a Request

In certain cases, you may need to include additional constants (such as exchange rates,
inflation rates, etc.) in your model. Not all data values for the model have to be retrieved
from the data source. Using FML, you can supply data directly in the request.

How to Supply Data Directly in a RequestSyntax:

DATA value,[..., value],$ [AS 'text'] [LABEL label] OVER

where:

value

Specifies the values that you are supplying. Values in a list must be separated by
commas. The list must end with a comma and a dollar sign (,$).

AS 'text'

Enables you to assign a title to the data row. Enclose the text in single quotation marks.

Without this entry, the row title is blank on the report.

label

Assigns a name to the data row for use in RECAP calculations. The label can be up to
66 characters and cannot have blanks or special characters. Each explicit label you
assign must be unique.

952 Information Builders

Supplying Data Directly in a Request

Supplying Data Directly in a RequestExample:

In this example, two values (.87 and 1.67) are provided for the exchange rates of euros and
pounds, respectively:

DEFINE FILE LEDGER
EUROS/I5C=AMOUNT;
POUNDS/I5C=3.2*AMOUNT;
END

TABLE FILE LEDGER
SUM EUROS AS 'EUROPE,DIVISION'
POUNDS AS 'ENGLISH,DIVISION'
FOR ACCOUNT
1010 AS 'CASH--LOCAL CURRENCY' LABEL CASH OVER
DATA .87 , 1.67 ,$ AS 'EXCHANGE RATE' LABEL EXCH OVER
RECAP US_DOLLARS/I5C= CASH * EXCH;
END

The values supplied are taken one column at a time for as many columns as the report
originally specified.

The output is:

 EUROPE ENGLISH
 DIVISION DIVISION
 -------- --------
CASH--LOCAL CURRENCY 8,784 28,106
EXCHANGE RATE .87 1.67
US_DOLLARS 7,642 46,937

Performing Inter-Row Calculations

How to:

Define Inter-Row Calculations

Reference:

Usage Notes for RECAP

The RECAP command enables you to perform calculations on data in the rows of the report
to produce new rows. You must supply the name and format of the value that results from
the calculation, and an expression that defines the calculation you wish to perform. Since
RECAP calculations are performed among rows, each row in the calculation must be uniquely
identified. FML supplies default row labels for this purpose (R1, R2, etc). However, you may
assign more meaningful labels. See Referring to Rows in Calculations on page 955.

Creating Reports 953

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Define Inter-Row CalculationsSyntax:

RECAP calcname [/format]=expression; [AS 'text']

where:

RECAP

Is the required command name. It should begin on a line by itself.

calcname

Is the name you assign to the calculated value. The name can be up to 66 characters
long, and must start with an alphabetic character. This name also serves as an explicit
label. See Referring to Rows in Calculations on page 955.

format

Is the USAGE format of the calculated value. It cannot exceed the column width. The
default is the format of the column in which the calculated value is displayed.

expression

Can be any calculation available with the DEFINE command (including IF... THEN ... ELSE
syntax, functions, excluding DECODE and EDIT, and fields in date format). The expression
may extend to as many lines as it requires. A semicolon is required at the end of the
expression. See Using Functions in RECAP Calculations on page 966 and the Using
Functions manual.

The expression can include references to specific rows using the default FML positional
labels (R1, R2, etc), or it can refer to rows, columns, and cells using a variety of flexible
notation techniques. See Referring to Rows in Calculations on page 955, Referring to
Columns in Calculations on page 958, and Referring to Cells in Calculations on page 965.

AS 'text'

Changes the default title of the row. By default, the name of the RECAP value is displayed
as the row title in output. The AS phrase replaces the default. Enclose the text in single
quotation marks.

954 Information Builders

Performing Inter-Row Calculations

Usage Notes for RECAPReference:

RECAP expressions refer to other rows in the model by their labels (either explicit or
default). Labels referred to in a RECAP expression must also be specified in the report
request.

The format specified for the RECAP result overrides the format of the column. In the
following example,

RECAP TOTVAL/D6.2S=IF R1 GT R4 THEN R4 ELSE R1;
AS 'REDUCED VALUE'

TOTVAL/D6.2S displays the result as six positions with two decimal places (and displays
blanks if the value was zero) in each column of the report, regardless of the format of
the data in the column. This feature can be used to display percentages in a column of
whole numbers.

Subtotals are not supported in FML.

In environments that support the RETYPE command, note that RETYPE does not recognize
labels in FML with field format redefinition.

Referring to Rows in Calculations

How to:

Assign an Explicit Row Label

FML assigns a default positional label to each TAG, DATA, RECAP, and PICKUP row. These
positional labels are automatically prefixed with the letter R, so that the first such row in
the model is R1, the second is R2, etc. You can use these labels to refer to rows in RECAP
expressions. (Default labels are not assigned to rows that contain underlines, blank lines,
or free text, since these row types need not be referenced in expressions.)

When you refer to rows in a RECAP expression, you can:

Use the positional row label assigned by FML.

Create an explicit row label of your own.

Mix positional and explicit row labels.

If you assign an explicit label, the positional label (R1, R2, etc.) is retained internally.

Note that an explicit label is not needed for a RECAP row, because the name of the calculated
value on the left of the equal sign can be used as a label.

In addition to their role in RECAP calculations, you can use labels to format rows in an FML
report. See Formatting an FML Report on page 992.

Creating Reports 955

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Assign an Explicit Row LabelSyntax:

rowtype [AS 'text'] LABEL label [OVER]

where:

rowtype

Can be a TAG, DATA, or PICKUP row.

AS 'text'

Assigns a different name to the row for the report. Enclose the text in single quotation
marks.

label

Assigns a label to a row for reference in a RECAP expression or a StyleSheet declaration.
The label can be up to 66 characters and cannot have blanks or special characters.
Each explicit label you assign must be unique.

Even if you assign an explicit label, the positional label (R1, R2, etc,) is retained internally.

Referring to Default Row Labels in RECAP ExpressionsExample:

In this example, FML assigns account 1010 the implicit label R1, account 1020, the implicit
label R2, and account 1030, the implicit label R3. Since no label is assigned to a BAR row,
the RECAP row is assigned the implicit label R4.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH = R1 + R2 + R3; AS 'TOTAL CASH'
END

The output is:

 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

TOTAL CASH 21,239

956 Information Builders

Referring to Rows in Calculations

Referring to Explicit Row Labels in RECAP ExpressionsExample:

The following request assigns the labels CA, AR, and INV to three tag rows, which are
referenced in the RECAP expression.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
10$$ AS 'CASH' LABEL CA OVER
1100 AS 'ACCOUNTS RECEIVABLE' LABEL AR OVER
1200 AS 'INVENTORY' LABEL INV OVER
BAR OVER
RECAP CURASST/I5C= CA + AR + INV;
END

The output is:

 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

CURASST 67,375

Note that the RECAP value could subsequently be referred to by the name CURASST, which
functions as an explicit label.

Using Labels to Repeat RowsExample:

In certain cases, you may wish to repeat an entire row later in your report. For example, the
CASH account can appear in the Asset statement and Cash Flow statement of a financial
analysis, as shown below:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
"ASSETS" OVER
10$$ AS 'CASH' LABEL TOTCASH OVER
.
.
"CASH FLOW" OVER
RECAP SAMECASH/I5C=TOTCASH; AS 'CASH'
END

When you refer to the CASH row the second time, you can use a RECAP calculation (with a
new name) and refer to the label, either explicitly (TOTCASH) or implicitly (R1), in the row
where CASH was first used.

Tip: If you set the FORMULTIPLE parameter ON, you can repeat the row without giving it
another name. See Creating Rows From Multiple Records on page 944.

Creating Reports 957

19. Creating Financial Reports With Financial Modeling Language (FML)

Referring to Columns in Calculations

In this section:

Referring to Column Numbers in Calculations

Referring to Contiguous Columns in Calculations

Referring to Column Addresses in Calculations

Referring to Relative Column Addresses in Calculations

Applying Relative Column Addressing in a RECAP Expression

Controlling the Creation of Column Reference Numbers

Referring to Column Values in Calculations

An FML report can refer to explicit columns as well as explicit rows. You can refer to columns
using:

Column numbers.

Contiguous column notation in RECAP expressions. For example (2,5), to represent
columns 2 through 5.

Column addressing.

A factor to represent every other column, or every third column, etc.

Column notation to control the creation of column reference numbers.

Column values.

958 Information Builders

Referring to Columns in Calculations

Referring to Column Numbers in Calculations
A calculation may be performed for one column or for a specific set of columns. To identify
the columns, place the column number in parentheses after the label name.

Referring to Column Numbers in a RECAP ExpressionExample:

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR AS 'CURRENT,YEAR'
LAST_YR AS 'LAST,YEAR'
FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH/I5C = R1 + R2 + R3; AS 'TOTAL CASH' OVER
" " OVER
RECAP GROCASH(2)/F5.2=100*TOTCASH(1)/TOTCASH(2) - 100;
AS 'CASH GROWTH(%)'
END

In the second RECAP expression, note that:

TOTCASH(1) refers to total cash in column 1.

TOTCASH(2) refers to total cash in column 2.

The resulting calculation is displayed in column 2 of the row labeled CASH GROWTH(%).

The RECAP value is only calculated for the column specified.

The output is:

 CURRENT LAST
 YEAR YEAR
 ------- ----
CASH ON HAND 8,784 7,214
DEMAND DEPOSITS 4,494 3,482
TIME DEPOSITS 7,961 6,499
 ------ ------
TOTAL CASH 21,239 17,195

CASH GROWTH(%) 23.52

After data retrieval is completed, a single column is calculated all at once, and multiple
columns one by one.

Creating Reports 959

19. Creating Financial Reports With Financial Modeling Language (FML)

Referring to Contiguous Columns in Calculations
When a set of contiguous columns is needed within a RECAP, you can separate the first and
last column numbers with commas. For example, DIFFERENCE (2,5) indicates that you want
to compute the results for columns 2 through 5.

Recapping Over Contiguous ColumnsExample:

In this example the RECAP calculation for ATOT occurs only for columns 2 and 3, as specified
in the request. No calculation is performed for column 1.

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END

TABLE FILE LEDGER
SUM NEXT_YR CUR_YR LAST_YR
FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
RECAP ATOT(2,3)/I5C = R1 + R2 + R3;
AS 'ASSETS--ACTUAL'
END

The output is:

 NEXT_YR CUR_YR LAST_YR
 ------- ------ -------
CASH 25,991 21,239 17,195
ACCOUNTS RECEIVABLE 21,941 18,829 15,954
INVENTORY 31,522 27,307 23,329
 ------- ------ -------
ASSETS--ACTUAL 67,375 56,478

960 Information Builders

Referring to Columns in Calculations

Referring to Column Addresses in Calculations

How to:

Use Column Addressing in a RECAP Expression

When you need a calculation for every other or every third column instead of every column,
you can supply a factor, or column address, to do this. Column addressing is useful when
several data fields are displayed within each value of a column sort.

How to Use Column Addressing in a RECAP ExpressionSyntax:

The left-hand side of the expression has the form:

value(s,e,i)[/format]=

where:

value

Is the name you assign to the result of the RECAP calculation.

s

Is the starting column.

e

Is the ending column (it may be * to denote all columns).

I

Is the increment factor.

format

Is the USAGE format of the calculated value. The default value is the format of the original
column.

Applying Column Addressing in a RECAP ExpressionExample:

In the following statement, there are two columns for each month:

SUM ACTUAL AND FORECAST ACROSS MONTH

If you want to perform a calculation only for the ACTUAL data, control the placement of the
results with a RECAP in the form:

RECAP calcname(1,*,2)=expression;

The asterisk means to continue the RECAP for all odd-numbered columns (beginning in
column 1, with an increment of 2, for all columns).

Creating Reports 961

19. Creating Financial Reports With Financial Modeling Language (FML)

Referring to Relative Column Addresses in Calculations
A calculation can use a specific column as a base, and refer to all other columns by their
displacement from that column. The column to the left of the base column has a displacement
of -1 relative to the base column. The column to the right has a displacement of +1. For
example,

COMP=FIX(*)-FIX(*-1);

can refer to the change in fixed assets from one period to the next. The reference to
COMP=FIX(*) is equivalent to COMP=FIX.

When referring to a prior column, the column must already have been retrieved, or its value
is zero.

Applying Relative Column Addressing in a RECAP Expression
This example computes the change in cash (CHGCASH) for columns 1 and 2.

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END

TABLE FILE LEDGER
SUM NEXT_YR CUR_YR LAST_YR
FOR ACCOUNT
10$$ AS 'TOTAL CASH' LABEL TOTCASH OVER
" " OVER
RECAP CHGCASH(1,2)/I5SC = TOTCASH(*) - TOTCASH(*+1); AS 'CHANGE IN CASH'
END

The output is:

 NEXT_YR CUR_YR LAST_YR
 ------- ------ -------
TOTAL CASH 25,991 21,239 17,195
CHANGE IN CASH 4,752 4,044

Controlling the Creation of Column Reference Numbers

How to:

Control the Creation of Column Reference Numbers

Column notation assigns a sequential column number to each column in the internal matrix
created for a report request. If you want to control the creation of column reference numbers
for the columns that are used in your report, use the CNOTATION column notation command.

962 Information Builders

Referring to Columns in Calculations

Because column numbers refer to columns in the internal matrix, they are assigned after
retrieval and aggregation of data are completed. Columns created and displayed in a report
are stored in the internal matrix, and columns that are not displayed in a report may also
be generated and stored in the internal matrix. Columns stored in the internal matrix include
calculated values, reformatted field values, BY fields, fields with the NOPRINT option, and
certain RECAP calculations such as FORECAST and REGRESS. Every other column in the
internal matrix is assigned a column number by default which means you have to account
for all internally generated columns if you want to refer to the appropriate column value in
your request.

You can change the default assignment of column reference numbers by using the SET
CNOTATION=PRINTONLY command which assigns column numbers only to columns that
display in the report output. You can use column notation in COMPUTE and RECAP commands
to refer to these columns in your request.

How to Control the Creation of Column Reference NumbersSyntax:

SET CNOTATION={ALL|PRINTONLY|EXPLICIT}

where:

ALL

Assigns column reference numbers to every column in the internal matrix. ALL is the
default value.

PRINTONLY

Assigns column reference numbers only to columns that display in the report output.

EXPLICIT

Assigns column reference numbers to all fields referenced in the request, whether
displayed or not.

Note: CNOTATION is not supported in an ON TABLE phrase.

Creating Reports 963

19. Creating Financial Reports With Financial Modeling Language (FML)

Referring to Column Values in Calculations
When a report is sorted using the ACROSS phrase, all of the retrieved values are aligned
under their appropriate columns. Each column has a title consisting of one value of the
ACROSS field. The entire column of data can be addressed by this value in a RECAP
calculation.

Referring to a Column by Its Value in a RECAP ExpressionExample:

The following request uses a factor that depends on the value of the ACROSS field (YEAR)
to calculate the inventory cost for each year. It then calculates the profit by summing the
assets and subtracting the inventory cost for each year.

TABLE FILE LEDGER
SUM AMOUNT ACROSS YEAR
FOR ACCOUNT
10$$ AS 'CASH' LABEL CASH OVER
1100 AS 'ACCOUNTS RECEIVABLE' LABEL RECEIVE OVER
BAR OVER
1200 AS 'INVENTORY VALUE' LABEL INVENT OVER
RECAP INVENTORY_FACTOR/F5.2 = IF YEAR LT '1986'
 THEN 1.1 ELSE 1.25; AS 'INVENTORY COST FACTOR' OVER
RECAP INVENTORY_COST = INVENTORY_FACTOR * INVENT;
 AS 'INVENTORY COST' OVER
BAR OVER
RECAP PROFIT = CASH + RECEIVE - INVENTORY_COST;
END

The output is:

 YEAR
 1985 1986 1987

CASH 5,663 7,001 8,575
ACCOUNTS RECEIVABLE 5,295 6,250 7,284
 ------ ------ ------
INVENTORY VALUE 7,754 9,076 10,477
INVENTORY COST FACTOR 1.10 1.25 1.25
INVENTORY COST 8,529 11,345 13,096
 ------ ------ ------
PROFIT 2,429 1,906 2,763

964 Information Builders

Referring to Columns in Calculations

Referring to Cells in Calculations

How to:

Use Cell Notation for Rows and Columns in a RECAP Expression

You can refer to columns and rows using a form of cell notation that identifies the intersection
of a row and a column as ®, c).

How to Use Cell Notation for Rows and Columns in a RECAP ExpressionSyntax:

A row and column can be addressed in an expression by the notation:

E(r,c)

where:

E

Is a required constant.

r

Is the row number.

c

Is the column number. Use an asterisk (*) to indicate the current column.

Referring to Columns Using Cell Notation in a RECAP ExpressionExample:

In this request, two RECAP expressions derive VARIANCEs (EVAR and WVAR) by subtracting
values in four columns (1, 2, 3, 4) in row three (PROFIT). These values are identified using
cell notation (r,c).

TABLE FILE REGION
SUM E_ACTUAL E_BUDGET W_ACTUAL W_BUDGET
FOR ACCOUNT
3000 AS 'SALES' OVER
3100 AS 'COST' OVER
BAR OVER
RECAP PROFIT/I5C = R1 - R2; OVER
" " OVER
RECAP EVAR(1)/I5C = E(3,1) - E(3,2);
AS 'EAST--VARIANCE' OVER
RECAP WVAR(3)/I5C = E(3,3) - E(3,4);
AS 'WEST--VARIANCE'
END

Creating Reports 965

19. Creating Financial Reports With Financial Modeling Language (FML)

The output is:

 E_ACTUAL E_BUDGET W_ACTUAL W_BUDGET
 -------- -------- -------- --------
SALES 6,000 4,934 7,222 7,056
COST 4,650 3,760 5,697 5,410
 ------ ------ ------ ------
PROFIT 1,350 1,174 1,525 1,646

EAST--VARIANCE 176
WEST--VARIANCE -121

Note: In addition to illustrating cell notation, this example demonstrates the use of column
numbering. Notice that the display of the EAST and WEST VARIANCEs in columns 1 and 3,
respectively, are controlled by the numbers in parentheses in the request: EVAR (1) and
WVAR (3).

Using Functions in RECAP Calculations

How to:

Call a Function in a RECAP Command

You may provide your own calculation routines in RECAP rows to perform special-purpose
calculations, a useful feature when these calculations are mathematically complex or require
extensive look-up tables.

User-written functions are coded as subroutines in any language that supports a call process,
such as FORTRAN, COBOL, PL/1, and BAL. See the Using Functions manual for information
about creating your own functions.

How to Call a Function in a RECAP CommandSyntax:

RECAP calcname[(s,e,i)][/format]=function
(input1,...,inputn,'format2');

where:

calcname

Is the name you assign to the calculated value.

(s,e,i)

Specify a start (s), end (e), and increment (I) value for the column where you want the
value displayed. If omitted, the value appears in all columns.

966 Information Builders

Using Functions in RECAP Calculations

format

The format for the calculation is optional. The default is the format of the column. If the
calculation consists of only the subroutine, make sure that the format of the subroutine
output value (format2) agrees with the calculation format. If the calculation format is
larger than the column width, the value displays in that column as asterisks.

function

Is the name of the function, up to eight characters long. It must be different from any
row label and cannot contain any of the following special characters: = -, / ().

input

Are the input arguments for the call to the function. They may include numeric constants,
alphanumeric literals, row and column references ® notation, E notation, or labels), or
names of other RECAP calculations.

Make sure that the values being passed to the function agree in number and type with
the arguments as coded in the function.

format2

Is the format of the return value, which must be enclosed in single quotation marks.

Calling a Function in a RECAP CommandExample:

Suppose you have a function named INVEST in your private collection of functions (INVEST
is not available in the supplied library), and it calculates an amount on the basis of cash on
hand, total assets, and the current date. In order to create a report that prints an account
of company assets and calculates how much money the company has available to invest,
you must create a report request that invokes the INVEST function.

The current date is obtained from the &YMD system variable. The NOPRINT option beside
it prevents the date from appearing in the report. The date is solely used as input for the
next RECAP statement.

Creating Reports 967

19. Creating Financial Reports With Financial Modeling Language (FML)

The request is:

TABLE FILE LEDGER
 HEADING CENTER
 "ASSETS AND MONEY AVAILABLE FOR INVESTMENT </2"
 SUM AMOUNT ACROSS HIGHEST YEAR
 IF YEAR EQ 1985 OR 1986
 FOR ACCOUNT
 1010 AS 'CASH' LABEL CASH OVER
 1020 AS 'ACCOUNTS RECEIVABLE' LABEL ACR OVER
 1030 AS 'INTEREST RECEIVABLE' LABEL ACI OVER
 1100 AS 'FUEL INVENTORY' LABEL FUEL OVER
 1200 AS 'MATERIALS AND SUPPLIES' LABEL MAT OVER
 BAR OVER
 RECAP TOTCAS = CASH+ACR+ACI+FUEL+MAT; AS 'TOTAL ASSETS' OVER
 BAR OVER
 RECAP THISDATE/A8 = &YMD; NOPRINT OVER
RECAP INVAIL = INVEST(CASH,TOTCAS,THISDATE,'D12.2'); AS

 'AVAIL. FOR INVESTMENT' OVER
 BAR AS '='
 END

The output is:

ASSETS AND MONEY AVAILABLE FOR INVESTMENT
 YEAR
 1986 1985
--
CASH 2,100 1,684
ACCOUNTS RECEIVABLE 875 619
INTEREST RECEIVABLE 4,026 3,360
FUEL INVENTORY 6,250 5,295
MATERIALS AND SUPPLIES 9,076 7,754
 ------ ------
TOTAL ASSETS 22,327 18,712
 ------ ------
AVAIL. FOR INVESTMENT 3,481 2,994
 ====== ======

Inserting Rows of Free Text

How to:

Insert Data Variables in Text Rows

Insert text anywhere in your FML report by typing it on a line by itself and enclosing it within
double quotation marks. You can also add blank lines, designated as text, to improve the
appearance of the report.

In addition, you can include data developed in your FML report in a row of free text by including
the label for the data variable in the text row.

968 Information Builders

Inserting Rows of Free Text

Inserting Free TextExample:

In this example, three rows of free text are inserted, one blank and two text rows:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
" --- CASH ACCOUNTS ---" OVER
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
" " OVER
" --- OTHER CURRENT ASSETS ---" OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
END

The output is:

 AMOUNT

 --- CASH ACCOUNTS ---
CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

 --- OTHER CURRENT ASSETS ---
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

Notice that the blank row was created by enclosing a blank within double quotation marks
on a separate line of the report request.

Creating Reports 969

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Insert Data Variables in Text RowsSyntax:

"text <label[(c)][>]"

where:

<

Is a required left caret to bracket the label.

label

Is the explicit or implicit row label. (In a RECAP, the calculated value functions as the
label.)

c

Is an optional cell identifier that indicates the column number of the cell. This identifier,
however, is required whenever there is more than one column in the report. If you use
it, enclose it in parentheses.

>

Is an optional right bracket that can be used to make the positioning clearer.

Inserting a Data Variable in a Text RowExample:

In this example, the RECAP value CURASST is suppressed by the NOPRINT command, and
inserted instead as a data variable in the text row.

SET PAGE-NUM=OFF
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
10$$ AS 'Cash' LABEL CA OVER
1100 AS 'Accounts Receivable' LABEL AR OVER
1200 AS 'Inventory' LABEL INV OVER
RECAP CURASST/I5C= CA + AR + INV; NOPRINT OVER
"Current Assets: <CURASST"
END

The output is:

 AMOUNT

Cash 21,239
Accounts Receivable 18,829
Inventory 27,307
Current Assets: 67,375

970 Information Builders

Inserting Rows of Free Text

Adding a Column to an FML Report
The request controls the number of columns in any report. For instance, if a request contains
the display command SUM AMOUNT AND FORECAST, the report contains two columns:
AMOUNT and FORECAST.

Add columns in an FML request, just as in a TABLE request, using the COMPUTE command
to calculate a value or simply to allocate the space, column title, and format for a column.

For information, see Creating Temporary Fields on page 205.

Adding a Column to an FML ReportExample:

This example uses a COMPUTE command to generate the calculated value CHANGE and
display it as a new column in the FML report. The following request generates an FML matrix
with four rows and three columns of data.

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR AS 'CURRENT,YEAR'
 LAST_YR AS 'LAST,YEAR'
COMPUTE CHANGE/I5C = CUR_YR - LAST_YR;
FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH/I5C = R1 + R2 + R3; AS 'TOTAL CASH'
END

 CURRENT LAST
 YEAR YEAR CHANGE
 ------- ---- ------
CASH ON HAND 8,784 7,214 1,570
DEMAND DEPOSITS 4,494 3,482 1,012
TIME DEPOSITS 7,961 6,499 1,462
 ------ ------ ------
TOTAL CASH 21,239 17,195 4,044

Note: The designated calculation is performed on each tag or RECAP row of the report. The
RECAP rows, however, may change the calculation.

Creating Reports 971

19. Creating Financial Reports With Financial Modeling Language (FML)

Adding a New Time Period as a ColumnExample:

The following request adds a future time period to a report:

DEFINE FILE LEDGER
CUR_YR/P5C = AMOUNT;
LAST_YR/P5C = .87*AMOUNT - 142;
END

TABLE FILE LEDGER
SUM AMOUNT
ACROSS YEAR AND COMPUTE 1999/P5C = 2.5*AMOUNT;
FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER

RECAP TOTCASH/P5C = R1 + R2 + R3; AS 'TOTAL CASH' OVER
RECAP CHANGE(2,*) = TOTCASH(*) - TOTCASH(*-1);
END

The output is:

 YEAR
 1985 1986 1987 1999

CASH ON HAND 1,684 2,100 5,000 4,210
DEMAND DEPOSITS 619 875 3,000 1,548
TIME DEPOSITS 3,360 4,026 575 8,400
 ------ ------ ------ ------
TOTAL CASH 5,663 7,001 8,575 14,158
CHANGE 1,338 1,574 5,583

972 Information Builders

Adding a Column to an FML Report

Creating a Recursive Model
Models involving different time periods often require using the ending value of one time
period as the starting value for the next. The calculations describing these situations have
two characteristics:

The labels on one or more RECAP rows are duplicates of other rows. They are used
repeatedly to recompute certain values.

A calculation may refer to a label not yet described, but provided later in the model. If,
at the end of the model, a label that is needed is missing, an error message is displayed.

Recursive models require that the columns are produced in sequential order, one by one.
In nonrecursive models, all of the columns can be produced simultaneously. Schematically,
these patterns are shown below.

FML automatically switches to sequential order as soon as either of the two modeling
conditions requiring the switch is recognized (either reuse of labels by different rows, or
forward reference to a label in a calculation).

Creating Reports 973

19. Creating Financial Reports With Financial Modeling Language (FML)

Creating a Recursive ModelExample:

The following example illustrates recursive models. Note that one year of ENDCASH becomes
the next year of STARTING CASH.

DEFINE FILE REGION
CUR_YR=E_ACTUAL;
LAST_YR=.831*CUR_YR;
NEXT_YR=1.2297*CUR_YR;
END

TABLE FILE REGION
SUM LAST_YR CUR_YR NEXT_YR
FOR ACCOUNT
10$$ AS 'STARTING CASH' LABEL STCASH OVER
RECAP STCASH(2,*) = ENDCASH(*-1); OVER
" " OVER
3000 AS 'SALES' LABEL SLS OVER
3100 AS 'COST' LABEL COST OVER
BAR OVER
RECAP PROFIT/I5C = SLS - COST; OVER
" " OVER
RECAP ENDCASH/I5C = STCASH + PROFIT;
END

The output is:

 LAST_YR CUR_YR NEXT_YR
 ------- ------ -------
STARTING CASH 7,903.64 9,024.00 10,374.00

SALES 4,986.00 6,000.00 7,378.20
COST 3,864.15 4,650.00 5,718.10
 -------------- -------------- --------------
PROFIT 1,121 1,350 1,660
ENDCASH 9,024 10,374 12,034

974 Information Builders

Creating a Recursive Model

Reporting Dynamically From a Hierarchy

In this section:

Requirements for FML Hierarchies

Displaying an FML Hierarchy

Consolidating an FML Hierarchy

Loading a Hierarchy Manually

Hierarchical relationships between fields can be defined in a Master File, and automatically
displayed using the Financial Modeling Language (FML). The parent and child fields must
share data values, and their relationship should be hierarchical. The formats of the parent
and child fields must both be either numeric or alphanumeric.

For example, suppose that:

Employee and manager IDs are contained within an employee data source.

or

A general ledger data source contains both an account number field and an account
parent field.

By examining these fields, it is possible to construct the entire organization chart or chart
of accounts structure. However, to print the chart in a traditional FML report, you need to
list the employee IDs or account numbers in the request syntax in the order in which they
should appear on the report. If an employee or account is added, removed, or transferred,
you have to change the report request to reflect this change in organizational structure. For
example:

TABLE FILE EMPLOYEE
PRINT DEPARTMENT CURR_JOBCODE
FOR EMP_ID
999999999 OVER
222222222 OVER
 .
 .
 .

In contrast, with FML hierarchies you can define the hierarchical relationship between two
fields in the Master File and load this information into memory. The FML request can then
dynamically construct the rows that represent this relationship and display them in the report,
starting at any point in the hierarchy. In the example shown, EMP_ID is called the hierarchy
field.

Creating Reports 975

19. Creating Financial Reports With Financial Modeling Language (FML)

Requirements for FML Hierarchies

1. In the Master File. Use the PROPERTY=PARENT_OF and REFERENCE=hierarchyfld attributes
to define the hierarchical relationship between two fields. See the Describing Data manual
for information.

The hierarchy must be loaded into memory. This loaded hierarchy is called a chart. If the
hierarchy is defined in the Master File and referenced by the FML request, it is loaded
automatically. If you want to use a hierarchy defined in a Master File that is not either
referenced in the FML request or joined to the Master File referenced in the FML request,
issue the LOAD CHART command before issuing the FML request.

The number of charts that can be loaded is 16. Charts are automatically unloaded when
the session ends.

2. In the FOR phrase of the FML request. Use the GET/WITH CHILDREN or ADD phrase to
retrieve the hierarchical data starting at a specific point in the hierarchy.

To use FML hierarchies, the FOR field must either be:

The hierarchy field

or

Used as the join field to a unique segment that has the hierarchy field. In this case, the
hierarchy field must be the join field. Note that the condition that the join be unique only
applies if the hierarchy is defined in the cross-referenced segment.

In other words, the FOR field must be in a parent-child hierarchy, or linked to one. The latter
case allows transaction data that contains the hierarchy field to be joined to a separate data
source that contains the hierarchy definition.

As with any FML request, a tagged row is displayed even if no data is found in the file for
the tag values, with a period (.) representing the missing data. You can override this
convention by adding the phrase WHEN EXISTS to the definition of a tagged row. This makes
displaying a row dependent upon the existence of data for the tag.

976 Information Builders

Reporting Dynamically From a Hierarchy

Defining a Hierarchy in a Master FileExample:

The CENTGL Master File contains a charts of accounts hierarchy. The field
GL_ACCOUNT_PARENT is the parent field in the hierarchy. The field GL_ACCOUNT is the
hierarchy field. The field GL_ACCOUNT_CAPTION can be used as the descriptive caption for
the hierarchy field:

FILE=CENTGL ,SUFFIX=FOC
SEGNAME=ACCOUNTS,SEGTYPE=S01
FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
 TITLE='Ledger,Account', FIELDTYPE=I, $
FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
 TITLE=Parent,
 PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
 TITLE=Type,$
FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
 TITLE=Op, $
FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
 TITLE=Lev, $
FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
 TITLE=Caption,
 PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
 TITLE='System,Account,Line', MISSING=ON, $

The CENTSYSF data source contains detail-level financial data. This is unconsolidated
financial data for a fictional corporation, CenturyCorp. It is designed to be separate from the
CENTGL database as if it came from an external accounting system. It uses a different
account line system (SYS_ACCOUNT) which can be joined to the SYS_ACCOUNT field in
CENTGL. Data uses "natural" signs (expenses are positive, revenue negative).

FILE=CENTSYSF ,SUFFIX=FOC
SEGNAME=RAWDATA ,SEGTYPE=S2
FIELDNAME = SYS_ACCOUNT , ,A6 , FIELDTYPE=I,
 TITLE='System,Account,Line', $
FIELDNAME = PERIOD , ,YYM , FIELDTYPE=I,$
FIELDNAME = NAT_AMOUNT , ,D10.0 , TITLE='Month,Actual', $
FIELDNAME = NAT_BUDGET , ,D10.0 , TITLE='Month,Budget', $
FIELDNAME = NAT_YTDAMT , ,D12.0 , TITLE='YTD,Actual', $

Creating Reports 977

19. Creating Financial Reports With Financial Modeling Language (FML)

Displaying an FML Hierarchy

How to:

Display an FML Hierarchy

The GET CHILDREN and WITH CHILDREN commands dynamically retrieve and display
hierarchical data on the FML report. GET CHILDREN displays only the children, not the parent
value referenced in the command. WITH CHILDREN displays the parent and then the children.

How to Display an FML HierarchySyntax:

TABLE FILE filename
{PRINT|SUM}
FOR hierarchyfld
parentvalue {GET|WITH} CHILD[REN] [n|ALL] [AS CAPTION|'text'] [LABEL label]
.
.
.
END

where:

filename

Is the name of the file to be used in the FML request. If the hierarchy for this request
cannot be loaded automatically, it must have been loaded previously by issuing the LOAD
CHART command.

hierarchyfld

Is the hierarchy field name. If the request references a joined structure, the name must
be the field name from the host file. The alias name is not supported.

parentvalue

Is the parent value for which the children are to be retrieved.

GET CHILDREN

Displays the hierarchy starting from the first child of the specified parentvalue. It does
not include the parent in the display. (This corresponds to the FML syntax CHILD1 OVER
CHILD2 OVER...)

WITH CHILDREN

Displays the hierarchy starting from the specified parentvalue. It includes the parent in
the display. (This corresponds to the FML syntax parentvalue OVER CHILD1 OVER CHILD2
OVER ...)

978 Information Builders

Reporting Dynamically From a Hierarchy

n|ALL

Is a positive integer from 1 to 99, specifying the number of levels of the hierarchy to
display. If a number greater than 99 is specified, a warning message is displayed and
n is set to 99. The default value is 1. Therefore, if n is omitted, only direct children are
displayed. GET or WITH CHILDREN 2 displays direct children and grandchildren. GET or
WITH CHILDREN 99 displays children to 99 levels. ALL is a synonym for 99. Each child
instance is printed over the one that follows. Successive levels of the hierarchy field are
indented two spaces from the previous level.

CAPTION

Indicates that the caption values to display should be taken from the field defined as
the CAPTION in the Master File.

Note that the AS CAPTION phrase is supported for tagged rows, including those that do
not use the GET/WITH CHILDREN or ADD syntax. However, the hierarchy must be defined
(by specifying the PARENT_OF attribute) in order to load and display the caption values.
If the hierarchy is not defined, the AS CAPTION phrase is ignored.

'text'

Is a text string to use as the row title for the hierarchy field values. The CAPTION field
defined in the Master File is not used as the caption on the report output.

label

Is an explicit row label. Each generated row is labeled with the specified label text.

Note: The hierarchy is displayed sorted by the parent field and, within parent, sorted by the
hierarchy field.

See the Using Functions manual for information about the FMLFOR, FMLLIST, FMLCAP, and
FMLINFO functions that return the tag values and captions used in an FML request.

Creating Reports 979

19. Creating Financial Reports With Financial Modeling Language (FML)

Displaying an FML HierarchyExample:

The following request displays two levels of account numbers, starting from account 3000:

SET BLANKINDENT=ON
TABLE FILE CENTGL
PRINT GL_ACCOUNT_PARENT
FOR GL_ACCOUNT
3000 WITH CHILDREN 2
END

The output is:

 Parent

3000 1000
 3100 3000
 3110 3100
 3120 3100
 3130 3100
 3140 3100
 3200 3000
 3300 3200
 3400 3200
 3500 3200
 3600 3200
 3700 3200
 3800 3200
 3900 3200

Note that if the request specifies GET CHILDREN instead of WITH CHILDREN, the line for
the parent value (3000) does not display on the report output.

980 Information Builders

Reporting Dynamically From a Hierarchy

Displaying an FML Hierarchy With CaptionsExample:

The following request displays two levels of a charts of accounts hierarchy, starting with
account 1000 (the top of the hierarchy), and displays the caption field values instead of the
account numbers:

TABLE FILE CENTGL
PRINT GL_ACCOUNT_PARENT
FOR GL_ACCOUNT
1000 WITH CHILDREN 2 AS CAPTION
END

The output is:

 Parent

Profit Before Tax
 Gross Margin 1000
 Sales Revenue 2000
 Cost Of Goods Sold 2000
 Total Operating Expenses 1000
 Selling Expenses 3000
 General + Admin Expenses 3000
 Total R+D Costs 1000
 Salaries 5000
 Misc. Equipment 5000

Note that if the request specifies GET CHILDREN instead of WITH CHILDREN, the line for
the parent value (1000, Profit Before Tax) does not display on the report output.

Consolidating an FML Hierarchy

How to:

Create One Summary Row for an FML Hierarchy

Consolidate FML Hierarchy Data to Any Level and Depth

The ADD command consolidates multiple levels of the hierarchy on one line of the FML report
output. ADD can be used alone or in conjunction with GET CHILDREN or WITH CHILDREN.
Note that ADD is designed to work with requests that use the SUM command. It is also
designed to be used with detail-level data, not data that is consolidated.

When used alone, ADD aggregates the parent and children on one line of the report output,
summing the numeric data values included on the line. This corresponds to the FML syntax
parentvalue or CHILD1 OR CHILD2 OR ...

Creating Reports 981

19. Creating Financial Reports With Financial Modeling Language (FML)

When used in conjunction with GET CHILDREN, ADD displays one line for each child of the
specified parent value. Each line is a summation of that child and all of its children. You
can specify the number of levels of children to display (which determines the number of
lines generated on the report output) and the depth of summation under each child. By
default, only direct children have a line in the report output, and the summary for each child
includes all of its children.

When used in conjunction with WITH CHILDREN, ADD first displays a line in the report output
that consists of the summation of the parent value and all of its children. Then it displays
additional lines identical to those displayed by GET CHILDREN ADD.

In order to use a data record in more than one line of an FML report (for example, to display
both detail and summary lines or to consolidate detail data at multiple levels), the following
setting is required:

SET FORMULTIPLE=ON

How to Create One Summary Row for an FML HierarchySyntax:

TABLE FILE filename
SUM....
FOR hierarchyfld
parentvalue ADD [n|ALL] [AS CAPTION|'text'] [LABEL label]
.
.
.
END

where:

filename

Is the name of the file to be used in the FML request. If the hierarchy for this request
cannot be loaded automatically, it must have been loaded previously by issuing the LOAD
CHART command.

hierarchyfld

Is the hierarchy field name. If the request references a joined structure, the name must
be the field name from the host file. The alias name is not supported.

parentvalue

Is the parent value that determines the starting point in the hierarchy for the aggregation.

982 Information Builders

Reporting Dynamically From a Hierarchy

n|ALL

Is a positive integer from 1 to 99, specifying the number of levels of the hierarchy to
aggregate. ALL is the default value. Therefore, if n is omitted, all children are included
in the sum. If n is 1, only direct children are included. If n is 2, direct children and
grandchildren are included. ADD 99 includes up to 99 levels of children. ALL is a synonym
for 99.

ADD

Displays the parent and n levels of its children on one row, summing the numeric data
values displayed on the row. This corresponds to the FML syntax parentvalue or CHILD1
OR CHILD2 OR ...

To display the sum of just the children, you must display the parent row, display the
summary row, and use a RECAP to subtract the parent row from the sum. For example:

FOR ...
parentvalue OVER
parentvalue ADD 1 OVER
RECAP CHILDSUM = R2-R1;

CAPTION

Indicates that the caption of the parent value displays for the total row.

Note that the AS CAPTION phrase is supported for tagged rows, including those that do
not use the GET CHILDREN or ADD syntax. However, the hierarchy must be defined (by
specifying the PARENT_OF attribute) in order to load and display the caption values. If
the hierarchy is not defined, the AS CAPTION phrase is ignored.

'text'

Is a text string to use as the row title for the aggregate row. The CAPTION field defined
in the Master File is not used as the caption on the report output.

label

Is an explicit row label. Each generated row is labeled with the specified label text.

Creating Reports 983

19. Creating Financial Reports With Financial Modeling Language (FML)

Displaying One Summary Line for an FML HierarchyExample:

The CENTSYSF data source contains detail-level financial data. To use the account hierarchy
in the CENTGL data source with this financial data, the two data sources are joined. The
data in CENTSYSF is stored with natural signs, which means, in financial terms, that revenues
and liabilities are stored as negative numbers. The portion of the hierarchy used in this
request contains only positive data.

Note that the join is not required to be unique, because the hierarchy is defined in the host
segment.

First the WITH CHILDREN command displays the lines of the hierarchy starting with account
3100 (Selling Expenses). Note that only accounts with no children are populated in this
detail-level data source. The ADD command then creates one line that is the sum of account
3100 and all of its children:

SET FORMULTIPLE = ON
JOIN SYS_ACCOUNT IN CENTGL TO ALL SYS_ACCOUNT IN CENTSYSF
TABLE FILE CENTGL
SUM NAT_AMOUNT/D10.0 NAT_YTDAMT/D10.0
FOR GL_ACCOUNT
3100 WITH CHILDREN ALL AS CAPTION OVER
BAR OVER
3100 ADD AS CAPTION
IF PERIOD EQ '2002/03'
END

The output is:

 Month YTD
 Actual Actual
 ------ ------
Selling Expenses . .
 Advertising . .
 TV/Radio 1,049,146. 2,954,342.
 Print Media 244,589. 721,448.
 Internet Advertising 9,542. 29,578.
 Promotional Expenses 53,719. 151,732.
 Joint Marketing 97,135. 289,799.
 Bonuses/Commisions 100,188. 304,199.
 ------------ ------------
Selling Expenses 1,554,319. 4,451,098.

984 Information Builders

Reporting Dynamically From a Hierarchy

How to Consolidate FML Hierarchy Data to Any Level and DepthSyntax:

TABLE FILE filename
SUM....
FOR hierarchyfld
parentvalue {GET|WITH} CHILD[REN] [n|ALL] ADD [m|ALL]
 [AS CAPTION|'text'] [LABEL label]
.
.
.
END

where:

filename

Is the name of the file to be used in the FML request. If the hierarchy for this request
cannot be loaded automatically, it must have been loaded previously by issuing the LOAD
CHART command.

hierarchyfld

Is the hierarchy field name. If the request references a joined structure, the name must
be the field name from the host file. The alias name is not supported.

parentvalue

Is the parent value that determines the starting point in the hierarchy for the aggregation.

GET|WITH

GET specifies that the first line generated on the report is the consolidated line for the
first child of the parent value. WITH specifies that the first line generated on the report
is the consolidated line for the parent value, followed by the consolidated lines for each
of its children, to the level specified by n.

n|ALL

Is a positive integer from 1 to 99, specifying the number of levels of children to display.
The line of output for each child has the sum of that child and its children to the depth
specified for the ADD option. The default value is 1. Therefore, if n is omitted, each
direct child has a line on the report. If n is 2, direct children and grandchildren each have
a line on the report output. ALL is a synonym for 99.

ADD

Sums the hierarchy to the depth specified by m for each line generated by the GET or
WITH CHILDREN command.

Creating Reports 985

19. Creating Financial Reports With Financial Modeling Language (FML)

m|ALL

Is a positive integer from 1 to 99, specifying the number of levels of children to
consolidate on each line of the report output. If a number greater than 99 is specified,
a warning message is displayed and m is set to 99. The default value is ALL. Therefore,
if m is omitted, the consolidated line sums all children. If m is 2, only direct children
and grandchildren are consolidated for each line on the report output. ADD 99 aggregates
children to 99 levels. ALL is a synonym for 99.

CAPTION

Indicates that the caption of the parent value displays for the total row.

Note that the AS CAPTION phrase is supported for tagged rows, including those that do
not use the GET CHILDREN or ADD syntax. However, the hierarchy must be defined (by
specifying the PARENT_OF attribute) in order to load and display the caption values. If
the hierarchy is not defined, the AS CAPTION phrase is ignored.

'text'

Is a text string to use as the row title for the aggregate row. The CAPTION field defined
in the Master File is not used as the caption on the report output.

label

Is an explicit row label. Each generated row is labeled with the specified label text.

Consolidating FML Hierarchy DataExample:

In the following request, the first WITH CHILD command displays the detail data for the
hierarchy starting with account 3100. The next WITH CHILD command creates a consolidated
line for the parent account (3100) and each direct child:

SET FORMULTIPLE = ON
JOIN SYS_ACCOUNT IN CENTGL TO ALL SYS_ACCOUNT IN CENTSYSF
TABLE FILE CENTGL
SUM NAT_AMOUNT/D10.0 NAT_YTDAMT/D10.0
FOR GL_ACCOUNT
3100 WITH CHILDREN ALL AS CAPTION OVER
" " OVER
BAR AS = OVER
" " OVER
3100 WITH CHILDREN ADD AS CAPTION
IF PERIOD EQ '2002/03'
END

Note that the join is not required to be unique, because the hierarchy is defined in the host
segment.

986 Information Builders

Reporting Dynamically From a Hierarchy

In the following output, the top portion shows the detail-level data. The bottom portion shows
the consolidated data. In the consolidated portion of the report:

There is one line for the parent that is the sum of itself plus all of its children to all levels.

There is one line for each direct child of account 3100 (Selling Expenses): Advertising,
Promotional Expenses, Joint Marketing, and Bonuses/Commissions.

The line for Advertising is the sum of itself plus all of its children. If it has multiple levels
of children, they are all added into the sum. The other direct children of 3100 do not
themselves have children, so the sum on each of those lines consists of only the parent
value.

 Month YTD
 Actual Actual
 ------ ------
Selling Expenses . .
 Advertising . .
 TV/Radio 1,049,146. 2,954,342.
 Print Media 244,589. 721,448.
 Internet Advertising 9,542. 29,578.
 Promotional Expenses 53,719. 151,732.
 Joint Marketing 97,135. 289,799.
 Bonuses/Commisions 100,188. 304,199.

 ============ ============
Selling Expenses 1,554,319. 4,451,098.
 Advertising 1,303,277. 3,705,368.
 Promotional Expenses 53,719. 151,732.
 Joint Marketing 97,135. 289,799.
 Bonuses/Commisions 100,188. 304,199.

Using GET CHILDREN instead of WITH CHILDREN eliminates the top line from each portion
of the output. The remaining lines are the same:

 Month YTD
 Actual Actual
 ------ ------
Advertising . .
 TV/Radio 1,049,146. 2,954,342.
 Print Media 244,589. 721,448.
 Internet Advertising 9,542. 29,578.
Promotional Expenses 53,719. 151,732.
Joint Marketing 97,135. 289,799.
Bonuses/Commisions 100,188. 304,199.
 ============ ============
Advertising 1,303,277. 3,705,368.
Promotional Expenses 53,719. 151,732.
Joint Marketing 97,135. 289,799.
Bonuses/Commisions 100,188. 304,199.

Creating Reports 987

19. Creating Financial Reports With Financial Modeling Language (FML)

The following request displays a consolidated line for account 2000 and each of its direct
children and grandchildren.

SET FORMULTIPLE = ON
JOIN SYS_ACCOUNT IN CENTGL TO ALL SYS_ACCOUNT IN CENTSYSF
TABLE FILE CENTGL
SUM NAT_AMOUNT/D10.0 NAT_YTDAMT/D10.0
FOR GL_ACCOUNT
2000 WITH CHILDREN 2 ADD AS CAPTION
IF PERIOD EQ '2002/03'
END

The output is:

 Month YTD
 Actual Actual
 ------ ------
Gross Margin -4,513,659. -13,080,549.
 Sales Revenue -10,398,305. -30,877,546.
 Retail Sales -8,237,253. -24,539,197.
 Mail Order Sales -1,138,414. -3,403,387.
 Internet Sales -1,022,638. -2,934,962.
 Cost Of Goods Sold 5,884,646. 17,796,997.
 Variable Material Costs 4,415,560. 13,410,629.
 Direct Labor 961,143. 2,920,449.
 Fixed Costs 507,943. 1,465,919.

Loading a Hierarchy Manually

How to:

Load a Hierarchy From One Master File for Use With a Separate Master File

Reference:

Usage Notes for FML Hierarchies

In most cases, a hierarchy is loaded automatically as a result of the request syntax. However,
if you need to use a hierarchy defined in one Master File against a data source that is not
joined to the hierarchy file (but that contains the same hierarchy field), you can manually
load the hierarchy data using the LOAD CHART command.

The number of charts that can be loaded is limited by available memory. Charts are
automatically unloaded when the session ends.

The chart is loaded by running a TABLE request that produces a list of parent values and
their associated children:

TABLE FILE chartfile
BY parentfield BY hierarchyfield
[SUM captionfield]
END

988 Information Builders

Reporting Dynamically From a Hierarchy

The resulting chart contains the following information. It may also contain the associated
captions, depending on whether the AS CAPTION phrase was used in the request:

parentfield hierarchyfield
----------- --------------
parentvalue1 child1
parentvalue1 child2
parentvalue1 child3
 .
 .
 .

How to Load a Hierarchy From One Master File for Use With a Separate Master FileSyntax:

You can manually load the hierarchy data if you need to use a hierarchy defined in one
Master File against a data source that is not joined to the hierarchy file but that contains
the same hierarchy field.

The number of charts that can be loaded is limited by available memory. Charts are
automatically unloaded when FOCUS terminates.

LOAD CHART chartfile[.sega].hierarchyfld
 [FOR requestfile[[.segb].fieldb]]

where:

chartfile

Is the name of the Master File that contains the hierarchy information.

sega

Is the name of the segment that contains the hierarchy field. The segment name is only
required if a field in another segment in the structure has the same field name as the
hierarchy field.

hierarchyfld

Is the hierarchy field. It is required because a Master File can define multiple hierarchies.

FOR

Loads a hierarchy defined in a Master File that is not used in the FML report request.
For example, if Master File B contains the hierarchy information but Master File A is used
in the request (without a join between Master Files A and B), issue the following LOAD
CHART command prior to the FML request:

LOAD CHART B.FLDB FOR A.FLDA
TABLE FILE A ...

requestfile

Is the name of the Master File used in the FML request.

Creating Reports 989

19. Creating Financial Reports With Financial Modeling Language (FML)

segb

Is the name of the segment that contains the hierarchy field values in the Master File
used in the FML request. Not required if it has the same name as sega.

fieldb

Is the field in the Master File specified in the FML request that contains the values of
the hierarchy field. Not required if it has the same name as the hierarchy field.

Note:

If you issue the LOAD CHART command multiple times for the same hierarchy, the new
hierarchy overlays the previous version in memory.

If you issue the LOAD CHART command for a data source that is dynamically joined to
the hierarchy file, you must issue the JOIN command prior to issuing the LOAD CHART
command.

Usage Notes for FML HierarchiesReference:

PROPERTY and REFERENCE are propagated to HOLD Master Files when HOLDATTR is
set to ON.

The following setting is required in order to use a data record in more than one row of
an FML request (for example, both a detail and summary row):

SET FORMULTIPLE = ON

When reporting against a rolled-up data source such as ESSBASE, the data values stored
for the parent instance are an aggregate of all of its children. Do not use the ADD feature
on consolidated data.

When reporting against a data source with shared members (such as ESSBASE), in which
the same data can be defined multiple times with different hierarchy field values, data
shared by two different parents is counted twice in an aggregation operation. To avoid
this double aggregation, use the FST. operator in the SUM command for the shared fields.

Customizing a Row Title

How to:

Customize a Row Title in FML

You can customize a row title in an FML report for accurate data identification. Using the AS
phrase, you can provide new titles for TAG, DATA, RECAP, and PICKUP rows.

990 Information Builders

Customizing a Row Title

How to Customize a Row Title in FMLSyntax:

For a TAG row, use the syntax:

value AS ' title'|CAPTION}

For a DATA or PICKUP row, use the syntax:

value AS ' title'

For a RECAP row, use the syntax:

RECAP calcname[/format]=expression; AS 'title'

where:

value

Is the value on which you are reporting, whether retrieved from a data source or external
file (represented by a tag), supplied directly by a user in the request, or picked up from
a work file.

calcname

Is the value that is derived by the RECAP calculation.

title

Is the customized row title, enclosed in single quotation marks if it contains embedded
blanks.

In a TAG, DATA, or PICKUP row, the default row title is value.

In a RECAP row, the default title is calcname.

CAPTION

In the Master File of a hierarchical data source, CAPTION identifies a TAG row using a
caption field. Note that the hierarchy in the Master File defines the PARENT-OF the FOR
field.

Changing the Titles of Tag RowsExample:

In the following example, the row titles CASH ON HAND and DEMAND DEPOSITS provide
meaningful identifications for the corresponding tags.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS'
END

Note that single quotation marks are necessary since the row title being assigned has
embedded blanks.

Creating Reports 991

19. Creating Financial Reports With Financial Modeling Language (FML)

The output is:

 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494

If no AS phrase is included, the tag values are displayed in the report.

Customizing a Row Title for a RECAP ValueExample:

This request creates the title TOTAL CASH for the RECAP value TOTCASH:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
RECAP TOTCASH = R1 + R2 + R3; AS 'TOTAL CASH'
END

The output is:

 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961
TOTAL CASH 21,239

If no AS phrase are included, the name of the RECAP value (TOTCASH) is displayed in the
report.

Formatting an FML Report

In this section:

Indenting Row Titles in an FML Hierarchy

How to:

Add an Underline Character for Columns

Specify a Page Break in an FML Report

Specify an Indent for an FML Label, Tag, or Caption

Improve the readability and presentation of your FML report by:

Underlining numeric columns. Reports with columns of numbers frequently need to
display underlines before some RECAP calculations. You can specify an underline
character, introduced by the word BAR, in place of the tag value.

992 Information Builders

Formatting an FML Report

Adding page breaks. You can request a new page at any point in a report by placing
the word PAGE-BREAK in place of the tag value.

Indenting text or numbers. You can indent a tag value, label text, or caption text a
specified number of spaces for an FML tag row, hierarchy, or RECAP row. If you apply the
indent to rows in an FML hierarchy, the parent line of the hierarchy is indented the number
of spaces specified as the indent.

Note: For an HTML, PDF, or postscript report, you can use the BLANKINDENT setting to
specify an indentation between levels of an FML hierarchy. See Indenting Row Titles in
an FML Hierarchy on page 997.

Note: You can also format an FML report using StyleSheet attributes if you are creating an
output format that supports StyleSheets.

How to Add an Underline Character for ColumnsSyntax:

The syntax is:

BAR [AS 'character'] OVER

where:

character

Is either the hyphen character (-) or the equal character (=). Enclose the character in
single quotation marks. The default character is the hyphen (-).

Underlining ColumnsExample:

This example uses the default underscore character (-):

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH = R1 + R2 + R3;
END

The output is:

 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

TOTCASH 21,239

Notice that the BAR ... OVER phrases underline only the column containing the display field.

Creating Reports 993

19. Creating Financial Reports With Financial Modeling Language (FML)

How to Specify a Page Break in an FML ReportSyntax:

Include the following syntax in the FML request in place of a tag value:

PAGE-BREAK OVER

Specifying a Page Break in an FML ReportExample:

In this example, a page break is inserted after the first two RECAP commands to highlight
each calculation.

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH = R1 + R2 + R3; AS 'TOTAL CASH' OVER
PAGE-BREAK OVER
1100 AS 'ACCOUNTS RECEIVABLE' LABEL RECEIVE OVER
1200 AS 'INVENTORY' LABEL INVENT OVER
BAR OVER
RECAP TOTASSET = RECEIVE + INVENT; AS 'TOTAL ASSETS' OVER
PAGE-BREAK OVER
RECAP TOTAL = TOTCASH + TOTASSET;
END

The output is:

PAGE 1
 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

TOTAL CASH 21,239
PAGE 2
 AMOUNT

ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

TOTAL ASSETS 46,136
PAGE 3
 AMOUNT

TOTAL 67,375

994 Information Builders

Formatting an FML Report

How to Specify an Indent for an FML Label, Tag, or CaptionSyntax:

FOR forfield [IN k]

tag [[GET CHILDREN|WITH CHILDREN] n] INDENT m [AS ['text'|CAPTION]]
[OVER]

or

RECAP fieldname[/format]=expression; INDENT m [AS 'text']

where:

k

Is the starting column for the FOR value in an FML report.

forfield

Is a field in the data source whose values are included in the report.

tag

Is a value of forfield to be displayed on a row of the FML report.

n

Is the number of levels of an FML hierarchy to display on the FML report.

m

Is a positive integer (zero is not supported) specifying the number of spaces to indent
the tag value, label, or caption of an FML row or hierarchy. The indentation starts from
column one if there is no IN phrase specified in the FOR command. If there is an IN
phrase, indentation starts from the column specified in the IN phrase. The maximum
indentation is the same as the maximum length of an AS name.

If you indent an FML hierarchy, the parent line of the hierarchy is indented the number
of spaces specified as the indent. The hierarchy levels are indented two spaces from
each other. If the GET CHILDREN phrase is used, the first line of the hierarchy is indented
an additional two spaces because the hierarchy output begins with the first child rather
than the parent. For more information about the use of GET CHILDREN, see Displaying
an FML Hierarchy on page 978.

text

Is a label to be displayed on a row of the FML report.

CAPTION

Indicates that a caption field has been defined in the Master File.

OVER

Indicates that this row is not the last row to be displayed.

Creating Reports 995

19. Creating Financial Reports With Financial Modeling Language (FML)

fieldname

Is a name you assign to the value calculated by the RECAP command.

format

Is the USAGE format for RECAP field. It cannot exceed the column width. The default is
the format of the column in which the calculated value is displayed.

expression

Is the expression that describes how to calculate the field value for RECAP.

Indenting a Tag Row in an FML HierarchyExample:

In the following request, the label of the second row for tag value 3000 is indented five
spaces. Because the GET CHILDREN phrase is used, the first line of the FML hierarchy, in
the third row for tag value 3000, is indented seven spaces (five + two):

SET FORMULTIPLE = ON
TABLE FILE CENTGL
PRINT GL_ACCOUNT_PARENT
FOR GL_ACCOUNT
3000 AS 'Not Indented' OVER
3000 INDENT 5 AS 'Indented 5' OVER
3000 GET CHILDREN 2 INDENT 5 AS 'Hierarchy Indented 5'
END

The output is:

 Parent

Not Indented 3000
 Indented 5 3000
 Hierarchy Indented 5 3000
 Hierarchy Indented 5 3100
 Hierarchy Indented 5 3100
 Hierarchy Indented 5 3100
 Hierarchy Indented 5 3100
 Hierarchy Indented 5 3000
 Hierarchy Indented 5 3200
 Hierarchy Indented 5 3200
 Hierarchy Indented 5 3200
 Hierarchy Indented 5 3200
 Hierarchy Indented 5 3200
 Hierarchy Indented 5 3200
 Hierarchy Indented 5 3200

996 Information Builders

Formatting an FML Report

Indenting FML RECAP RowsExample:

The following request sums price, cost, and quantity in stock for digital and analog product
types. The first RECAP command calculates the total for each column, and indents the label
five spaces. The second RECAP command calculates the profit, and indents the label 10
spaces:

SET FORMULTIPLE = ON
TABLE FILE CENTINV
SUM PRICE COST QTY_IN_STOCK
FOR PRODTYPE
Digital OVER
Analog OVER
BAR OVER
RECAP TOTAL = R1 + R2; INDENT 5 AS 'Total:' OVER
BAR OVER
RECAP PROFIT(2) = TOTAL(1) - TOTAL(2); AS 'Profit:' INDENT 10
END

The output is:

 Our Quantity
 Price: Cost: In Stock:
 ------ ----- ---------
Digital 4,080.00 3,052.00 119143
Analog 1,883.00 1,371.00 139345
 ------------ ------------ -------
 Total: 5,963.00 4,423.00 258488
 ------------ ------------ -------
 Profit: 1,540.00

Indenting Row Titles in an FML Hierarchy

How to:

Indent FML Hierarchy Captions in an HTML Report

To clarify relationships within an FML hierarchy, the captions (titles) of values are indented
at each level. Use the BLANKINDENT parameter in an HTML, PDF, or PostScript report to
specify the indentation between each level in the hierarchy. You can use the default
indentation for each hierarchy level, or choose your own indentation value. To print indented
captions in an HTML report, you must set the BLANKINDENT parameter to ON or to a number.

Creating Reports 997

19. Creating Financial Reports With Financial Modeling Language (FML)

SET BLANKINDENT does not increase the width of the indented column if it is not wide
enough to accommodate the indented fields. While this is no problem in an HTML report, in
a PDF or PostScript report it can cause data in the columns that follow the indented column
to shift out of alignment. You may need to use StyleSheet syntax to make the column wide
enough for the indented values or to move the columns that follow it. Change the width of
a column using the StyleSheet SQUEEZE attribute, and specify a starting position for a
column using the POSITION attribute. You can also move a column in a PostScript report
with the IN phrase.

A related feature enables you to change the number of blank spaces before the parent line
of a hierarchy or before any FML tag or RECAP row in any FML request. See Formatting an
FML Report on page 992.

How to Indent FML Hierarchy Captions in an HTML ReportSyntax:

SET BLANKINDENT = {ON|OFF|n}
ON TABLE SET BLANKINDENT {ON|OFF|n}

where:

ON

Indents FML hierarchy captions 0.125 units for each space that normally displays before
the caption. For child levels in an FML hierarchy, it indents 0.125 units for each space
that normally displays between this line and the line above it.

OFF

Turns off indentations for FML hierarchy captions in an HTML report. OFF is the default
value. For other formats, uses the default indentation of two spaces.

n

Is an explicit measurement in the unit of measurement defined by the UNITS parameter.
This measurement is multiplied by the number of spaces that normally displays before
the caption. For child levels in an FML hierarchy, it indents n units for each space that
normally displays between this line and the line above it. The default number of spaces
is two. Zero (0) produces the same report output as OFF. Negative values for n are not
supported.

998 Information Builders

Formatting an FML Report

Using the Default Indentation for FML Hierarchy CaptionsExample:

The following request creates an HTML report with the default indentation:

SET PAGE-NUM = NOPAGE
SET BLANKINDENT = ON
SET FORMULTIPLE = ON
TABLE FILE CENTGL
PRINT GL_ACCOUNT_PARENT
FOR GL_ACCOUNT
3000 AS CAPTION OVER
3000 GET CHILDREN 2 AS CAPTION ON
TABLE HOLD FORMAT HTML
ON TABLE SET HTMLCSS ON
ON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
ENDSTYLE
END

The output is:

Creating Reports 999

19. Creating Financial Reports With Financial Modeling Language (FML)

Specifying an Indentation Value for FML Hierarchy CaptionsExample:

The following request specifies an indentation of .25 for each level of an FML hierarchy. This
number is expressed in the default unit of measurement, inches:

SET PAGE-NUM = NOPAGE
SET BLANKINDENT = .25
SET FORMULTIPLE = ON
TABLE FILE CENTGL
PRINT GL_ACCOUNT_PARENT
FOR GL_ACCOUNT
3000 AS CAPTION OVER
3000 GET CHILDREN 2 AS CAPTION ON
TABLE HOLD FORMAT HTMLON TABLE SET STYLE *
TYPE=REPORT, GRID=OFF, $
ENDSTYLE
END

The output is:

1000 Information Builders

Formatting an FML Report

Suppressing the Display of Rows

In this section:

Suppressing Rows With No Data

You may sometimes wish to retrieve data in a TAG row solely for use in a calculation, without
displaying the row in a report. To suppress the display of a tag row, add the word NOPRINT
to the row declaration, as in a TABLE request.

You may also wish to suppress the display of a TAG row if no data is found for the values.
See Suppressing Rows With No Data on page 1002.

In addition, you can suppress the display of RECAP rows by adding the word NOPRINT to the
RECAP command, following the semicolon. This technique is useful to suppress the display
of an intermediate RECAP value, which is intended for use as input to other calculations.

Suppressing the Display of a TAG RowExample:

This example uses the value of COST in its computation, but does not display COST as a
row in the report.

DEFINE FILE REGION
AMOUNT/I5C=E_ACTUAL;
END

TABLE FILE REGION
SUM AMOUNT FOR ACCOUNT
3000 AS 'SALES' LABEL SLS OVER
3100 AS 'COST' LABEL COST NOPRINT OVER
RECAP PROFIT/I5C = SLS - COST; OVER
" " OVER
RECAP ROS/F6.2=100*PROFIT/SLS;
AS 'RETURN ON SALES'
END

The output is:

 AMOUNT

SALES 6,000
PROFIT 1,350
RETURN ON SALES 22.50

Creating Reports 1001

19. Creating Financial Reports With Financial Modeling Language (FML)

Suppressing Rows With No Data
The text for a tag row is displayed even if no data is found in the file for the tag values, with
a period (.) representing the missing data. You can override this convention by adding the
phrase WHEN EXISTS to the definition of a TAG row. This makes displaying a row dependent
upon the existence of data for the tag. This feature is useful, for example, when the same
model is applied to different divisions in a company.

Suppressing Rows With No DataExample:

The CENTSYSF data source has detail-level financial data. Accounts with no children are
populated, but those with children are not. The following request suppresses the display of
accounts that are not populated:

SET FORMULTIPLE = ON
JOIN SYS_ACCOUNT IN CENTGL TO ALL SYS_ACCOUNT IN CENTSYSF
TABLE FILE CENTGL
SUM NAT_AMOUNT/D10.0 NAT_YTDAMT/D10.0
FOR GL_ACCOUNT
3100 WITH CHILDREN ALL AS CAPTION WHEN EXISTS
IF PERIOD EQ '2002/03'
END

The output is:

 Month YTD
 Actual Actual
 ------ ------
 TV/Radio 1,049,146. 2,954,342.
 Print Media 244,589. 721,448.
 Internet Advertising 9,542. 29,578.
Promotional Expenses 53,719. 151,732.
Joint Marketing 97,135. 289,799.
Bonuses/Commissions 100,188. 304,199.

Saving and Retrieving Intermediate Report Results

In this section:

Posting Data

Many reports require results developed in prior reports. This can be accomplished only if a
place is provided for storing intermediate values. An example is the need to compute net
profit in an Income Statement prior to calculating equity in a Balance Sheet. FML can save
selected rows from one or more models by posting them to a work file. The posted rows can
then be picked up from the work file and reused.

1002 Information Builders

Saving and Retrieving Intermediate Report Results

The default work file is FOCPOST. This is a comma-delimited file from which you can report
directly if a FOCPOST Master File is available. In order to use the work file in a request, you
must assign a physical name to the FOCPOST ddname before running the report that posts
the data, and again before running the report that picks up the data.

You can assign the physical name to the file by issuing a FILEDEF command on Windows,
UNIX, and CMS, or a TSO ALLOCATE or DYNAM ALLOCATE command on z/OS, before the
request is run. You may create a FILEDEF command by using the Allocation Wizard.

While you cannot prepare an FML report entirely from data that you supply directly in your
request, you can prepare a report entirely from data that is stored in a comma-delimited
work file.

Posting Data

How to:

Post Data to a File

Pick Up Data From a Work File

You can save any TAG, RECAP, or DATA row by posting the output to a file. These rows can
then be used as though they were provided in a DATA row.

The row is processed in the usual manner in the report, depending on its other options, and
then posted. The label of the row is written first, followed by the numeric values of the
columns, each comma-separated, and ending with the terminator character ($). See Posting
Rows to a Work File on page 1004.

Note: Only fields that are actually displayed on the report output are posted. Fields that are
not printed (for example, fields specified with the NOPRINT option, extra fields that are
created when you re-format fields in the request, or fields implied by use in a calculation)
are not posted.

How to Post Data to a FileSyntax:

The syntax for saving any TAG, RECAP, or DATA row is:

POST [TO ddname]

where:

ddname

Is the logical name you assign to the work file in which you are posting data.

Add this syntax to any row you wish to post to the work file.

Creating Reports 1003

19. Creating Financial Reports With Financial Modeling Language (FML)

Posting Rows to a Work FileExample:

The following request creates an FML report, and posts two tag rows to the work file,
LEDGEOUT:

CMS FILEDEF LEDGEOUT DISK LEDGEOUT DATA A

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR LAST_YR
FOR ACCOUNT
1100 LABEL AR POST TO LEDGEOUT OVER
1200 LABEL INV POST TO LEDGEOUT
END

The output is:

 CUR_YR LAST_YR
 ------ -------
1100 18,829 15,954
1200 27,307 23,329

How to Pick Up Data From a Work FileSyntax:

You can retrieve posted rows from any work file and use them as if they were provided in a
DATA row by adding the following phrase to an FML request:

DATA PICKUP [FROM ddname] id1 [OR id2....] [LABEL label] [AS 'text']

where:

ddname

Is the logical name of the work file from which you are retrieving data.

id

Is the label that was assigned in the work file to the posted row of data that is now being
picked up.

label

Is the label you wish to assign to the data you are picking up.

The label you assign to the picked data can, but is not required to, match the id of the
posted data.

You can include LABEL and AS phrases, but WHEN EXISTS is not supported.

1004 Information Builders

Saving and Retrieving Intermediate Report Results

Note: The retrieved fields are mapped to all fields (printed or not) in the memory repository
(internal matrix) of the report. If the matrix contains columns that do not correspond to the
fields in the posted file, the retrieved values may be misaligned. For example, if you reformat
a field in the PICKUP request, that field will be represented by two columns in the internal
matrix. However, the posted file will have only one value representing that field, and the
retrieved values will not be mapped properly to the associated columns in the matrix.

Picking Up Data From a Work FileExample:

In the following example, the data in the LEDGER data source and in the LEDGEOUT work
file are used in the RECAP calculation. (To see how this file was created, refer to Posting
Rows to a Work File on page 1004.)

Tip: You must assign a logical name to the file by issuing a FILEDEF command on Windows,
UNIX, and CMS, or a DYNAM ALLOCATE command on z/OS, before the request is run. You
may create a FILEDEF command by using the Allocation Wizard.

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR LAST_YR
FOR ACCOUNT
1010 TO 1030 AS 'CASH' LABEL CASH OVER
DATA PICKUP FROM LEDGEOUT AR
AS 'ACCOUNTS RECEIVABLE' LABEL AR OVER
DATA PICKUP FROM LEDGEOUT INV
AS 'INVENTORY' LABEL INV OVER
BAR OVER
RECAP CUR_ASSET/I5C = CASH + AR + INV;
END

The output is:

 CUR_YR LAST_YR
 ------ -------
CASH 21,239 17,195
ACCOUNTS RECEIVABLE 18,829 15,954
INVENTORY 27,307 23,329
 ------ -------
CUR_ASSET 67,375 56,478

The following line can be used to pick up the sum of the two accounts from LEDGEOUT:

DATA PICKUP FROM LEDGEOUT AR OR INV
AS 'ACCTS REC AND INVENTORY'

Note: Since the rows in a PICKUP file are stored in standard comma-delimited format, they
can be provided either from a prior posting, or directly by a user.

Creating Reports 1005

19. Creating Financial Reports With Financial Modeling Language (FML)

Creating HOLD Files From FML Reports
A report created with FML can be extracted to a HOLD file in the same way as all other
reports created with the TABLE language.

In this case, you identify the set of tag values specified for each row by the description field
(the AS text supplied in the model). When no text is given for a row, the first tag value is
used automatically. Therefore, in simple models with only one tag per row and no text, the
lines in the HOLD file contain the single tag value. The rows derived from the RECAP
calculation form part of the HOLD file. Pure text rows (including BAR rows) are omitted.

For HOLD to be supported with RECAP, the format of the RECAP field must be the same as
the format of the original column.

This feature enables you to create new rows in the HOLD file that are the result of
calculations. The augmented HOLD file may then be used in a variety of TABLE requests.

Note: RECAP rows cannot be reformatted when creating HOLD files.

Creating a Hold File From an FML ReportExample:

The following request creates a HOLD file that contains records for CASH, ACCOUNTS
RECEIVABLE, INVENTORY, and the RECAP row CURRENT ASSETS:

TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 TO 1030 AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
RECAP CA = R1 + R2 + R3; AS 'CURRENT ASSETS'
ON TABLE HOLD
END

Query the HOLD file:

>
? hold

DEFINITION OF HOLD FILE: HOLD

FIELDNAME ALIAS FORMAT

 EO1 A 19
AMOUNT EO2 I5C

Then report from the HOLD file as:

TABLE FILE HOLD
PRINT E01 E02
END

1006 Information Builders

Creating HOLD Files From FML Reports

The output is:

 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307
CURRENT ASSETS 67,375

Creating Reports 1007

19. Creating Financial Reports With Financial Modeling Language (FML)

1008 Information Builders

Creating HOLD Files From FML Reports

FOCUS

Creating a Free-Form Report20
Topics:

You can present data in an unrestricted
or free-form format using a layout of your
own design. Creating a Free-Form Report

Whereas tabular and matrix reports
present data in columns and rows for the
purpose of comparison across records,
and graphic reports present data visually
using charts and graphs, free-form
reports reflect your chosen positioning
of data on a page. Free-form reporting
meets your needs when your goal is to
present a customized picture of a data
source record on each page of a report.

Designing a Free-Form Report

Note: You can create free-form reports
with PDF, HTML, and Styled formats.
HTML output has all report pages on one
HTML page. Page breaks are retained in
PDF output.

Creating Reports 1009

Creating a Free-Form Report
You can create a free-form report from a TABLE request that omits the display commands
that control columnar and matrix formatting (PRINT, LIST, SUM, and COUNT). Instead, the
request includes the following report features:

Contains the body of the report. It displays the text characters, graphic
characters, and data fields that make up the report.

Heading

Contains the footing of the report. This is the text that appears at the
bottom of each page of the report. The footing may display the same
characters and data fields as the heading.

Footing

Indicates field calculations and manipulation.Prefix operators

Derives new values from existing fields in a data source.Temporary fields

Specifies the report sort order, and determines how many records are
included on each page.

BY phrases

Selects records for the report.WHERE criteria

When creating a free-form report, you can:

Design your report to include text, data fields, and graphic characters. See Designing a
Free-Form Report on page 1014.

Customize the layout of your report. See Laying Out a Free-Form Report on page 1016.

Select the sort order and the records that are included in your report. See Sorting and
Selecting Records in a Free-Form Report on page 1016.

Creating a Free-Form ReportExample:

Suppose that you are a Personnel Manager and it is your responsibility to administer your
company education policies. This education policy states that the number of hours of outside
education that an employee may take at the company expense is determined by the number
of hours of in-house education completed by the employee.

To do your job efficiently, you want a report that shows the in-house education history of
each employee. Each employee information should display on a separate page so that it
can be placed in the employee personnel file and referenced when an employee requests
approval to take outside courses.

To meet this requirement, you create the EMPLOYEE EDUCATION HOURS REPORT, which
displays a separate page for each employee. Notice that pages 1 and 2 of the report provide
information about employees in the MIS department, while page 6 provides information for
an employee in the Production department.

1010 Information Builders

Creating a Free-Form Report

The following diagram simulates the output you would see if you ran the procedure in Request
for EMPLOYEE EDUCATION HOURS REPORT on page 1012.

Creating Reports 1011

20. Creating a Free-Form Report

Request for EMPLOYEE EDUCATION HOURS REPORTExample:

The following request produces the EMPLOYEE EDUCATION HOURS REPORT, which you can
see in Creating a Free-Form Report on page 1010. Numbers to the left of the request correspond
to numbers in the following annotations:

1. DEFINE FILE EMPLOYEE
 CR_EARNED/I2 = IF ED_HRS GE 50 THEN 9
 ELSE IF ED_HRS GE 30 THEN 6
 ELSE 3;
 END
2. TABLE FILE EMPLOYEE
3. HEADING
 "PAGE <TABPAGENO"
 " "
 "<13>EMPLOYEE EDUCATION HOURS REPORT"
4. "<14>FOR THE <DEPARTMENT DEPARTMENT"
5. "</2"
 "EMPLOYEE NAME: <FIRST_NAME> <LAST_NAME>"
 "EMPLOYEE ADDRESS: <ADDRESS_LN1>"
 "<23><ADDRESS_LN2>"
 "<23><ADDRESS_LN3>"
 "</1"
 "JOB CODE: <JOBCODE>"
 "JOB DESCRIPTION: <JOB_DESC>"
 "</1"
6. "MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"
 "TOTAL NUMBER OF EDUCATION HOURS: <ED_HRS>"
 "</1"
7. "<10>|-----------------------------|"
8. "<10>| EDUCATION CREDITS EARNED <CR_EARNED>|"
 "<10>|-----------------------------|"
9. FOOTING
 "<15>PRIVATE AND CONFIDENTIAL"
 BY DEPARTMENT NOPRINT
10.BY EMP_ID NOPRINT PAGE-BREAK
11.WHERE ED_HRS GT 0
 END

The list that follows explains the role of each line of the request in producing the sample
report:

1. The DEFINE command creates a virtual field for the report. The calculation reflects the
company's policy for earning outside education credits. The result is stored in CR_EARNED
and appears later in the report.

2. A free-form report begins with a standard TABLE FILE command. The sample report uses
the EMPLOYEE data source for its data.

1012 Information Builders

Creating a Free-Form Report

3. The heading section, initiated by the HEADING command, defines the body of the report.
Most of the text and data fields that appear in the report are specified in the heading
section. In this request, the heading section continues until the FOOTING command is
encountered.

4. This line illustrates the versatility of a heading. It shows the following:

The second line of the text in the report heading.

A data field embedded in the text: <DEPARTMENT.

The start position of the line, column 14: <14>.

5. Line-skipping commands enhance the readability of a report. The command </2, when
coded on a line by itself, generates three blank lines, as seen between the report heading
and employee name.

6. This line illustrates how to perform a field calculation in a free-form report using a prefix
operator. The request here is for the date on which the most recent course was taken,
which is the maximum value for the DATE_ATTEND field.

7. The next three lines illustrate the use of special characters to create a graphic in the
report. The box around EDUCATION CREDITS EARNED may need adjustment for output
displayed in a proportional font.

8. The value of the field created by the DEFINE command displays in the box, highlighting
the number of education credits an employee has earned. This line demonstrates that
you can display a virtual field in the body of your report. This is the field that was created
at the start of the request.

9. The FOOTING command signifies the beginning of the footing section, ending the heading
section as well. Since this is a personnel report, the words PRIVATE AND CONFIDENTIAL
must appear at the end of each page of the report. The footing can accomplish this.

10. This line illustrates sorting in a free-form report. The report specifications require that
information for only one employee appears per page; that requirement is met through
the BY and PAGE-BREAK commands.

11. You can specify record selection in a free-form report. As a result of the WHERE criterion,
the report includes only employees who have accumulated in-house education credits.

Creating Reports 1013

20. Creating a Free-Form Report

Designing a Free-Form Report

In this section:

Incorporating Text in a Free-Form Report

Incorporating Data Fields in a Free-Form Report

Incorporating Graphic Characters in a Free-Form Report

Laying Out a Free-Form Report

Sorting and Selecting Records in a Free-Form Report

To design the body of a free-form report, use the HEADING and FOOTING commands. They
enable you to:

Incorporate text, data fields, and graphic characters in your report.

Lay out your report by positioning text and data in exact column locations and skipping
lines for readability.

Use the HEADING command to define the body of a free-form report, and the FOOTING
command to define what appears at the bottom of each page of a report. A footing is optional.
You can define an entire report using just a heading.

Incorporating Text in a Free-Form Report
You can specify text anywhere in a free-form report, for a variety of purposes. In the sample
request (see Request for EMPLOYEE EDUCATION HOURS REPORT on page 1012) text is used:

As a report title:

"<13>EMPLOYEE EDUCATION HOURS REPORT"

As a label for data fields:

"EMPLOYEE NAME: <FIRST_NAME <LAST_NAME>"

With a data field and graphic characters:

"<10>| EDUCATION CREDITS EARNED <CR_EARNED>|"

As a page footing:

"<15>PRIVATE AND CONFIDENTIAL"

1014 Information Builders

Designing a Free-Form Report

Incorporating Data Fields in a Free-Form Report
The crucial element in any report, free-form or otherwise, is the data. The data fields available
in a request include data fields in the Master File, cross-referenced fields, and virtual fields
created with the DEFINE command.

The sample request (see Request for EMPLOYEE EDUCATION HOURS REPORT on page 1012)
references all three types of data fields:

ED_HRS is found in the EMPLOYEE Master File:

"TOTAL NUMBER OF EDUCATION HOURS: <ED_HRS>"

DATE_ATTEND is found in the EDUCFILE Master File, which is cross-referenced in the
EMPLOYEE Master File:

"MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"

CR_EARNED is created with the DEFINE command before the TABLE FILE command, and
is referenced as follows:

"<10>| EDUCATION CREDITS EARNED <CR_EARNED>|"

You can also apply a prefix operator to a data field to select a particular value (for example,
the maximum value within a sort group) or to perform a calculation (for example, to compute
the average value of a field). You can use any available prefix operator in a free-form report.

In the sample request, the MAX prefix operator selects the most recent completion date of
an in-house course:

"MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"

As is true with all types of reports, you must understand the structure of the data source to
use the prefix operators correctly.

Incorporating Graphic Characters in a Free-Form Report
Graphics in a report can be as creative as your imagination. The sample report (see Creating
a Free-Form Report on page 1010) uses special characters to enclose text and a virtual field
in a box. Some other ideas include:

Highlighting key data fields using asterisks or other special characters available directly
from your keyboard, or using the HEXBYT function. See the Using Functions manual for
details on HEXBYT.

Enclosing the entire report in a box to give it a form-like appearance.

Using double lines to separate the body of the report from its page heading and page
footing.

Creating Reports 1015

20. Creating a Free-Form Report

The use of special characters to create graphics is limited by what can be entered and
viewed from your workstation and what can be printed on your printer. If you have difficulty
producing the graphics that you want, be sure to check with someone in your organization
who knows what is available.

Laying Out a Free-Form Report
To provide spacing in a report and position text and data fields, use the spot marker feature
of the HEADING and FOOTING commands.

Note: To take advantage of this feature in an HTML report, include the SET
STYLEMODE=FIXED command in your request.

The sample request (see Request for EMPLOYEE EDUCATION HOURS REPORT on page 1012)
illustrates this feature. The first two examples show how to position text and data fields on
your report, while the third example shows how to skip lines:

The spot marker <13> positions the specified text in column 13 of the report:

"<13>EMPLOYEE EDUCATION HOURS REPORT"

The spot marker <23> positions the specified data field in column 23 of the report:

"<23><ADDRESS_LN2>"

The spot marker </1 on a line by itself skips two lines after displaying the job description:

"JOB DESCRIPTION: <JOB_DESC>""</1""MOST RECENT COURSE TAKEN ON:
<MAX.DATE_ATTEND>"

When designing a free-form report, take advantage of sort field options, such as NOPRINT,
PAGE-BREAK (PDF output only), and UNDER-LINE. The sample request uses PAGE-BREAK to
place each employee information on a separate page:

BY EMP_ID NOPRINT PAGE-BREAK

Sorting and Selecting Records in a Free-Form Report
As with tabular and matrix reports, you can both sort a report and conditionally select records
for it. Use the same commands as for tabular and matrix reports. For example, use the BY
phrase to sort a report and define WHERE criteria to select records from the data source.

1016 Information Builders

Designing a Free-Form Report

FOCUS

Creating Graphs: GRAPH21
Topics:

Graphs often convey meanings more
clearly than data listed in tabular report
format. The FOCUS GRAPH command
acts in the same way as the TABLE
command to retrieve data from a file, but
presents the information—either on the
screen or to a printer—in one of five
standard graphic formats:

Introduction

Command Syntax

Graph Forms

Adjusting Graph Elements

Special TopicsA connected point or line plot.

Special Graphics DevicesA histogram.

Command and SET Parameter
Summary

A bar chart.

A pie chart.

A scatter diagram.

Creating Reports 1017

Introduction

In this section:

GRAPH vs. TABLE Requests

Running Graph Requests Offline

Controlling the Format

Graphic Devices Supported

The following topics explain how to generate each graph form and adjust the features on
the graphs you produce.

The examples in this chapter are drawn on the SALES database that is included on your
system tape. All of the examples assume that FOCUS default parameters, called SET
parameters, are in effect.

The SALES database is used to illustrate the examples used in this chapter. The Master
File and a schematic diagram of the file appear in Appendix A, Master Files and Diagrams.
An additional temporary field named SALES has been defined, and is used in many of the
examples:

DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH vs. TABLE Requests
GRAPH request syntax is similar to TABLE request syntax. In fact, the output from many
TABLE requests can be converted directly into a graph by typing the command REPLOT at
the FOCUS command prompt immediately after the output of the request has been displayed.
For example:

DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

TABLE FILE SALES
HEADING CENTER
"SAMPLE TABLE REPORT FOR REPLOTTING"
SUM SALES ACROSS CITY
END

1018 Information Builders

Introduction

produces the following:

To convert the output into a graph, exit the report, and at the FOCUS command prompt, type:

REPLOT

and press Enter.

Creating Reports 1019

21. Creating Graphs: GRAPH

To produce the graph without creating a preliminary tabular report, substitute the command
GRAPH for TABLE in the original request, as shown in the following:

DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING CENTER
"SAMPLE TABLE REPORT FOR REPLOTTING"
SUM SALES ACROSS CITY
END

Thus, you can produce graphs by converting TABLE requests, but every TABLE facility does
not have a GRAPH counterpart, and there are some practical limitations on the amount of
information that you can effectively display in a graph. Command Syntax on page 1031 describes
the use of TABLE features in GRAPH requests.

1020 Information Builders

Introduction

The type of graph (graph form) produced by a GRAPH request depends on the verb used
(such as SUM or PRINT), the sort phrase used (ACROSS or BY), and the data type of the
sort field. Consider the five graphs that appear on the following pages, and the requests
that produce them.

SET HISTOGRAM=OFF
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING CENTER
"SAMPLE CONNECTED POINT PLOT"
SUM SALES ACROSS DATE
END

Creating Reports 1021

21. Creating Graphs: GRAPH

Note: SET parameters remain in effect until you reset them or log off (see SET Parameters
on page 1081).

SET HISTOGRAM=ON
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING CENTER
"SAMPLE HISTOGRAM"
SUM SALES ACROSS PROD_CODE
END

1022 Information Builders

Introduction

SET BARWIDTH=2, BARSPACE=2
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING CENTER
"SAMPLE BAR CHART"
SUM SALES BY CITY
END

Creating Reports 1023

21. Creating Graphs: GRAPH

DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

SET PIE=ON, GCOLOR=OFF
SET VAXIS=50, HAXIS=100

GRAPH FILE SALES
HEADING CENTER
"SAMPLE PIE CHART"
SUM SALES ACROSS CITY
END

1024 Information Builders

Introduction

SET HISTOGRAM=OFF

GRAPH FILE SALES
HEADING CENTER
"SAMPLE SCATTER DIAGRAM"
PRINT UNIT_SOLD ACROSS PROD_CODE
END

Running Graph Requests Offline

How to:

Run a Graph Request Offline

Certain options in a graph request may prevent the graph from displaying properly on the
screen. In this case, you can run the graph request offline, and spool the output to a
sequential file.

How to Run a Graph Request OfflineProcedure:

1. On z/OS create a sequential file to contain the graph output and allocate it to DDNAME
OFFLINE. On CMS, FILEDEF a sequential file to DDNAME OFFLINE. For example:

DYNAM ALLOC DD OFFLINE DA USER1.OFFLINE.DATA SHR REU

Creating Reports 1025

21. Creating Graphs: GRAPH

or

CMS FILEDEF OFFLINE DISK OFFLINE DATA A

Note that the LRECL for the sequential file should be 132.

2. Issue the following command to route graph output to this file:

OFFLINE

If you want to run a request online after issuing the OFFLINE command, issue the ONLINE
command:

ONLINE

You can then issue the OFFLINE command to run a request offline.

Each new graph request that is run offline appends its output to this file until you issue the
following command:

OFFLINE CLOSE

Controlling the Format
In each of the previous graphs, FOCUS created a clear representation of the data using
default values for the graph features (such as axis lengths, axis scales, or titles). You can
issue your initial request and concentrate on selecting the data, while FOCUS controls all
of the features on the graph.

When satisfied with the data portrayed in your graph, you can refine its appearance by
adjusting the parameters that control the look of the graph. You can set the control
parameters individually (for example, SET GRID=ON), or ask FOCUS to prompt you for all of
their values when you execute the SET GPROMPT=ON command.

Note: When entering several SET parameters on one line, separate them with commas.

1026 Information Builders

Introduction

The request below illustrates some of the parameters you can control when running the
graph offline:

SET HISTOGRAM=OFF
SET HAXIS=75, VAXIS=32, GRID=ON
SET AUTOTICK=OFF, VCLASS=100, VTICK=20
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING
"</1 <20 ILLUSTRATION OF"
"<23 GRAPH FEATURES AND CONTROLS"
SUM SALES AND UNIT_SOLD ACROSS PROD_CODE
FOOTING CENTER
"</1 <MIN.RETAIL = CHEAPEST ITEM"
END

The graph generated OFFLINE in response to the request appears below.

Creating Reports 1027

21. Creating Graphs: GRAPH

Note:

This graph is a connected point plot, with the plot points representing the sales
(retail_price * unit_sold) and total units sold for each of the product codes listed across
the horizontal axis.

Annotating text has been added above and below the graph with the HEADING and
FOOTING facilities. Note the use of spot markers to position text on the graph, and the
embedded calculation with a direct operator.

Only the vertical axis is scaled because the ACROSS phrase objects were not numeric
values. The plus symbols (+) mark the class intervals on the axis scale, and vertical bars
mark the tick intervals.

Horizontal grid lines appear at the vertical class marks.

For graphs generated ONLINE, FOCUS automatically detects the height and width of a
particular terminal and plots the graph accordingly. As a result, VAXIS and HAXIS settings
are ignored.

You control the graphic elements shown in the previous figure, Illustration of Graph Features
and Controls, in one of two ways: either by the syntax in the actual request, or with SET
commands. Command Syntax on page 1031 describes the elements in GRAPH requests and
their effects. Adjusting Graph Elements on page 1058 describes the adjustable parameters
that control graph features.

There are some additional SET parameters that control non-graphic elements:

Specifying an output device.

Pausing between data retrieval and printing to permit the user to adjust paper in the
printer or plotter.

Using special black/white shading patterns to simulate different colors.

Displaying the current settings of the GRAPH parameters on the screen.

After retrieving data from a file and displaying it either as a tabular report or a graph, you
can use the SET command to adjust the format and then redisplay the graph by issuing the
REPLOT command (without resorting to further data retrieval).

A summary of all of the SET parameters appears in SET Parameters on page 1081.

1028 Information Builders

Introduction

Graphic Devices Supported

In this section:

Medium-Resolution Devices

High-Resolution Devices

You may create graphs on any terminal or printer that can print FOCUS reports. If your terminal
has no graphics capabilities, FOCUS uses the characters in the standard character set when
producing graphs. As the default, FOCUS sends GRAPH output to the terminal (or system
printer, if PRINT=OFFLINE). This produces low-resolution graphics. The examples in the
chapter thus far (except the pie chart) illustrate the default. You cannot create continuous
line plots or pie charts unless you have a high-resolution graphic device.

While FOCUS can accommodate devices with no inherent graphics capabilities, it can also
take advantage of whatever graphics facilities are available. Some personal computers offer
ranges of special characters that can be used to create more readable graphs. The following
figure shows a graph on an IBM PC mono screen:

Creating Reports 1029

21. Creating Graphs: GRAPH

If color monitors or multiple-pen plotters are available, graph quality can be improved. The
following figure shows a sample graph on a plotter. For more information, see Special Graphics
Devices on page 1075.

On IBM mainframes, FOCUS supports the use of high-resolution terminals such as the Model
3279 via the IBM Graphical Data Display Manager (GDDM), which is discussed in IBM Devices
Using GDDM on page 1076. Other high-resolution terminals, printers, and plotters are also
supported, and they are listed in this section. To select one, simply enter the appropriate
form of the SET DEVICE command (see High-Resolution Devices on page 1076). Note, in
reviewing the device selections, that all have fixed graphic window dimensions (horizontal
and vertical axes), which are fixed until a new device is selected.

Please note that this list includes only fully tested devices, although other devices may also
work with FOCUS.

Medium-Resolution Devices

Anderson Jacobson Models:AJ830, and AJ832 (12 Pitch).

Diablo Models: 1620, and 1620 (12 Pitch).

Gencom Models: GENCOM, and GENCOM (12 Pitch).

Trendata Models: Trendata 4000A, and 4000A (12 Pitch).

High-Resolution Devices

IBM Graphic Devices (GDDM is required).

Any IBM 3270 series device that supports GDDM graphics, such as 3279-S3G, 3179,
or 3472. This includes PCs with fully compatible 3270 series hardware and software.

1030 Information Builders

Introduction

Hewlett-Packard Plotters:

Four-pen plotters without paper advance: Models 7220A, 7221, and 7470A (requires Y
cable #17455).

Four-pen plotters with paper advance: Models 7220S and 7221S.

Eight-pen plotters without paper advance: Models 7220C, 7221C, 7475A (requires Y
cable #17455).

Eight-pen plotters with paper advance: Models 7220T, 7221T.

Tektronix Graphic Devices (only monochrome display).

Models 4010, 4012, 4013, 4014, 4014E, 4015, 4015E, 4025, 4027, 4050 series,
4662, and 4100 series.

Command Syntax

In this section:

GRAPH vs. TABLE Syntax

Specifying Graph Forms and Contents

Most TABLE requests can be converted into GRAPH requests by replacing the TABLE command
with the GRAPH command. The only limitations are those inherent in the graphic format.
When a TABLE request is converted in this manner, the phrases that make up the request
take on special meanings that determine the format and layout of the graph.

This section outlines the phrases that can appear in TABLE requests, and describes their
effects in the context of GRAPH requests. It also describes any limitations that apply to their
use.

GRAPH vs. TABLE Syntax
The syntax of the GRAPH command parallels that of the TABLE command. The main elements
of GRAPH requests are the verb phrase (display command), one or more sort phrases,
selection phrases, and headings and footings. All of the other phrases that appear in TABLE
requests are ignored. This applies to all control conditions (ON...) and all IN phrases.

Creating Reports 1031

21. Creating Graphs: GRAPH

The basic GRAPH syntax is as follows:

GRAPH FILE filename
[HEADING]
[heading phrase]
verb phrase
sort phrase
[additional sort phrases]
[selection phrase(s)]
[FOOTING]
[footing phrase]
END

The GRAPH request elements generally follow the same rules as their TABLE counterparts:

The word FILE and the file name must immediately follow the GRAPH command, unless
they were previously specified in a SET command:

SET FILE=filename

The file named can be any file available to FOCUS, including joined or cross-referenced
structures.

You can concatenate unlike data sources in a GRAPH request with the MORE command.
See Concatenating Unlike Data Sources on page 1036.

The order of the phrases in the request does not affect the format of the graph. For
example, the selection phrase may follow or precede the verb phrase and sort phrase(s).
The order of the sort phrases does affect the format of the graph, however, just as the
order of the sort phrases in TABLE requests affects the appearance of the reports (see
Selecting Forms: BY and ACROSS Phrases on page 1034).

The word END must be typed on a line by itself to complete a GRAPH request.

An incomplete GRAPH request can be terminated by typing the word QUIT on a line by
itself, instead of END.

All dates are displayed in MDY format unless they are changed to alphanumeric fields.

There are a few notable syntactical differences between TABLE and GRAPH. Specifically, the
following restrictions apply:

GRAPH requests must contain at least one sort phrase (BY phrase or ACROSS phrase)
and a verb with at least one object in order to generate a meaningful graph.

Several BY phrases can be used in a request, in which case multiple graphs are created
(one for each BY object). A single ACROSS phrase is allowed in a GRAPH request, and
requests for certain graph forms can contain both ACROSS and BY phrases.

The number of ACROSS values cannot exceed 64.

1032 Information Builders

Command Syntax

In GRAPH requests, the verb object must always be a numeric field.

No more than five verb objects are permitted in a GRAPH request. This limitation is
necessary because standard graph formats generally do not permit more variables to be
displayed without rendering the graph unreadable.

The RUN option is not available as an alternative to END.

The following sections describe the functions performed by each of the phrases used in
GRAPH requests.

Specifying Graph Forms and Contents

In this section:

Naming Subjects: Verb Phrases

Selecting Forms: BY and ACROSS Phrases

Selecting the Contents: Selection Phrases

Concatenating Unlike Data Sources

Adding Annotating Text: HEADING and FOOTING Lines

Inserting Formatting Controls

Inserting Field References

Each graph form is defined by a particular combination of verb and sort phrase. The
combinations, which were illustrated earlier in GRAPH vs. TABLE Requests on page 1018, are
summarized in the table below (A and B represent two field names).

Point plot: SUM A ACROSS B (B is numeric)
Histogram: SET HISTOGRAM=ON
 SUM A ACROSS B (B is alpha)
Bar chart: SUM A BY B
Pie chart: SET PIE=ON
 SUM A ACROSS B
Scatter diagram: PRINT A ACROSS B or PRINT A BY B

Creating Reports 1033

21. Creating Graphs: GRAPH

Naming Subjects: Verb Phrases

Each GRAPH request must include a verb and at least one object (up to five are allowed).
Three verbs are permitted: COUNT, SUM, and PRINT. SUM is synonymous with either WRITE
or ADD. Each verb object must be a computational field (not alphabetic). For example:

GRAPH FILE SALES
SUM SALES
.
.
.

If the verb SUM (or WRITE or ADD) is used, then a bar chart, histogram, line plot or pie chart
is produced, depending on the sort phrase and sort field format used. If PRINT is used, the
graph is a scatter diagram.

The verb objects, which are the subjects of the graph, may be real or defined fields, with or
without direct operation prefixes (AVE., MIN., MAX., etc.). They may also be computed fields.
(All of the COMPUTE facilities are available in GRAPH requests.)

When the request has a single verb object, the vertical title of the graph is either the field
name of the verb object as it appears in the Master File, or a replacement name supplied
in an AS phrase.

When a request contains multiple verb objects, each represents one variable in the graph,
and a vertical legend is printed instead of the vertical title. The legend specifies the field
names (and/or AS phrase substitutions) and provides a key to which line represents each
variable.

In your requests, verb objects may be separated by spaces, or by AND or OVER. OVER has
special significance in histogram and bar chart requests, where it controls the stacking of
the bars. This is described in the sections on Histograms (see Histograms on page 1045), and
Bar Charts (see Bar Charts on page 1048).

Verb objects used only for calculations need not appear in your graphs. Use the NOPRINT
or SUP-PRINT facilities to suppress the display of such fields.

Selecting Forms: BY and ACROSS Phrases

At least one sort phrase is required in every GRAPH request. This may be either a BY phrase
or an ACROSS phrase.

For example:

GRAPH FILE SALES
SUM SALES
ACROSS PROD_CODE
.
.
.

1034 Information Builders

Command Syntax

The ACROSS phrase, if there is one, determines the horizontal axis of the graph.

If there is no ACROSS phrase, the last BY phrase determines the vertical axis. When there
are multiple BY phrases or when an ACROSS and BY phrase are included in the same request,
FOCUS generates multiple graphs; one for each combination of values for the fields referenced
in the request (see The Vertical Axis: System Defaults on page 1063 for information regarding
control of the vertical axis).

Note: The FOCUS ICU Interface saves data for IBM's Interactive Chart Utility (ICU) in tied
data format. If both an ACROSS and BY phrase are present in a GRAPH request, one common
axis is established. This enables FOCUS graphs to be displayed as tower charts.

The FOCUS ICU Interface is discussed in further detail in Using the FOCUS ICU Interface on
page 1074. You can also consult the ICU Interface Users Manual for additional information.

The sortfield name may be replaced with an AS phrase. This is useful if the sort phrase
specifies one of the axes (it has no effect on any additional sort phrases).

Note that the values of fields mentioned in the additional sort phrases are not displayed
automatically in the graph. If you wish to have them appear, you must embed them in a
heading or a footing line (see Adding Annotating Text: HEADING and FOOTING Lines on page
1037).

Selecting the Contents: Selection Phrases

Selection phrases are used in GRAPH requests to select records of interest. Two phrases
are available: IF and WHERE. The examples in this chapter use the IF selection phrase. For
a definition of the WHERE clause and the differences between IF and WHERE, see Chapter
5, Selecting Records for Your Report.

The syntax for an IF phrase or a WHERE clause in a GRAPH request is identical to that used
in a TABLE request. For example:

GRAPH FILE SALES
SUM SALES
ACROSS PROD_CODE
IF PROD_CODE NE D12

A partial list of the relation tests appears below. See Chapter 5, Selecting Records for Your
Report, for a complete list.

MeaningRelation

Equal toEQ

Not equal toNE

Greater than or equal toGE

Creating Reports 1035

21. Creating Graphs: GRAPH

MeaningRelation

Greater thanGT

Less than or equal toLE

Less thanLT

ContainsCONTAINS

OmitsOMITS

Concatenating Unlike Data Sources

With the FOCUS command MORE, you can graph data from unlike data sources in a single
request; all data, regardless of source, appears to come from a single file. You must divide
your request into:

One main request that retrieves the first file and defines the data fields, sorting criteria,
and output format for all data.

Subrequests that define the files and fields to be concatenated to the data of the main
request. The fields printed and sorted by the main request must exist in each
concatenated file. If they do not, you must create them as DEFINE fields.

During retrieval, FOCUS gathers data from each database in turn. It then sorts all data, and
formats the output as described in the main request. The syntax is:

GRAPH FILE file1
main request
MORE
FILE file2
subrequest
 MORE
 .
 .
 .
END

where:

file1

Is the name of the first file.

1036 Information Builders

Command Syntax

main request

Is a request, without END, that describes the sorting, formatting, aggregation, and
COMPUTE field definitions for all data. IF and WHERE phrases in the main request apply
only to file1.

MORE

Begins a subrequest. The number of subrequests is limited only by available memory.

FILE file2

Defines file2 as the second file for concatenation.

subrequest

Is a subrequest. Subrequests can only include WHERE and IF phrases.

END

Ends the request.

See Merging Data Sources on page 877, for complete information and for concatenation
examples.

Adding Annotating Text: HEADING and FOOTING Lines

To insert annotating text above or below a graph, enter the keywords HEADING and/or
FOOTING, followed by the desired contents, including any necessary control elements for
skipping lines. The syntax is the same as that used for headings and footings in TABLE
requests.

For example:

GRAPH FILE SALES
HEADING
"<7 THIS GRAPH SHOWS SALES BY PRODUCT CODE"
SUM SALES
BY PROD_CODE
IF PROD_CODE NE D12
FOOTING
"<7 FOR ALL PRODUCT CODES EXCEPT D12"
END

Note: When annotating text falls in the path of a plot point on a graph, the plot point is
printed; however, connecting points are suppressed if they lie in the path of annotating text.
This enables you to adjust the position of the annotating text when you see the contents of
the graph. The first line of any heading appears above the first line of the legend.

Creating Reports 1037

21. Creating Graphs: GRAPH

Inserting Formatting Controls

The formatting controls used in TABLE requests can also be used in GRAPH requests for
positioning text or field references in heading or footing lines, or in the body of your graph.
The following example shows the use of spot markers, which are described in Chapter 9,
Customizing Tabular Reports. Run the following request offline to generate the graph shown
immediately following the request:

SET HISTOGRAM=OFF
SET AUTOTICK=OFF, VCLASS = 200, VTICK = 25
GRAPH FILE SALES
HEADING
"</4 <22 GRAPH SHOWING HOW TO EMBED"
"<22 ANNOTATING TEXT"
"</10 <15 ANYWHERE ON THE GRAPH"
SUM UNIT_SOLD AND OPENING_AMT AS 'INVENTORY'
ACROSS DATE AS ' PERIOD COVERED'
FOOTING CENTER
"AVERAGE STOCK ON HAND WAS <AVE.OPENING_AMT"
END

1038 Information Builders

Command Syntax

Inserting Field References

The following example shows how to embed field values in graph heading or footing lines,
similar to the capability in TABLE requests. It is useful when annotating graphs created by
requests containing multiple sort fields (where only the first named sort field appears as a
title on the graph). Run the following as an offline request:

SET HISTOGRAM=OFF
SET AUTOTICK=OFF, VCLASS = 50 , VTICK = 8
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END
GRAPH FILE SALES
HEADING CENTER
"GRAPH WITH DEFINED AND COMPUTED FIELDS"
SUM SALES AND UNIT_SOLD AND OPENING_AMT
AS 'INVENTORY' AND
COMPUTE OVERHEAD/D8.2=.20 * SALES;
ACROSS DATE AS ' PERIOD COVERED'
BY PROD_CODE
IF PROD_CODE IS 'C7' OR 'B10' OR 'B12'
FOOTING CENTER
"REPORT FOR PRODUCT <PROD_CODE"
END

Creating Reports 1039

21. Creating Graphs: GRAPH

Graph Forms

In this section:

Connected Point Plots

Histograms

Bar Charts

Pie Charts

Scatter Diagrams

This section describes the five graph forms produced by FOCUS, and their basic elements.
Connected point plots are described first, followed by histograms, bar charts, pie charts,
and scatter diagrams. The adjustable graphic features are mentioned only briefly with the
graph forms and fully described in Adjusting Graph Elements on page 1058.

As seen in the examples in GRAPH vs. TABLE Requests on page 1018, there are similarities
between the requests for some of the forms. For example, a request for a connected point
plot (with an alphanumeric ACROSS field) creates a histogram instead if the HISTOGRAM
parameter is set on (the default). This feature enables you retrieve data once, then switch
from one form to the other by changing the HISTOGRAM value and issuing REPLOT.

Histograms are often called vertical bar charts, but the physical similarities between these
forms mislead users. Although the graphs look similar and have parameters that perform
similar functions (HSTACK and BSTACK), the parameters used to control the widths and
spacing of bars on bar charts have no effect on histogram bars.

Histograms and vertical scatter plots (those created with BY phrases) have variable-length
vertical axes that are not subject to the VAXIS parameter setting.

Pie charts and bar charts are different geometrical representations of similar types of data,
but pie charts are only possible if you have a high-resolution device capable of drawing
respectable curves.

1040 Information Builders

Graph Forms

Connected Point Plots

In this section:

Point Plot Features

Create a connected point plot (or a line plot on a high-resolution device), with a request that
combines the verb SUM (or the synonyms WRITE or ADD) with an ACROSS phrase that
specifies an alphanumeric or a numeric field. If the field specified in the ACROSS phrase is
alphanumeric, the HISTOGRAM parameter must be set off in order to generate a connected
point plot.

The values for the field named in the ACROSS phrase are plotted on the horizontal axis, and
the values for the verb object(s) are plotted along the vertical axis.

The example below illustrates a point plot request.

SET HISTOGRAM=OFF

SET VAXIS=40,HAXIS=75
GRAPH FILE SALES
HEADING CENTER
"SAMPLE CONNECTED POINT PLOT"
SUM SALES ACROSS DATE
END

Note: The SET statements in the previous example were added to limit the output graph to
a convenient size for display on the page. Without them, FOCUS sets the default horizontal
axis width at the capacity of the device selected, and a vertical height of 66 lines, the normal
page length.

Creating Reports 1041

21. Creating Graphs: GRAPH

Point Plot Features

Scale Titles. The values associated with the class markers are printed below the
horizontal axis in the USAGE format of the variable being plotted (MM/DD in our example).

Plot Characters. The graphics characters used to plot the variables on connected point
plots depend on the type of display device:

On high-speed printers and non-graphics terminals, the data points are represented
by asterisks (*) when only one variable is plotted. If several variables are plotted, the
initial letters of the variable names are used (rename duplicates with AS phrases).
The data points are connected by periods (.). You cannot create continuous line plots,
as they are only available on high-resolution devices.

On high-resolution displays, printers, and plotters, the lines connecting plot points
are drawn explicitly. When there are several variables, they are distinguished either
by color or by the type of connecting line used (dotted, solid, or broken).

Axis Titles. You can include vertical and horizontal axis titles for your graphs:

For requests with a single verb object, the vertical title is either its field name or a
replacement name you have provided in an AS phrase.

When more than one variable is plotted, FOCUS prints a vertical legend instead of the
vertical title. The legend specifies the field names or their replacements, and provides
a key showing which line represents each variable. Titles are displayed staggered or
folded on successive horizontal lines to permit more titles than a single horizontal
line can contain.

1042 Information Builders

Graph Forms

The following example illustrates a point plot with several variables, run offline.

SET HISTOGRAM=OFF
SET AUTOTICK=OFF, VCLASS = 200, VTICK = 25
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END
GRAPH FILE SALES
HEADING
"POINT PLOT WITH SEVERAL VARIABLES"
SUM SALES AND UNIT_SOLD AND INV AS 'ON HAND'
ACROSS DATE
END

Up to five variables can be plotted on the same vertical axis. The scale on the vertical axis
is determined based on the combined values of the vertical variables, and a separate point
appears for each value of each variable.

Creating Reports 1043

21. Creating Graphs: GRAPH

When planning graphs with multiple variables or large numbers, adjust your variables so
they are in the same order of magnitude. By redefining the variable plotted on the horizontal
axis by a suitable power of 10, you can make the finished graph more legible. A method for
doing this is shown in the example below. Run this as an offline request:

DEFINE FILE SALES
SALES/D8.2=(UNIT_SOLD * RETAIL_PRICE)/10;
END
SET HISTOGRAM=OFF
SET AUTOTICK=OFF, VCLASS = 5 , VTICK = 1
GRAPH FILE SALES
HEADING CENTER
"STAMFORD'S SALES/10 AND RETURNS"
SUM SALES AND RETURNS ACROSS PROD_CODE
BY STORE
IF CITY IS 'STAMFORD'
FOOTING CENTER
"SALES FOR STORE # <STORE_CODE"
END

1044 Information Builders

Graph Forms

Histograms

In this section:

Histogram Features

Histograms are vertical bar charts, and are useful for portraying the component parts of
aggregate values. They are an alternate graphic format for plotting requests that could also
generate connected point plots. To switch from one format to the other, simply reset the
parameter HIST and issue REPLOT.

Create histograms by typing requests containing the verb SUM (or the synonyms, WRITE or
ADD) and an ACROSS phrase that specifies an alphanumeric field. One bar appears on the
graph for each verb object. The example that follows illustrates a histogram with a single
variable. Run it as an offline request:

SET HISTOGRAM=ON
SET AUTOTICK=OFF, VCLASS = 100, VTICK = 40
DEFINE FILE SALES
SALES/D8.2=(UNIT_SOLD * RETAIL_PRICE);
END

GRAPH FILE SALES
HEADING CENTER
"SAMPLE HISTOGRAM"
SUM SALES ACROSS PROD_CODE
END

Creating Reports 1045

21. Creating Graphs: GRAPH

To draw the bars side by side, separate the verb objects with spaces or AND. To draw
superimposed (stacked) bars, separate the verb objects with OVER. The example that follows
illustrates a request using OVER. Run it as an offline request:

SET HISTOGRAM = ON
SET AUTOTICK=OFF, VCLASS = 200, VTICK = 20
DEFINE FILE SALES
SALES/D8.2=(UNIT_SOLD * RETAIL_PRICE) ;
END
GRAPH FILE SALES
HEADING
"SALES OVER INVENTORY AND RETURNS"
"ACROSS PRODUCT CODE"
SUM SALES OVER INV OVER RETURNS ACROSS PROD_CODE
END

1046 Information Builders

Graph Forms

Note that the legend uses the full field names rather than the aliases for the verb objects
(OPENING_AMT for INV).

When you name three or more verb objects in a request, you can have any combination of
stacked and side-by-side bars.

Histogram Features

Each vertical bar or group of bars represents a value of the ACROSS sort field. The range of
values for the verb objects determines the scale for the vertical axis.

All of the vertical axis features on histograms are adjustable:

To reset the height of OFFLINE graphs, use the VAXIS parameter as described in How to
Set the Height on page 1063. For online graphs, FOCUS automatically sets the height of
your graph based on the terminal dimensions.

Reset the upper and lower thresholds on the axis by setting the default scaling mechanism
off (VAUTO) and setting new upper and lower limits (VMAX and VMIN). See How to Set
the Scale: Assigning Fixed Limits on page 1061.

Reset the class and tick intervals by overriding the default mechanism (AUTOTICK) and
setting new intervals (VCLASS and VTICK). See How to Set Class and Tick Intervals on
page 1062.

FOCUS automatically sets the width of the bars and the spacing between them to fit within
the HAXIS parameter limit. These can be changed by resetting the HAXIS parameter (see
How to Set the Width on page 1061).

The values for the data points on the HAXIS are printed horizontally on a single line or
staggered (folded) on two or more lines, depending on the available space.

To add a grid of parallel horizontal lines at the vertical class marks, issue the following SET
command before issuing your request:

SET GRID=ON

Vertical grids are not available on histograms.

To specify stacking of all bars without using OVER in the request, you can set the parameter
HSTACK (SET HSTACK=ON). Remember to set it off again before moving to other requests.

Note: There is often confusion over histogram features because of the similarity with bar
charts. The BARNUMB facility used to print summary numbers for the bars in bar charts
does not work with histograms.

Creating Reports 1047

21. Creating Graphs: GRAPH

Bar Charts

In this section:

Bar Chart Features

Bar charts have horizontal bars arrayed vertically. To produce a bar chart, type a request
containing the verb SUM and a BY phrase (but no ACROSS phrase). A separate group of
bars is created for each value of the BY field, and each group contains one bar for each verb
object in the request.

SET BARWIDTH=2, BARSPACE=1

GRAPH FILE SALES
HEADING
"BAR CHART"
SUM UNIT_SOLD BY CITY
IF PROD_CODE EQ B10
END

In the request above, the parameters BARSPACE and BARWIDTH were set to enhance the
appearance of the graph and improve readability.

In requests with multiple verb objects, each bar appears beneath its predecessor by default.
If verb objects are connected by OVER phrases, however, then the corresponding bars are
stacked and appear end-to-end. The following example illustrates stacked bars.

SET BARSPACE=2, BARWIDTH=2

1048 Information Builders

Graph Forms

GRAPH FILE SALES
HEADING
"BAR CHART"
SUM DELIVER_AMT OVER INV BY CITY
WHERE PROD_CODE EQ 'B10'
END

Alternatively, to request stacking of all bars, set the parameter BSTACK (SET BSTACK=ON).
If you use BSTACK you do not need OVER; any graph can be replotted with and without
stacking by simply changing the value of this parameter and issuing REPLOT.

Creating Reports 1049

21. Creating Graphs: GRAPH

Bar Chart Features

You can set the BARWIDTH parameter to change the widths of the bars themselves, and
set the BARSPACE parameter to change the spacing between them. Set the GRID parameter
to add a grid of vertical parallel lines at the class marks on the horizontal axis. The examples
that follow illustrate the use of these parameters.

SET BARWIDTH=3, BARSPACE=2, BSTACK=OFF
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING
"BAR CHART"
SUM AVE.SALES AND UNIT_SOLD BY CITY
WHERE PROD_CODE IS 'B10' OR 'B20'
FOOTING
"</2 CHANGING SPACING AND WIDTHS OF BARS"
END

1050 Information Builders

Graph Forms

The result follows:

To print a summary value at the end of each bar, set the BARNUMB parameter.

Note: This feature is also available on pie charts, but is not available on histograms.

Creating Reports 1051

21. Creating Graphs: GRAPH

The effects of BARNUMB and GRID are shown below.

SET BARNUMB=ON, GRID=ON
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING CENTER
"CHART WITH SUMMARY NUMBERS AND A GRID"
SUM AVE.SALES AND INV AND UNIT_SOLD BY CITY
WHERE PROD_CODE EQ 'B10' OR 'B20'
END

The horizontal axis features are all adjustable:

To change the width of OFFLINE graphs, alter the HAXIS parameter as described in How
to Set the Width on page 1061. For ONLINE graphs, FOCUS automatically detects the width
of the terminal, and displays the graph accordingly.

To reset the numerical scale, turn off the default scaling mechanism (HAUTO) and set
new upper and lower limits (HMAX and HMIN). See How to Set the Scale: Assigning Fixed
Limits on page 1063.

1052 Information Builders

Graph Forms

To change the class and tick intervals, override the default mechanism (AUTOTICK) and
set new intervals (HCLASS and HTICK). See How to Set Class and Tick Intervals on page
1062.

The vertical axis length is controlled by FOCUS. You can set the bar widths and spacing as
mentioned previously, but you cannot set the vertical height to a fixed dimension.

Pie Charts

In this section:

Pie Chart Features

Pie charts can only be drawn on high-resolution graphic devices. It is possible, however, to
create a formatted pie chart and save it for subsequent plotting on another device. See
Saving Formatted GRAPH Output on page 1072.

Creating Reports 1053

21. Creating Graphs: GRAPH

To create a pie chart, first set the PIE parameter ON and select a device (SET DEVICE=),
then type a request with the verb SUM (or the synonyms, WRITE or ADD) and an ACROSS
phrase that names an alphanumeric field. When you finish your pie charts, set the PIE
parameter OFF before running other types of GRAPH requests.

SET PIE=ON, DEVICE=HP7220C
GRAPH FILE SALES
HEADING CENTER
"PIE CHART PRODUCED ON HEWLETT-PACKARD MODEL 7475"
WRITE RPCT.UNIT_SOLD ACROSS CITY
END

1054 Information Builders

Graph Forms

Pie Chart Features

To add summary numbers for each slice of the pie chart on the previous page, enter the
following:

SET BARNUMB=ON
REPLOT

The effect is shown below:

Note: FOCUS does not include a facility for displaying exploded pie chart slices.

Creating Reports 1055

21. Creating Graphs: GRAPH

Scatter Diagrams

In this section:

Scatter Diagram Features

Scatter diagrams illustrate occurrence patterns and distribution of variables. Create them
by issuing requests containing the verb PRINT and a sort phrase (BY or ACROSS). The choice
of BY or ACROSS dictates the vertical or horizontal bias of the graph. The samples that
follow illustrate both types.

GRAPH FILE SALES
HEADING CENTER
"SCATTER DIAGRAM USING ACROSS"
PRINT UNIT_SOLD ACROSS RETAIL_PRICE
END

The point plots on the vertical axis represent the values for the ACROSS field named. Each
record selected contributes a separate point. The sort control fields are plotted on the
horizontal axis, which is also scaled if the control field values are numeric.

1056 Information Builders

Graph Forms

When the request contains a BY phrase, the named sort control field is plotted down the
vertical axis and the data values are scaled horizontally.

GRAPH FILE SALES
HEADING CENTER
"SCATTER DIAGRAM USING BY"
PRINT UNIT_SOLD BY RETAIL_PRICE
END

The vertical axis is not scaled even if the control field is numeric. Each separate value of
the control field is plotted on a different line, but these are not arranged according to a
numerical scale. The full range of horizontal scaling options is available (see The Horizontal
Axis: System Defaults on page 1060).

Scatter Diagram Features

When multiple points fall in the same position, FOCUS displays either a number (for up to
nine occurrences) or an asterisk (for more than nine occurrences).

When you specify more than one verb object (five are permitted), they are represented by
the first letter of the field name. If they are not different, you can assign unique symbols
with AS phrases.

Creating Reports 1057

21. Creating Graphs: GRAPH

Scatter diagrams can display the following:

Trend lines (available only in plots generated using ACROSS). Trend lines are calculated
by Ordinary Least Squares (OLS) regression analysis and represent the line of best fit.
You can add them to requests containing ACROSS phrases by setting the parameter
GTREND before executing or replotting the request:

SET GTREND=ON

When two fields are plotted with GTREND=ON, FOCUS provides two trend lines. If more
than two fields are plotted, however, FOCUS does not provide trend lines.

Horizontal grids. You can add horizontal grid lines at the vertical class marks by setting
the parameter GRID:

SET GRID=ON

Vertical grids (available only in plots generated by requests using BY). You can add vertical
parallel lines at the horizontal class marks of the scatter plot by setting the parameter
VGRID:

SET VGRID=ON

Adjusting Graph Elements

In this section:

The Horizontal Axis: System Defaults

The Vertical Axis: System Defaults

Highlighting Facilities

All graphs other than pie charts have horizontal and vertical axes. These axes usually have
scales with adjustable upper and lower thresholds that are divided into class intervals
representing quantities of data (scales are only provided when the variables named are
computational fields). Class intervals are further broken down with tick marks representing
smaller increments of data.

When multiple graphs are created in a single request, FOCUS determines the default
horizontal scale after examining all values to be plotted, and the same scale is then applied
to each graph. Vertical scales are recalculated each time, however, and adjusted for the
values in each graph (unless you override this feature).

Some graph forms, notably connected point plots, histograms, and bar charts, can be visually
strengthened by adding parallel lines across the horizontal and/or vertical axes, to form a
grid against which the data is arrayed.

1058 Information Builders

Adjusting Graph Elements

The following describes the default conditions for all of these graph features, and the facilities
for changing the default values to create customized output.

At any time during your session, you can review the current GRAPH parameter settings by
typing:

? SET GRAPH

which displays the current settings of all of the adjustable GRAPH parameters, as shown
below.

SettingParameter

IBM3270DEVICE

OFFGPROMPT

OFFGRID

OFFVGRID

130HAXIS

66VAXIS

OFFGTREND

OFFGRIBBON (GCOLOR)

OFFVZERO

ONVAUTO

.00VMAX

.00VMIN

ONHAUTO

.00HMAX

.00HMIN

ONAUTOTICK

.00HTICK

Creating Reports 1059

21. Creating Graphs: GRAPH

SettingParameter

.00HCLASS

.00VTICK

.00VCLASS

1BARWIDTH

0BARSPACE

OFFBARNUMB

ONHISTOGRAM

OFFHSTACK

OFFBSTACK

OFFPIE

OFFGMISSING

.00GMISSVAL

For information about each of the parameters listed, refer to SET Parameters on page 1081.

The Horizontal Axis: System Defaults

How to:

Set the Width

Set the Scale: Assigning Fixed Limits

Set Class and Tick Intervals

The width of each graph, including any surrounding text, is controlled by the HAXIS parameter.
For online displays, FOCUS automatically detects the terminal width and plots the graph
accordingly.

1060 Information Builders

Adjusting Graph Elements

For graphs generated OFFLINE, the default value for HAXIS is normally set to the maximum
possible size for the output device selected, after allowing for the inclusion of any text
required for the vertical axis and its labels along the left margin. To maximize display space,
you can limit the size of your labels through the use of either AS phrases or DECODE
expressions.

In setting the scale (when AUTOTICK=ON, and HAUTO=ON), FOCUS determines the amount
of available space and the range of values selected for plotting. It then selects minimum,
intermediate, and maximum unit values for the horizontal axis scale that encompass the
range of values and are convenient multiples of an appropriate power of 10 (10 vs. 1000
vs. 1,000,000).

When you select a high-resolution graphic device, FOCUS controls the axis dimensions
according to the values shown for the various devices in SET Parameters on page 1081.

How to Set the WidthSyntax:

To set the width of the graph to a given number of characters, issue the SET statement

SET HAXIS=nn

where:

nn

Is a numeric value between 20 and 130.

How to Set the Scale: Assigning Fixed LimitsSyntax:

FOCUS automatically sets the horizontal scale to cover the total range of values to be plotted
(HAUTO=ON). The range is divided into intervals called classes. The scale is normalized to
provide class values rounded to the appropriate multiples and powers of 10 for the intervals
plotted on the axis.

If you wish to assign fixed upper and lower limits (useful when producing a series of graphs
where consistent scales are needed), turn off the automatic scaling mechanism, and set
new limit values. This is done with the SET command. The syntax is:

SET HAUTO=OFF, HMAX=nn, HMIN=nn

where:

HAUTO

Is the automatic scaling facility.

HMAX

Is the parameter for setting the upper limit on the horizontal axis. The default is 0.

Creating Reports 1061

21. Creating Graphs: GRAPH

HMIN

Is the parameter that controls the lower limit on the horizontal axis when HAUTO is OFF.
The default is 0.

nn

Is the new limit.

Note:

When entering several SET parameters on one line, separate them with commas.

If you define limits that do not incorporate all of the data values, FOCUS displays OVER
and/or UNDER to indicate that some of the data extracted is not reflected on the graph.

How to Set Class and Tick IntervalsSyntax:

Class intervals are the intervals between the labels and grid lines on a graph. Tick intervals
are the subdivisions of class intervals. When AUTOTICK is ON, FOCUS automatically
determines the class and tick intervals.

To set the class and tick intervals yourself, first turn off the default scaling mechanism, then
reset the class and tick intervals with the SET command

SET AUTOTICK=OFF, HCLASS=nn, HTICK=nn

where:

AUTOTICK

Is the automatic scaling mechanism.

HCLASS

Is the parameter that controls the class interval on the horizontal axis when AUTOTICK
is OFF. The default is 0.

nn

Is the new class interval value for the axis.

HTICK

Is the parameter that controls the tick interval when AUTOTICK is OFF. The default is 0.

nn

Is the new tick interval for the axis.

Note:

When issuing more than one parameter with a sample SET command, separate parameters
with commas as shown above.

1062 Information Builders

Adjusting Graph Elements

To make the changes apparent on the screen, SET SCREEN to PAPER.

The number of ticks per class is HCLASS/HTICK.

The Vertical Axis: System Defaults

How to:

Set the Height

Set the Scale: Assigning Fixed Limits

Set Class and Tick Intervals

The vertical axis (VAXIS) represents the number of lines in the graph, including any surrounding
text.

For online displays, FOCUS automatically plots the graph according to the terminal height.
For graphs generated offline, FOCUS respects VAXIS settings.

FOCUS automatically sets the vertical scale to cover the total range of values to be plotted
(VAUTO=ON). The height is set as high as possible, taking into consideration any headings
and/or footings, and the need to provide suitably rounded vertical class markers.

The range is divided into intervals called classes. The scale is normalized to provide class
values rounded to the appropriate multiples and powers of 10 for the intervals plotted on
the axis.

As with the horizontal axis, FOCUS selects the vertical axis size whenever you select a high-
resolution graphic device (see SET Parameters on page 1081).

How to Set the HeightSyntax:

Use the following SET command to set the vertical axis:

SET VAXIS=nn

where:

nn

Is a number in the range 20-66.

How to Set the Scale: Assigning Fixed LimitsSyntax:

If you wish to give the vertical scale fixed upper and lower limits (useful when producing a
series of graphs where consistent scales are needed), turn off the automatic scaling
mechanism, and set fixed limits. This is done with the SET command:

SET VAUTO=OFF, VMAX=nn, VMIN=nn

Creating Reports 1063

21. Creating Graphs: GRAPH

where:

VAUTO

Is the automatic scaling facility.

VMAX

Is the parameter for setting the upper limit on the vertical axis. The default is 0.

VMIN

Is the parameter that controls the lower limit on the vertical axis when VAUTO is OFF.
The default is 0.

nn

Is the new limit.

Note:

When entering several SET parameters on one line, separate them with commas.

If you define limits that do not incorporate all of the data values, FOCUS displays OVER
and/or UNDER to indicate that some of the data extracted is not reflected on the graph.

How to Set Class and Tick IntervalsSyntax:

To set the class and tick intervals on the vertical axis, first turn off the default scaling
mechanism, and then reset the class and tick intervals with the SET command:

SET AUTOTICK=OFF, VCLASS=nn, VTICK=nn

where:

AUTOTICK

Is the automatic scaling mechanism.

VCLASS

Is the parameter that controls the class interval on the vertical axis when AUTOTICK is
OFF. The default is 0.

nn

Is the new class interval for the vertical axis.

VTICK

Is the parameter that controls the tick interval when AUTOTICK is OFF. The default is 0.

nn

Is the new tick interval for the axis.

1064 Information Builders

Adjusting Graph Elements

Note:

When setting more than one parameter, separate them with commas.

To make the changes apparent on screen, SET SCREEN to PAPER.

The number of ticks per class is VCLASS/VTICK.

Highlighting Facilities

How to:

Add Horizontal or Vertical Grids

Add Summary Numbers in Pie and Bar Charts

Add Trend Lines on Scatter Plots

FOCUS contains the following facilities for highlighting the information shown on your graphs:

Grid lines can be added on one or both axes of connected point plots and scatter
diagrams, or the horizontal axis of histograms.

Trend lines are usually included on most scatter plots.

Summary numbers can be printed for each slice of a pie chart, or bar on a bar chart.

How to Add Horizontal or Vertical GridsSyntax:

Grids often make graphs easier to read. They are parallel lines drawn across the graph at
the vertical and/or horizontal class marks on the axes.

Horizontal grid lines are available on connected point plots, histograms, and scatter diagrams.
To add them at the vertical class marks on your graph, issue the following:

SET GRID=ON

Vertical grid lines are available only on high-resolution devices in requests for connected
point plots and scatter diagrams, and only when the values on both axes are numeric. To
add them at the horizontal class marks on the graph, issue the following:

SET VGRID=ON

To remove the lines, set the appropriate parameter OFF.

Creating Reports 1065

21. Creating Graphs: GRAPH

How to Add Summary Numbers in Pie and Bar ChartsSyntax:

To print a summary number at the end of each bar on a bar chart or in each slice of a pie
chart, set the parameter BARNUMB:

SET BARNUMB=ON

These summary numbers are not available on histograms.

How to Add Trend Lines on Scatter PlotsSyntax:

Trend lines are useful on scatter plots to give a focus to the sometimes confusing array of
plot points. The trend line represents the notion of the "best fit" calculated by Ordinary Least
Squares (OLS) regression analysis.

When two data fields are scattered across the same horizontal axis, each is given its own
trend line. On some terminals with two-color ribbons, the lines are differentiated by color.

The system always requests a value for the parameter GTREND, whenever a scatter diagram
is requested (the default value for GTREND is OFF). To request a trend line, set GTREND on:

SET GTREND=ON

Special Topics

In this section:

Plotting Dates

Handling Missing Data

Using Fixed-Axis Scales

Saving Formatted GRAPH Output

Creating Formatted Input for CA-TELLAGRAF

Using the FOCUS ICU Interface

The following topics have general applicability for many graph applications:

How does FOCUS handle dates in graphs?

How is missing data handled?

Is it possible to save formatted graphic output and display it later?

Is it possible to send graphs to a Personal Computer for display?

What is the nature of the interface between FOCUS and CA-TELLAGRAF?

1066 Information Builders

Special Topics

What is the nature of the interface between FOCUS and ICU (Interactive Chart Utility)?

These are described in the following sections.

Plotting Dates
Numerical fields containing dates are recognized by FOCUS through the formats in their
Master Files. Such fields are interpreted by FOCUS if you name them in ACROSS or BY
phrases in GRAPH requests. To review the various format types, see the Describing Data
manual.

When plotting dates, FOCUS handles them in the following manner:

If the date field named has a month format, it is plotted in ascending time order (even
though the file is not sorted in ascending date order). Hence, month/year values of
01/76, 03/76, 09/75 are plotted by month within year: 09/75, 01/76, 03/76.

Axis scaling is performed on the basis of days in the month and months in the year.
When the date format includes the day, the scale usually starts at the first day of the
month as the zero axis point.

You may wish to selectively combine groups of date point plots to reduce the number of
separate points on the horizontal axis. Do this with the IN-GROUPS-OF option. For example,
if the date field format is I6YMD, you can display the data by month rather than by day by
grouping it in 30-day increments:

ACROSS DATE IN-GROUPS-OF 30

This eliminates plot points for individual days. If your date format is in a legacy YMD format
you could also redefine the format and divide the field contents by 100 to eliminate the
days:

DATE/I4YM=DATE/100

Creating Reports 1067

21. Creating Graphs: GRAPH

The example that follows illustrates a graph with date plots. Run it as an offline request:

SET HISTOGRAM=OFF
SET AUTOTICK=OFF, VCLASS = 200, VTICK = 25
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END
GRAPH FILE SALES
HEADING
"</6 <22 SAMPLE OF THE"
"<24 GRAPH DATE FACILITIES"
SUM SALES AND UNIT_SOLD ACROSS DATE
END

1068 Information Builders

Special Topics

Handling Missing Data
You can handle missing data selectively in GRAPH requests. You can portray the missing
data as null values, or choose to ignore missing values and have the plot span the missing
points. This applies to requests containing both ACROSS and BY phrases, where the ACROSS
values are plotted across the horizontal axis.

Normally, missing values on the vertical axis are ignored (VZERO=OFF). If ON, the values
are treated as zero (0).

Instruct the system to ignore missing values through the SET options, GMISSING and
GMISSVAL, or you can set GPROMPT=ON, and select the processing of the missing values
when you execute your request. These SET operations can be done once for your entire
session, or may be done on an individual basis to refine a particular request. Keep in mind
that they remain in effect until you reset the parameters (see SET Parameters on page 1081).

Creating Reports 1069

21. Creating Graphs: GRAPH

The examples that follow illustrate the same request, but with different treatments of missing
values selected. Run them as offline requests:

SET GMISSING=ON, HIST=OFF
SET AUTOTICK=OFF, VCLASS=5, VTICK=1
GRAPH FILE SALES
HEADING
"</1 <22 SAMPLE OF"
"<24 THE GRAPH "
"<26 FACILITIES FOR"
"<28 MISSING DATA"
SUM RETURNS AND DAMAGED ACROSS PROD_CODE
END

In this example GMISSING is ON and GMISSVAL is 0, so the graph ignores zero values for
products C13 and C17.

1070 Information Builders

Special Topics

The graph below shows the effect of changing the GMISSING parameter to OFF.

SET GMISSING=OFF

REPLOT

The values for products C13 and C17 were shown as positive values with GMISSING ON.
With GMISSING=OFF, the zero values for products C13 and C17 are plotted on the graph.

Using Fixed-Axis Scales
When creating series of graphs it is often desirable to have the same horizontal and vertical
scales used for each graph in the group. This situation arises whenever your graph request
combines an ACROSS phrase with a BY phrase.

Creating Reports 1071

21. Creating Graphs: GRAPH

In such requests the ACROSS values are plotted across the horizontal axis, and a separate
graph is created for each value of the BY field. The default scales for the graphs vary
depending on the range of values for each verb object and BY field combination.

To apply the same scale to each graph, turn off the default scaling mechanisms, and define
your own minimum and maximum values for the axis thresholds. See The Horizontal Axis:
System Defaults on page 1060, and How to Set the Scale: Assigning Fixed Limits on page 1061.

Saving Formatted GRAPH Output

How to:

Display Stored Graphs

You can place the output from GRAPH commands into specially formatted SAVE files for
subsequent conversion into printed or displayed graphs. This capability, called deferred
output, is useful for developing graph requests on a device other than the one you use to
produce the final graph.

The facility described below is available for all ASCII graphics devices that FOCUS supports,
but is not available for the IBM 3279 color graphics terminal, which has a separate GDDM
facility for this purpose (see IBM Devices Using GDDM on page 1076). In addition, deferred
output cannot be generated from a CONSOLE.

The syntax for the FOCUS facility is:

GRAPH FILE ...
SUM ...
.
.
.
ON {GRAPH|TABLE} SAVE [AS savename] FORMAT GRAPH
ON {GRAPH|TABLE} SET parameter value [, parameter value...]
END

where:

ON GRAPH|ON TABLE

Denotes the command environment from which the request is entered. This syntax
suppresses display of the output and returns a message that the file has been saved.

SAVE|SET

Is the action taken.

AS savename

Is an optional parameter that allows you to assign a permanent file name as the target
for the formatted output. The default is FOCSAVE.

1072 Information Builders

Special Topics

parameter value

Is the system value you want to change or set. Any parameter discussed in the Developing
Applications manual can be set or changed here. The syntax is essentially the same as
ON TABLE SET, which is discussed in Chapter 4, Sorting Tabular Reports.

FORMAT GRAPH

Specifies that the output is to be formatted for whatever graphics device is specified in
the DEVICE parameter (see SET Parameters on page 1081), and saved in either the SAVE
file or a file you name in an AS phrase.

As an alternative, you can display a graph on the CONSOLE before creating a specially
formatted SAVE file. To use this facility, enter a GRAPH request to generate a display, as
shown below:

GRAPH FILE ...
SUM ...
 .
 .
 .
END

After viewing the graph, use the following syntax to save the graph for later output on another
device:

SAVE [AS savename] FORMAT GRAPH

How to Display Stored GraphsSyntax:

To display stored graphs, issue the appropriate form of the REPLOT command from the
output graphics DEVICE:

REPLOT [GRAPH|FROM] ddname

where:

REPLOT [GRAPH|FROM]

Is the function to be performed.

ddname

Is the SAVE file name. This must be provided even if the default FOCSAVE file was used.

Note:

You need not redefine the graphics device with another SET command. The device
specified through the DEVICE= parameter when the graph was saved still applies.

You can save the internal matrix produced for a request and issue a REPLOT later in the
session if SAVEMATRIX is set to ON (see the Developing Applications manual).

Creating Reports 1073

21. Creating Graphs: GRAPH

You can allocate the file yourself through the appropriate operating system procedure, or
you can let FOCUS allocate the SAVE file for you dynamically. If you allow FOCUS to allocate
the file, it allocates a temporary file that you must rename if you wish to keep it after you
log off.

The record layout of the graphics SAVE file is documented in Technical Memorandum #7704,
Description of Deferred Graphics Output (available through your Information Builders Branch
Office). You can process this file yourself if you have a deferred graph system that accepts
low-level terminal graphics commands.

Creating Formatted Input for CA-TELLAGRAF
The Interface to CA-TELLAGRAF is a separate optional interface product that you use to
create formatted FOCUS output files ready for processing by CA-TELLAGRAF, the publication-
quality graphics system produced by Computer Associates. With it, you can write FOCUS
GRAPH requests that generate files containing actual CA-TELLAGRAF commands and all of
the necessary data and control information for producing graphs.

The data may originate in any FOCUS file or any file that FOCUS can read (for example,
QSAM, VSAM, ISAM, IMS, CA-IDMS/DB, ADABAS, TOTAL, SQL, SYSTEM 2000, Model 204).

Directions for using the Interface can be found in the TELLAGRAF Interface Users Manual.

Using the FOCUS ICU Interface
The FOCUS ICU Interface is a separate optional interface product that you can use to generate
graphs in conjunction with IBM's Interactive Chart Utility.

ICU displays graphs and provides menu selections which allow you to change such factors
as graph type, size, and legend, and to send the graph to a printer.

The ICU Interface can place you directly in the ICU environment or can save the graph format
and data for subsequent ICU processing. When you leave ICU, control is returned to FOCUS.

All ICU graphics requests follow the standard FOCUS rules, and each of the default graphs
is represented by an ICU format file distributed with FOCUS.

To use the ICU Interface, issue the command:

SET DEVICE = ICU

Subsequent GRAPH requests use ICU to generate graphs.

Directions for using this interface can be found in the ICU Interface Users Manual.

1074 Information Builders

Special Topics

Special Graphics Devices

In this section:

Medium-Resolution Devices

High-Resolution Devices

Graphs created with the FOCUS graphics generator can be printed or displayed in three levels
of detail:

Low-resolution graphs are produced by high-speed line printers and non-graphics terminals.
Normally, this is adequate graphic information. While such graphs are not elegant, they
are easily produced and allow you to preview graphic scenarios and refine the shapes
and contents of your graphs. Subsequently, to create more "finished" versions you need
only choose a different device or save the formatted output in a file to print later when
a high-resolution device is available.

Medium-resolution graphs are produced on devices such as Diablo, Trendata, and
Anderson-Jacobson printers. These devices, which are driven by step motors, draw nearly
continuous line plots, but the quality is not adequate for presentations.

High-resolution graphic devices print continuous line plots, smooth curves, and create
presentation-quality graphs. This category includes both devices created specifically for
displaying graphics images (flat-bed and continuous line plotters, and color printers), as
well as color CRTs. FOCUS supports three types of high-resolution graphics devices:

Hewlett-Packard four- and eight-pen plotters.

IBM graphic CRTs and printers.

Tektronix CRTs.

Medium-Resolution Devices
These devices use step motors to drive platens back and forth across the pages, to draw
two series of spaced dots that simulate continuous lines. There are separate device symbols
for the most frequently used printers (see DEVICE in SET Parameters on page 1081), and a
generic device code, HIGHRES (or HIGHRS12 for 12 pitch), for use with many unlisted
printers.

Pie charts are not available on these devices.

When using this type of printer, set PAUSE=ON so that you can adjust the paper in the printer
before drawing the graph.

Creating Reports 1075

21. Creating Graphs: GRAPH

High-Resolution Devices

In this section:

IBM Devices Using GDDM

GDDM Default Conditions

GDDM Save and Print Facilities

Graphics Device Characteristics

Hewlett-Packard Plotters

Tektronix Color Terminals

This section describes the special considerations that apply when directing your FOCUS
graphs to high-resolution devices from IBM, Hewlett-Packard, and Tektronix.

IBM Devices Using GDDM

To produce graphs on IBM graphics printers or high-resolution graphics terminals, you must
have IBM's Graphical Data Display Manager (GDDM). GDDM provides various subroutines
for saving, printing, and copying graphic screen contents. FOCUS produces graphs on IBM
terminals or printers when you set DEVICE=IBM3279. See your IBM representative concerning
the proper configuration for your device controller and terminal.

GDDM Default Conditions

Whenever graphs are created using FOCUS and GDDM, the printed form of the graph (activated
by pressing the PF4 key) has a default size of 132 by 80 characters on 3284 or 3287
printers. These sizes are independent of the parameters that control the lengths of the axes.
As a default, each graph is presented with a frame (border). If you wish to omit the frame,
set FRAME=OFF.

GDDM Save and Print Facilities

GDDM includes facilities for saving generated graphs; press the PF1 key to save graphs in
an ADMSAVE file on your operating system. Thus saved, you can subsequently use the IBM
program ADMUSF2 (supplied with GDDM) to display the saved screens.

For special instructions covering the positioning of graphs on IBM 3284 or 3287 printers,
please refer to Technical Memorandum #7689, Plot Table Settings (available through your
Information Builders Branch Office).

1076 Information Builders

Special Graphics Devices

Graphics Device Characteristics

To draw vectors, use 7-color displays, or define your own special field patterns, you need a
3279 Model 2B, 3B, 3SG, or 3X with a 3274 terminal controller and C configuration support.
C supports structured field and attribute processing (SFAP) and the use of programmed
symbols (PS). The Model 3276 terminal controller does not use C.

3279 Models 2A and 3A have only Base Color, which automatically maps colors to preset
3270 field types:

Protected intensified becomes white.

Unprotected intensified becomes red.

Protected normal intensity fields become blue.

Unprotected normal intensity fields become green.

Thus, FIDEL is automatically color-coded with no programming changes, but only in Base
Color. Additional colors are available with the 3SG, 3X and the older B models.

Hewlett-Packard Plotters

The Hewlett-Packard 7220 series plotters translate FOCUS graph requests into 4- or 8-color
graphs, suitable for presentations. Color selections and assignments are made using the
standard Hewlett-Packard procedures. (Special pens are available from Hewlett-Packard for
plotting graphs on transparencies for overhead projection.) For plotters with optional text
facilities, FOCUS has special parameters for controlling:

Text positioning (column, line, and spacing).

Color pen selection (red, blue, green, black).

Letter sizes (two or four times the default size).

Special font selection (slanted text).

To activate Hewlett-Packard plotters, use the appropriate form of the SET TERM or DEVICE
(see SET Parameters on page 1081). FOCUS provides default lengths and scaling of axes, but
these and the other graphic elements can be changed by adjusting SET parameters discussed
in Adjusting Graph Elements on page 1058 and summarized in SET Parameters on page 1081.

Ordinarily, plotters are connected in line with a terminal and a modem. Thus, you can refine
your graph requests, viewing the output on the terminal, until you produce exactly what you
want and then set the DEVICE parameter to your plotter and issue the REPLOT command to
produce the hard copy.

Creating Reports 1077

21. Creating Graphs: GRAPH

Use the plotter controls to position graphs anywhere on sheets of paper up to 11 by 16.5
inches. Unless you change the default paper size, FOCUS prepares output for an 8.5 by 11
inch sheet placed lengthwise in the lower left-hand corner of the plotter. The other default
assignments are as follows:

HAXIS=130, VAXIS=66, GCOLOR=ON

Tektronix Color Terminals

Tektronix high-resolution CRTs can display the output from GRAPH requests, but only in black
and white. The sizes of the vertical and horizontal axes are set depending on the device
selected, and cannot be overridden. Select the appropriate device number from those listed
in SET Parameters on page 1081.

Command and SET Parameter Summary

In this section:

GRAPH Command

SET Parameters

The FOCUS GRAPH command plots data retrieved with request statements in the form of a
graph, with horizontal and vertical axes. Many of the elements used in TABLE requests are
used in exactly the same way in GRAPH requests.

The GRAPH environment also includes a set of parameters that control the look of the graph
and offer additional control at run time (for example, pause to adjust paper before printing,
select a device, etc.).

1078 Information Builders

Command and SET Parameter Summary

GRAPH Command

How to:

Enter the Environment

Specify Annotating Text

Name the Subject and Graph Type

Specify Display Fields

Specify Horizontal Sorting of Data Points

Specify Separate Graphs or Vertical Sorting of Plot Points

Save the Formatted Graph Data in a File

Complete the GRAPH Request

Concatenate Unlike Data Sources

In the syntax samples that follow, the elements are the same as those used in TABLE
requests. The complete set is shown here but the elements are described more fully in
Chapter 4, Sorting Tabular Reports.

How to Enter the EnvironmentSyntax:

To enter the GRAPH environment, enter the following:

GRAPH FILE filename

How to Specify Annotating TextSyntax:

Heading strings can contain any character except the double quotation mark ("), and can
also contain field references and formatting controls.

Heading: This syntax is used to specify graph headings:

[HEADING [CENTER]]
"string1"
["string2"]

Field reference format: This syntax is used to specify field reference format:

<[prefix.]fieldname[>]

Creating Reports 1079

21. Creating Graphs: GRAPH

Formatting controls: The following formatting controls may be specified as part of a graph
request:

Tab to column "n"<n
Tab "n" columns to the right<+n
Tab "n" columns to the left <-n
Return to column 1
 and advance "n" lines.</n
Name a color for a line <.color
Select special font
 [BIG, SLANT or BLOCK on HP7220]. .<.fontname
 ("BIG" doubles the character
 sizes, "BLOCK" quadruples them)
Reset controls to default settings <.CLEar

How to Name the Subject and Graph TypeSyntax:

The following syntax is used to specify the subject and graph type:

command object1 [[AND|OVER] object2...object5]

where:

command

Is one of the following: PRINT, WRITE, SUM, ADD or COUNT.

How to Specify Display FieldsSyntax:

Display fields can be any of the following:

[prefix.]fieldname [AS 'string'] [IN position]
COMPUTE name1 [/format1] = expression1;[AS 'string1']
COMPUTE name2 [/format2] = expression2;[AS 'string2']

How to Specify Horizontal Sorting of Data PointsSyntax:

The following syntax is used for horizontal sorting of data:

ACROSS fieldname [IN-GROUPS-OF n [TOP]][AS 'string']
ACROSS fieldname [IN position]

How to Specify Separate Graphs or Vertical Sorting of Plot PointsSyntax:

The following syntax is used:

BY fieldname [IN-GROUPS-OF n [TOP]][AS 'string']

1080 Information Builders

Command and SET Parameter Summary

How to Save the Formatted Graph Data in a FileSyntax:

The following syntax is used:

ON [GRAPH] SAVE [AS filename] FORMAT GRAPH

How to Complete the GRAPH RequestSyntax:

To complete a graph request, type the command END on a separate line:

END

If you do not wish to complete the graph request, use one of the following methods to abort
the request and return to FOCUS:

To quit in the middle of a graph request, type the command QUIT on a separate line:

QUIT

To terminate the display of a graph, type the command HT from the command line:

HT

How to Concatenate Unlike Data SourcesSyntax:

To concatenate unlike data sources in a single graph request, divide your request into one
main request that retrieves the first file, and a subrequest for each concatenated file. The
main request defines the data fields, sorting criteria, and output format for each file. The
MORE command concatenates each file after the first. The syntax is:

GRAPH FILE file1
main request
MORE
FILE file2
subrequest
 MORE
 .
 .
 .
END

Note: IF and WHERE selection tests apply only to the subrequest in which they appear.

SET Parameters
To set the parameters that control the GRAPH environment, use the appropriate variation
of the SET command. The syntax is as follows:

SET parameter=value,parameter=value...

Creating Reports 1081

21. Creating Graphs: GRAPH

For example:

SET HAXIS=75,VAXIS=40
SET GRID=OFF,BARSPACE=2,BARWIDTH=3

Note:

Repeat the command SET on each new line.

When entering more than one parameter on a line, separate them with commas.

You can use unique truncations of parameter names. Make sure, however, that they are
unique.

To review the current parameter settings, issue the command:

? SET GRAPH

which produces a listing of the values.

The table that follows lists all of the parameters in alphabetic sequence, showing the name,
range of values (default is underlined), and function of each.

Parameter FunctionRange of
Values

Parameter Name

When ON, FOCUS automatically sets the tick mark
intervals. (See also HTICK and VTICK.)

ON/OFFAUTOTICK

Places the summary values at the ends of the bars
on bar charts, or slices on pie charts.

ON/OFFBARNUMB

Specifies the number of lines separating the bars
on bar charts.

0-20BARSPACE

Specifies the number of lines per bar on bar
charts.

1-20BARWIDTH

Specifies that the bars on a bar chart are to be
stacked rather than placed side by side.

ON/OFFBSTACK

1082 Information Builders

Command and SET Parameter Summary

Parameter FunctionRange of
Values

Parameter Name

Specifies the plotting device or terminal to be
used. When the default is used, low-resolution
graphics are sent to your terminal or to the printer
if PRINT=OFFLINE (see the SET command in the
Developing Applications manual). Medium- and
high-resolution devices are selected by entering
one of the following parameter settings for the
DEVICE (or TERMINAL).

IBM3270DEVICE or
TERMINAL

Medium-resolution devices:

Specifies Anderson Jacobson - Model AJ830.AJ

Specifies Anderson Jacobson - Model AJ832 (12
Pitch).

AJ12

Specifies Diablo - Model 1620.DIABLO

Specifies Diablo - Model 1620 (12 Pitch).DIABLO12

Specifies Gencom.GS

Specifies Gencom (12 Pitch).GS12

Specifies generic device for most medium-
resolution graphic devices.

HIGHRES

Specifies generic device -see above (12 Pitch).HIGHRS12

Specifies Trendata - Model 4000A.TRENDATA

Specifies Trendata - Model 4000A (12 Pitch).TRENDT12

High-resolution devices from Hewlett-Packard:

Specifies HP Models 7229A and 7470A. Both are
4-pen plotters with no paper advance. Model 7470
requires a special Y cable (Part #17455).

HP7220

Specifies HP Model 7220S, 4-pen plotter with
paper advance.

HP7220S

Creating Reports 1083

21. Creating Graphs: GRAPH

Parameter FunctionRange of
Values

Parameter Name

Specifies HP Models 7220C and 7475A. Both are
8-pen plotters with no paper advance. Model 7475
requires a special Y cable (Part #17455).

HP7220C

Specifies HP Model 7220T, 8-pen plotter with
paper advance.

HP7220T

Specifies HP Model 7221, 4-pen plotter with no
paper advance.

HP7221

Specifies HP Model 7221S, 4-pen plotter with
paper advance.

HP7221S

Specifies HP Model 7221C, 8-pen plotter with no
paper advance.

HP7221C

Specifies HP Model 7221T, 8-pen plotter with
paper advance.

HP7221T

Note: The default horizontal and vertical axes for all Hewlett-Packard devices are as follows:

HAXIS=100, VAXIS=50.

Parameter FunctionRange of
Values

Parameter Name

High-resolution devices from IBM:

Specifies one of the following devices:

Any IBM 3270 series device that supports GDDM
graphics, such as the 3279-S3G, 3179, or 3472.
This includes PCs with fully compatible 3270 series
hardware and software.

Printers: Any IBM 3270 series printer that supports
GDDM graphics, such as the 3287-2C and the 4224.

IBM3279

1084 Information Builders

Command and SET Parameter Summary

Note: IBM's Graphical Data Display Manager (GDDM) is required for all of these devices.
Entering this value automatically sets the following GRAPH parameter values: HAXIS=80,
VAXIS=32, and GCOLOR=ON. For any monochrome device, you should set GCOLOR=OFF;
for any Model 2 device (24x80 screen), you should set VAXIS=-24.

Parameter FunctionRange
of
Values

Parameter Name

High-resolution devices from Tektronix:

Specifies one of the following models: 4010, 4050
series and 4100 series (B/W only). Automatically sets
HAXIS=74, VAXIS=35, and GCOLOR=OFF.

TEK4010

Specifies Model 4012. Automatically sets HAXIS=74,
VAXIS=35, and GCOLOR=OFF.

TEK4012

Specifies Model 4013. Automatically sets HAXIS=74,
VAXIS=35, and GCOLOR=OFF.

TEK4013

Specifies Model 4014. Automatically sets HAXIS=133,
VAXIS=64, and GCOLOR=OFF.

TEK4014

Specifies Model 4014E. Automatically sets HAXIS=133,
VAXIS=64, and GCOLOR=OFF.

TEK4014E

Specifies Model 4015. Automatically sets HAXIS=74,
VAXIS=35, and GCOLOR=OFF.

TEK4015

Specifies Model 4015E. Automatically sets HAXIS=74,
VAXIS=35, and GCOLOR=OFF.

TEK4015E

Specifies Model 4025. Automatically sets HAXIS=80,
VAXIS=32, and GCOLOR=OFF.

TEK4025

Specifies Model 4027. Automatically sets HAXIS=80,
VAXIS=32, and GCOLOR=ON.

TEK4027

Specifies Model 4662. Plot address is D. It is
recommended that you set GCOLOR=OFF, HAXIS=80,
VAXIS=32. If the Model 4662 is connected to a Model
4025, set DEVICE=TEK4025. If the Model 4662 is
connected to a Model 4027, set DEVICE=TEK4027.

TEK4662

Creating Reports 1085

21. Creating Graphs: GRAPH

Parameter FunctionRange of
Values

Parameter Name

For GDDM graphics, ON (the default) indicates
you want a frame around your graph. To omit
the Frame, set OFF.

ON/OFFFRAME

On medium- and high-resolution devices, setting
this parameter OFF causes different black and
white patterns to be substituted for colors. On
medium-resolution devices, setting it ON causes
alternation between black and red ribbons on
multiline plots. Note: 3287 printers use black,
red, blue, and green.

ON/OFFGCOLOR
(or GRIBBON)

If ON, specifies that variables with the value
specified in GMISSVAL are to be ignored.

ON/OFFGMISSING

Specifies the variable value that represents
missing data.

nnGMISSVAL

When ON, FOCUS prompts for all pertinent graph
parameters.

ON/OFFGPROMPT

See GCOLOR.GRIBBON

When ON, specifies that a grid of parallel
horizontal lines is to be drawn on the graph at
the vertical class marks (see also VGRID).

ON/OFFGRID

When ON, specifies that a trend line is to
appear on scatter diagrams.

ON/OFFGTREND

Specifies automatic scaling of the horizontal
axis unless overridden by the user. If OFF, user
must supply values for HMAX and HMIN.

ON/OFFHAUTO

Specifies the width in characters of the
horizontal axis. This parameter can be adjusted
for graphs generated OFFLINE. HAXIS is ignored
for ONLINE displays, since FOCUS automatically
adjusts the width of the graph to the width of
the terminal.

20-130HAXIS

1086 Information Builders

Command and SET Parameter Summary

Parameter FunctionRange of
Values

Parameter Name

Specifies the horizontal class interval when
AUTOTICK=OFF.

nnnHCLASS

When ON, FOCUS draws a histogram instead
of a curve when values on the horizontal axis
are not numeric.

ON/OFFHISTOGRAM

Specifies the maximum value on the horizontal
axis when automatic scaling is not used
(HAUTO=OFF).

nnnHMAX

Specifies the minimum value on the horizontal
axis when automatic scaling is not used
(HAUTO=OFF).

nnnHMIN

Specifies that the bars on a histogram are to
be stacked rather than placed side by side.

ON/OFFHSTACK

Specifies the horizontal axis tick mark interval,
when AUTOTICK is OFF.

nnnHTICK

Specifies whether there is a pause for paper
adjustment on the plotter after the request is
executed.

ON/OFFPAUSE

Specifies a pie chart is desired (only available
on high-resolution devices).

ON/OFFPIE

Specifies the width and height settings for a
graphic printer if DEVICE=IBM3279 or HIGHRES.
Hexadecimal values must be supplied. For
example:

SET PLOT=0050,0018

produces a printed plot 80 by 24 decimal
characters (50 hex = 80 decimal, 18 hex = 24
decimal).

When used, the PLOT parameter must be the
last parameter set.

PLOT

Creating Reports 1087

21. Creating Graphs: GRAPH

Parameter FunctionRange of
Values

Parameter Name

When OFFLINE is entered, the graph is printed
on the system high-speed printer.

ONLINE/OFFLINEPRINT

See DEVICE.TERM

Specifies automatic scaling of the vertical axis
unless overridden by the user. If OFF, the user
must supply values for VMAX and VMIN.

ON/OFFVAUTO

Page length in lines. This parameter can be
adjusted for graphs generated OFFLINE. VAXIS
is ignored for ONLINE displays, since FOCUS
automatically adjusts the height of the graph to
the height of the terminal.

20-66VAXIS

Specifies the vertical class interval when
AUTOTICK=OFF.

nnnVCLASS

When ON, specifies that a grid of parallel
vertical lines is to be drawn on the graph at the
horizontal class marks (see also GRID).

ON/OFFVGRID

Specifies the maximum value on the vertical
axis when automatic scaling is not used
(VAUTO=OFF).

nnnVMAX

Specifies the minimum value on the vertical
axis when automatic scaling is not used
(VAUTO=OFF).

nnnVMIN

Specifies the vertical axis tick mark interval,
when AUTOTICK is OFF.

nnnVTICK

With VZERO=OFF, missing values on the vertical
axis are ignored. If ON, the values are treated
as zero (0).

ON/OFFVZERO

1088 Information Builders

Command and SET Parameter Summary

FOCUS

Using SQL to Create Reports22
Topics:

SQL users can issue report requests that
combine SQL statements with TABLE
formatting phrases to take advantage of
a wide range of report preparation
options.

Supported and Unsupported SQL
Statements

Using SQL Translator Commands
These combined requests are supported
through the SQL Translator, which
converts ANSI Level 2 SQL statements
into executable FOCUS requests.

SQL Translator Support for Date, Time,
and Timestamp Fields

Index Optimized Retrieval
You can use the SQL Translator to
retrieve and analyze FOCUS and DBMS
data.

TABLEF Optimization

SQL INSERT, UPDATE, and DELETE
Commands

Creating Reports 1089

Supported and Unsupported SQL Statements

Reference:

Supported SQL Statements

Unsupported SQL Statements

SQL Translator Reserved Words

SQL Translation Services is compliant with ANSI Level 2. This facility supports many, but
not all, SQL statements. RDBMS engines may also support the alpha1 CONCAT alpha2
syntax. See Supported SQL Statements on page 1090 and Unsupported SQL Statements on
page 1092.

Note: Because the SQL Translator is ANSI Level 2 compliant, some requests that worked
in prior releases may no longer work.

Supported SQL StatementsReference:

SQL Translation Services supports the following:

SELECT, including SELECT ALL and SELECT DISTINCT.

CREATE TABLE. The following data types are supported for CREATE TABLE: REAL, DOUBLE
PRECISION, FLOAT, INTEGER, DECIMAL, CHARACTER, SMALLINT, DATE, TIME, and
TIMESTAMP.

INSERT, UPDATE, and DELETE for relational, IMS, and FOCUS data sources.

Equijoins and non-equijoins.

Outer joins, subject to certain restrictions. See SQL Joins on page 1096.

CREATE VIEW and DROP VIEW.

PREPARE and EXECUTE.

Delimited identifiers of table names and column names. Table and column names
containing embedded blanks or other special characters in the SELECT list should be
enclosed in double quotation marks.

Column names qualified by table names or by table tags.

The UNION [ALL], INTERSECT [ALL], and EXCEPT [ALL] operators.

Non-correlated subqueries for all requests in the WHERE predicate and in the FROM list.

1090 Information Builders

Supported and Unsupported SQL Statements

Correlated subqueries for requests that are candidates for Dialect Translation to an
RDBMS that supports this feature. Note that correlated subqueries are not supported
for FOCUS and other non-relational data sources.

Numeric constants, literals, and expressions in the SELECT list.

Scalar functions for queries that are candidates for Dialect Translation if the RDBMS
engine supports the scalar function type. These include: ABS, CHAR, CHAR_LENGTH,
CONCAT, COUNTBY, DATE, DAY, DAYS, DECIMAL, EDIT, EXTRACT, FLOAT, HOUR, IF, INT,
INTEGER, LCASE, LENGTH, LOG, LTRIM, MICROSECOND, MILLISECOND, MINUTE, MONTH,
POSITION, RTRIM, SECOND, SQRT, SUBSTR (or SUBSTRING), TIME, TIMESTAMP, TRIM,
VALUE, UCASE, and YEAR.

Note that the following functions are not supported by FOCUS for Mainframe: DIGITS,
HEX, VARGRAPHIC.

The concatenation operator, '||', used with literals or alphanumeric columns.

The following aggregate functions: COUNT, MIN, MAX, SUM, and AVG.

The following expressions can appear in conditions: CASE, NULLIF, and COALESCE.

Date, time, and timestamp literals of several different formats. See SQL Translator Support
for Date, Time, and Timestamp Fields on page 1104.

All requests that contain ANY, SOME, and ALL that do not contain =ALL, <>ANY, and
<>SOME.

=ALL, <>ANY, and <>SOME for requests that are candidates for Dialect Translation if
the RDBMS engine supports quantified subqueries.

The special registers USER, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_EDASQLVERSION, and CURRENT_TIMEZONE.

NULL and NOT NULL predicates.

LIKE and NOT LIKE predicates.

IN and NOT IN predicates.

Date and time arithmetic.

EXISTS and NOT EXISTS predicates.

GROUP BY clauses expressed using explicit column names.

ORDER BY clauses expressed using explicit column names or column numbers.

FOR FETCH ONLY feature to circumvent record locking.

Continental Decimal Notation (CDN) when the CDN variable is set.

Creating Reports 1091

22. Using SQL to Create Reports

National Language Support (NLS).

Unsupported SQL StatementsReference:

SQL Translation Services does not support the following:

More than 15 joins per SELECT. This limit is set by SQL; FOCUS supports up to 16 joins.

ALIAS names in Master Files and the use of formatting options to format output.

Unique truncations of column names.

Temporary defined columns. Permanent defined columns, defined in the Master File, are
supported.

Correlated subqueries for DML Generation.

=ALL, <>ANY, and <>SOME for DML Generation.

SQL Translator Reserved WordsReference:

The following words may not be used as field names in a Master File that is used with the
SQL Translator:

ALL

COUNT

SUM

MAX

MIN

AVG

CURRENT

DISTINCT

USER

1092 Information Builders

Supported and Unsupported SQL Statements

Using SQL Translator Commands

In this section:

The SQL SELECT Statement

SQL Joins

SQL CREATE TABLE and INSERT INTO Commands

SQL CREATE VIEW and DROP VIEW Commands

SQL PREPARE, EXECUTE, and COMMIT Commands

Cartesian Product Style Answer Sets

Continental Decimal Notation (CDN)

Specifying Field Names in SQL Requests

SQL UNION, INTERSECT, and EXCEPT Operators

Numeric Constants, Literals, Expressions, and Functions

How to:

Use SQL Translator Commands

Reference:

TABLE Formatting Phrases in SQL Requests

The SQL command may be used to report from any supported data source or set of data
sources. Standard TABLE phrases for formatting reports can be appended to the SQL
statements to take advantage of a wide range of report preparation options.

Note: If you need to join data sources for your request, you have two options: use the JOIN
command before you issue any SQL statements, or use the WHERE predicate in the SQL
SELECT statement to join the required files dynamically. See SQL Joins on page 1096.

How to Use SQL Translator CommandsSyntax:

SQL
sql statement;
[ECHO|FILE]
[TABLE phrases]
END

where:

SQL

Is the SQL command identifier, which invokes the SQL Translator.

Creating Reports 1093

22. Using SQL to Create Reports

Note: The SQL command components must appear in the order represented above.

sql statement

Is a supported SQL statement. The statement must be terminated by a semicolon; it
can continue for more than one line. See Supported SQL Statements on page 1090.

Within the SQL statement, field names are limited to 48 characters (an ANSI standard
Level 2 limitation); view names generated through the SQL CREATE VIEW statement are
limited to 18 characters; subqueries can be nested up to 15 levels deep. Correlated
subqueries are not supported by FOCUS and other non-relational data sources.

ECHO

Are optional debugging phrases that capture the generated TABLE request. These options
are placed after the SQL statement.

FILE [name]

Writes the translated TABLE phrases to the named procedure. If you do not supply a file
name, a default name is assigned when the request runs; the file is then deleted.

TABLE phrases

Are optional TABLE formatting phrases. See TABLE Formatting Phrases in SQL Requests
on page 1094.

END or QUIT

Is required to terminate the procedure.

Using SQL Translator CommandsExample:

The following request contains an SQL statement and TABLE formatting commands:

SQL
SELECT BODYTYPE, AVG(MPG), SUM(SALES)
FROM CAR
WHERE RETAIL_COST > 5000
GROUP BY BODYTYPE;
TABLE HEADING CENTER
"AVERAGE MPG AND TOTAL SALES PER BODYTYPE"
END

TABLE Formatting Phrases in SQL RequestsReference:

You can include TABLE formatting phrases in an SQL request, subject to the following rules:

Use TABLE formatting phrases with SELECT and UNION only.

Introduce the formatting phrases with the word TABLE.

1094 Information Builders

Using SQL Translator Commands

You may specify headings and footings, describe actions with an ON phrase, or use the
ON TABLE SET command. Additionally, you can use ON TABLE HOLD or ON TABLE PCHOLD
to create an extract file. You can also specify READLIMIT and RECORDLIMIT tests.

For details on ON TABLE HOLD or ON TABLE PCHOLD, see Saving and Reusing Your Report
Output on page 421.

You cannot specify additional display fields, ACROSS fields, WHERE or IF criteria (other
than READLIMIT or RECORDLIMIT tests), or calculated values; BY phrases are ignored.

The SQL SELECT Statement
The SQL SELECT statement translates into one or more TABLE PRINT or TABLE SUM
commands, depending on whether individual field display or aggregation is applied in the
request. See Displaying Report Data on page 45.

The SQL statement SELECT * translates to a PRINT of every field in the Master File, and
uses all of the fields of the Cartesian product. This is a quick way to display a file, provided
it fits in a reasonable number of screens for display, or provided you use ON TABLE HOLD
or ON TABLE PCHOLD to retain retrieved data in a file for reuse. See Saving and Reusing
Your Report Output on page 421.

SQL functions (such as COUNT, SUM, MAX, MIN, AVG) are supported in SELECT lists and
HAVING conditions. Expressions may be used as function arguments.

The function COUNT (*) translates to a count of the number of records produced by printing
all fields in the Master File. This is the same as counting all rows in the Cartesian product
that results from a SELECT on all fields.

Whenever possible, expressions in the SQL WHERE predicate are translated into
corresponding WHERE criteria in the TABLE request. Expressions in SELECT lists generate
virtual fields. The SQL HAVING clauses also translate into corresponding WHERE TOTAL
criteria in the TABLE request. The SQL LIKE operator is translated directly into the
corresponding LIKE operator in the WHERE criteria of the TABLE request. For details on
record selection in TABLE requests, see Selecting Records for Your Report on page 157.

Only subqueries based on equality, when the WHERE expression is compared to a subquery
by using an equal (=) sign, are supported. For example: WHERE field = (SELECT ...).

The SQL UNION operator translates to a TABLE request that creates a HOLD file for each
data source specified, followed by a MATCH command with option HOLD OLD-OR-NEW, which
combines records from both the first (old) data source and the second (new) data source.
See Merging Data Sources on page 877.

For related information, see Supported SQL Statements on page 1090 and How to Use SQL
Translator Commands on page 1093.

Creating Reports 1095

22. Using SQL to Create Reports

SQL Joins

How to:

Create an Inner Join

Create an Outer Join

Reference:

Join Name Assignments From the SQL Translator

SQL Join Considerations

When performing SQL joins, the formats of the joined fields must be the same. Join fields
need not be indexed, and non-equijoins are supported.

Recursive, outer, and inner joins are supported. Inner join is the default.

How to Create an Inner JoinSyntax:

Two syntax variations are supported for inner joins.

Variation 1

SQL
SELECT fieldlist FROM file1 [alias1], file2 [alias2]
[WHERE where_condition];
END

Variation 2

SQL
SELECT fieldlist FROM file1 [alias1] INNER JOIN file2 [alias2]
ON join_condition [INNER JOIN ...]
[WHERE where_condition];
END

where:

fieldlist

Identifies which fields are retrieved from which data sources.

Joined fields in the SQL WHERE predicate must be qualified if the names are not unique;
specify them with their corresponding file names or file aliases. For example:

{file1|alias1}.field1, {file2|alias2}.field2

FROM

Introduces the data sources to be joined.

1096 Information Builders

Using SQL Translator Commands

file1, file2

Are the data sources to be joined.

alias1, alias2

Are optional alternate names for the data sources to be joined.

where_condition

Is an optional selection condition for the joined answer set. Joined rows that do not
satisfy this condition are eliminated from the returned answer set. If omitted in Variation
1, the answer set is the Cartesian product of the two data sources.

join_condition

Is the join condition.

How to Create an Outer JoinSyntax:

SQL
SELECT fieldlist FROM file1 {LEFT|RIGHT} JOIN file2
ON join_condition [{LEFT|RIGHT} JOIN ...]
WHERE where_condition
END

where:

fieldlist

Identifies which fields are to be retrieved from which data sources.

Joined fields in the SQL WHERE predicate must be qualified if the names are not unique;
specify them with their corresponding file names or file aliases. For example:

{file1|alias1}.field1, {file2|alias2}.field2

FROM

Introduces the data sources to be joined.

file1, file2

Are the data sources to be joined.

alias1, alias2

Are optional alternate names for the data sources to be joined.

join_condition

Is the join condition. The condition must specify equality; for example, T1.A=T2.B.

where_condition

Is an optional selection condition for the joined answer set. Joined rows that do not
satisfy this condition are eliminated from the returned answer set.

Creating Reports 1097

22. Using SQL to Create Reports

Join Name Assignments From the SQL TranslatorReference:

Joins issued by the SQL Translator are assigned names in the format:

SQLJNMnn

where:

SQLJNM

Is the SQL Translator join prefix.

nn

Is a number between 01 and 16 assigned in the order in which the joins are created
(FOCUS supports a maximum of 16 joins). The first join has the AS name SQLJNM01,
the second join is named SQLJNM02, and so on, up to SQLJNM16.

All joins are automatically created and cleared by the SQL Translator. No user-specified joins
are affected.

Using Qualified Field Names in SQL JoinsExample:

In the following statement, T.A and U.B are qualified field names:

SQL
 SELECT T.A, T.B
 FROM T, U
 WHERE T.A = U.B;
END

Using Recursive SQL JoinsExample:

In the following statement, A and B are aliases for the same data source, CAR. The output
from CAR is pairs of B values that have the same A values:

SQL
 SELECT A.SEATS, B.SEATS
 FROM CAR A, CAR B
 WHERE A.MODEL = B.MODEL;
END

Note that all field names in the SELECT clause must be unique or qualified.

SQL Join ConsiderationsReference:

In standard SQL, WHERE field='a' selects records where the field has the value 'a' or
'A'. The SQL Translator is case-sensitive, and returns the exact value requested (in this
case, 'a' only).

1098 Information Builders

Using SQL Translator Commands

The SQL comparison operators ANY, SOME, and ALL are supported, with the exception
of =ALL, <>ANY, and <>SOME.

Sub-selects are not supported in HAVING conditions.

In a multi-segment structure, parent segments are omitted from reports if no instances
of their descendant segments exist. This is an inner join.

The SQL Translator applies optimization techniques when constructing joins. See Index
Optimized Retrieval on page 1109.

SQL CREATE TABLE and INSERT INTO Commands

Reference:

Usage Notes for CREATE TABLE and INSERT INTO Commands

SQL Translator supports the commands CREATE TABLE and INSERT INTO table:

CREATE TABLE creates a new data source table. It only generates single-segment Master
Files.

INSERT INTO inserts a row or block of rows into a table or view. Single-record insert with
actual data values is supported.

These commands enable you to create tables to enhance reporting efficiency.

Note: When applications are enabled, the Master File and data source are written to the
APPHOLD directory. When applications are disabled, the Master File and data source are
written to the TEMP directory.

Usage Notes for CREATE TABLE and INSERT INTO CommandsReference:

According to normal SQL data definition syntax, each CREATE TABLE or INSERT INTO
statement must terminate with a semicolon.

The CREATE TABLE command supports the INTEGER, SMALLINT, FLOAT, CHARACTER,
DATE, TIME, TIMESTAMP, DECIMAL, DOUBLE PRECISION and REAL data types. Decimals
are rounded in the DOUBLE PRECISION and REAL data types.

When using the CREATE TABLE and INSERT INTO commands, the data type FLOAT should
be declared with a precision and used in an INSERT INTO command without the 'E'
designation. This requires the entire value to be specified without an exponent.

The CHECK and DEFAULT options are not supported with the CREATE TABLE command.

Creating Reports 1099

22. Using SQL to Create Reports

Creating a Table With Single-Record InsertExample:

The following shows a single-record insert, creating the table U with one record:

-* Single-record insert example.
-*
SQL
CREATE TABLE U (A INT, B CHAR(6), C CHAR(6), X INT, Y INT);
END
SQL
INSERT INTO U (A,B,C,X,Y) VALUES (10, '123456','654321', 10, 15);
END

Inserting Values Expressed With an ExponentExample:

To insert the values 100.00E01 and 200.00E01, specify:

SQL
CREATE TABLE T (A FLOAT(6), B CHAR(4))
END
SQL
INSERT INTO T (A,B) VALUES (1000.00,'1234');
END
SQL
INSERT INTO T (A,B) VALUES (2000.00,'4321');
END

SQL CREATE VIEW and DROP VIEW Commands

How to:

Create a View

A view is a transient object that inherits most of the characteristics of a table. Like a table,
it is composed of rows and columns:

CREATE VIEW creates views. Note that it does not put the view in the system catalog.

DROP VIEW explicitly removes transient tables and views from the environment.

Tip: To use a view, issue a SELECT from it. You cannot issue a TABLE request against the
view because the view is not extracted as a physical FOCUS data source. To create a HOLD
file for extracted data, specify ON TABLE HOLD after the SQL statements. For details on
creating HOLD files, see Saving and Reusing Your Report Output on page 421.

1100 Information Builders

Using SQL Translator Commands

How to Create a ViewSyntax:

The SQL Translator supports the following SQL statement:

CREATE VIEW viewname AS subquery ;

where:

viewname

Is the name of the view.

subquery

Is a SELECT statement that nests inside: a WHERE, HAVING, or SELECT clause of another
SELECT; an UPDATE, DELETE, or INSERT statement; another subquery.

Creating and Reporting From an SQL ViewExample:

The following example creates a view named XYZ:

SQL
CREATE VIEW XYZ
 AS SELECT CAR, MODEL
 FROM CAR;
END

To report from the view, issue:

SQL
 SELECT CAR, MODEL
 FROM XYZ;
END

According to normal SQL data definition syntax, each CREATE VIEW statement must terminate
with a semicolon.

Dropping an SQL ViewExample:

The following request removes the XYZ view:

SQL
 DROP VIEW XYZ;
END

SQL PREPARE, EXECUTE, and COMMIT Commands
The SQL PREPARE statement creates a machine language form of an SQL statement and
associates it with an identifier; you can then execute the SQL statement by referring to this
identifier.

Creating Reports 1101

22. Using SQL to Create Reports

The COMMIT statement makes updates or inserts permanent, and clears all PREPARE
statements.

Executing an SQL SELECT Statement Using an IdentifierExample:

The following example executes an SQL SELECT statement by referencing the identifier
PREP_QUERY:

SQL
 PREPARE PREP_QUERY FROM
 SELECT COUNTRY
 FROM CAR
 WHERE LENGTH > ? AND COUNTRY = ?;
END
SQL
 EXECUTE PREP_QUERY USING 165, 'ITALY';
END
SQL
 EXECUTE PREP_QUERY USING 190, 'ENGLAND';
END
SQL
 EXECUTE PREP_QUERY USING 182, 'FRANCE';
END
SQL
 COMMIT;
END

In the statement, each question mark (?) indicates where to substitute a value. Provide the
necessary values in the USING clause of the EXECUTE statement in the order of the question
marks in the original statement.

Cartesian Product Style Answer Sets
The SQL Translator automatically generates Cartesian product style answer sets unless you
explicitly turn this feature off. However, it is advisable to leave the CARTESIAN setting on,
since turning it off does not comply with ANSI standards. For details on the SET CARTESIAN
command, see Merging Data Sources on page 877.

Continental Decimal Notation (CDN)
Continental Decimal Notation displays numbers using a comma to mark the decimal position
and periods for separating significant digits into groups of three. This notation is available
for SQL Translator requests.

1102 Information Builders

Using SQL Translator Commands

Using CDN to Separate DigitsExample:

The following example creates a column defined as 1.2 + SEATS:

SET CDN=ON
SQL
 SELECT SEATS + 1,2
 FROM CAR;
END

Specifying Field Names in SQL Requests
Specify fields in an SQL request using:

Delimited identifiers. A field name may contain (but not begin with) the symbols ., #,
@, _, and $. You must enclose such field names in double quotation marks when referring
to them.

Qualified field names. Qualify a field name with file and file alias names. File alias
names are described in the discussion of joins in SQL Joins on page 1096. See the Describing
Data With WebFOCUS Languagemanual for more information.

Field names with embedded blanks and special characters. A SELECT list can
specify field names with embedded blanks or other special characters; you must enclose
such field names in double quotation marks. Special characters are any characters not
listed as delimited identifiers, and not contained in the national character set of the
installed FOCUS environment.

Specifying a Field Name With a Delimited IdentifierExample:

The following field identifier can be included in a request:

"COUNTRY.NAME"

Qualifying a Delimited Field NameExample:

To qualify the delimited field name COUNTRY.NAME with its file name, use:

CAR."COUNTRY.NAME"

SQL UNION, INTERSECT, and EXCEPT Operators
The SQL UNION, INTERSECT, and EXCEPT operators generate MATCH logic. The number of
files that can participate is determined by the MATCH limit. UNION with parentheses is
supported.

SELECT A UNION SELECT B retrieves rows in A or B or both. (This is equivalent to the
MATCH phrase OLD-OR-NEW.)

Creating Reports 1103

22. Using SQL to Create Reports

INTERSECT retrieves rows in both A and B. (This is equivalent to the MATCH phrase
OLD-AND-NEW.)

EXCEPT retrieves rows in A, but not B. (This is equivalent to the MATCH phrase
OLD-NOT-NEW.)

Match logic merges the contents of your data sources. See Merging Data Sources on page
877.

Numeric Constants, Literals, Expressions, and Functions
The SQL SELECT list, WHERE predicate, and HAVING clause can include numeric constants,
literals enclosed in single quotation marks, expressions, and any scalar functions. Internally,
a virtual field is created for each of these in the SELECT list; the value of the virtual field is
provided in the answer set.

SQL Translator Support for Date, Time, and Timestamp Fields

In this section:

Extracting Date-Time Components Using the SQL Translator

Reference:

SQL Translator Support for Date, Time, and Timestamp Fields

Several new data types have been defined for the SQL Translator to support date-time fields
in the WHERE predicate or field list of a SELECT statement.

In addition, time or timestamp columns can be defined in relational or FOCUS data sources,
and are accessible to the translator. Values can be entered using INSERT and UPDATE
statements, and displayed in SELECT statements.

Time or timestamp data items (columns or literals) can be compared in conditions. Time
values or timestamp values can be added to or subtracted from each other, with the result
being the number of seconds difference. Expressions of the form T + 2 HOURS or TS + 5
YEARS are allowed. These expressions are translated to calls to the date-time functions
described in the Using Functions manual.

All date formats for actual and virtual fields in the Master File are converted to the form
YYYYMMDD. If you specify a format that lacks any component, the SQL Translator supplies
a default value for the missing component. To specify a portion of a date, such as the month,
use a virtual field with an alphanumeric format.

1104 Information Builders

SQL Translator Support for Date, Time, and Timestamp Fields

SQL Translator Support for Date, Time, and Timestamp FieldsReference:

In the following chart, fff represents the second to three decimal places (milliseconds) and
ffffff represents the second to six decimal places (microseconds).

The following formats are allowed as input to the Translator:

Date ComponentsUSAGE Attribute in
Master File

Format

YYYY-MM-DDYYMDDate

HHHHHour

HH.MMHHIHour through minute

HH.MM.SSHHISHour through second

HH.MM.SS.fffHHISsHour through millisecond

HH.MM.SS.ffffffHHISsmHour through microsecond

YYYY-MM-DD HHHYYMDHYear through hour

YYYY-MM-DD HH.MMHYYMDIYear through minute

YYYY-MM-DD HH.MM.SSHYYMDSYear through second

YYYY-MM-DD HH.MM.SS.fffHYYMDsYear through millisecond

YYYY-MM-DD
HH.MM.SS.ffffff

HYYMDmYear through microsecond

Note:

Time information may be given to the hour, minute, second, or fraction of a second.

The separator within date information may be either a hyphen or a slash.

The separator within time information must be a colon.

The separator between date and time information must be a space.

Creating Reports 1105

22. Using SQL to Create Reports

Extracting Date-Time Components Using the SQL Translator

How to:

Use Date, Time, and Timestamp Functions Accepted by the SQL Translator

Use the SQL Translator EXTRACT Function to Extract Date-Time Components

The SQL Translator supports several functions that return components from date-time values.
Use the EXTRACT statement to extract components.

Use the TRIM function to remove leading and/or trailing patterns from date, time, and
timestamp values. See the Using Functions manual.

How to Use Date, Time, and Timestamp Functions Accepted by the SQL TranslatorSyntax:

The following functions return date-time components as integer values. Assume x is a date-
time value:

Return ValueFunction

yearYEAR(x)

month numberMONTH(x)

day numberDAY(x)

hourHOUR(x)

minuteMINUTE(x)

secondSECOND(x)

millisecondMILLISECOND(x)

microsecondMICROSECOND(x)

1106 Information Builders

SQL Translator Support for Date, Time, and Timestamp Fields

Using SQL Translator Date, Time, and Timestamp FunctionsExample:

Using the timestamp column TS whose value is '1999-11-23 07:32:16.123456':

YEAR(TS) = 1999
MONTH(TS) = 11
DAY(TS) = 23
HOUR(TS) = 7
MINUTE(TS) = 32
SECOND(TS) = 16
MILLISECOND(TS) = 123
MICROSECOND(TS) = 123456

Using SQL Translator Date, Time, and Timestamp Functions in a SELECT StatementExample:

Assume that a FOCUS data source called VIDEOTR2 includes a date-time field named
TRANSDATE.

SQL
SELECT TRANSDATE,
YEAR(TRANSDATE), MONTH(TRANSDATE),
MINUTE(TRANSDATE)
FROM VIDEOTR2;
FILE VIDSQL END

The SQL Translator produces the following virtual fields for functions, followed by a TABLE
request to display the output:

-SET &SQLVARFN=&FOCFIELDNAME ;
SET FIELDNAME=NOTRUNC
SET COUNTWIDTH=ON
JOIN CLEAR SQLJNM*
END

DEFINE FILE VIDEOTR2
SQLDEF01/I5 = HPART(TRANSDATE,'YEAR','I5'); SQLDEF02/I5 = INT(SQLDEF01);
SQLDEF03/I3 = HPART(TRANSDATE,'MONTH','I3'); SQLDEF04/I3 = INT(SQLDEF03);
SQLDEF05/I3 = HPART(TRANSDATE,'MINUTE','I3'); END

TABLEF FILE VIDEOTR2
PRINT TRANSDATE SQLDEF02 SQLDEF04 SQLDEF05
ON TABLE SET CARTESIAN ON
ON TABLE SET ASNAMES ON
ON TABLE SET HOLDLIST PRINTONLY
END

Creating Reports 1107

22. Using SQL to Create Reports

The output is:

TRANSDATE SQLDEF02 SQLDEF04 SQLDEF05
1999/06/20 04:14 1999 6 14
1991/06/27 02:45 1991 6 45
1996/06/21 01:16 1996 6 16
1991/06/21 07:11 1991 6 11
1991/06/20 05:15 1991 6 15
1999/06/26 12:34 1999 6 34
1919/06/26 05:45 1919 6 45
1991/06/21 01:10 1991 6 10
1991/06/19 07:18 1991 6 18
1991/06/19 04:11 1991 6 11
1998/10/03 02:41 1998 10 41
1991/06/25 01:19 1991 6 19
1986/02/05 03:30 1986 2 30
1991/06/24 04:43 1991 6 43
1991/06/24 02:08 1991 6 8
1999/10/06 02:51 1999 10 51
1991/06/25 01:17 1991 6 17

How to Use the SQL Translator EXTRACT Function to Extract Date-Time ComponentsSyntax:

Use the following ANSI standard function to extract date-time components as integer values:

EXTRACT(component FROM value)

where:

component

Is one of the following: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND,
or MICROSECOND.

value

Is a date-time, DATE, TIME, or TIMESTAMP field, constant or expression.

For example, the following are equivalent:

EXTRACT(YEAR FROM TS)
YEAR(TS)

Using the EXTRACT FunctionExample:

SELECT D. EXTRACT(YEAR FROM D), EXTRACT(MONTH FROM D),
EXTRACT(DAY FROM D) FROM T

This request produces rows similar to the following:

1999-01-01 1999 1 1
2000-03-03 2000 3 3

1108 Information Builders

SQL Translator Support for Date, Time, and Timestamp Fields

Index Optimized Retrieval

In this section:

Optimized Joins

The SQL Translator improves query performance by generating optimized code that enables
the underlying retrieval engine to access the selected records directly, without scanning all
segment instances.

Optimized Joins
The SQL Translator accepts joins in SQL syntax. SQL language joins have no implied direction;
the concepts of host and cross-referenced files do not exist in SQL.

The SQL Translator analyzes each join to identify efficient implementation. First, it assigns
costs to the candidate joins in the query:

Cost = 1 for an equijoin to a field that can participate as a cross-referenced field according
to FOCUS join rules. This is common in queries against relational tables with equijoin
predicates in the WHERE clause.

Cost = 16 for an equijoin to a field that cannot participate as a cross-referenced field
according to FOCUS join rules.

Cost = 256 for a non-equijoin or an unrestricted Cartesian product.

The Translator then uses these costs to build a join structure for the query. The order of the
tables in the FROM clause of the query influences the first two phases of the join analysis:

1. If there are cost=1 joins from the first table referenced in the FROM clause to the second,
from the second table to the third, and so on, the Translator joins the tables in the order
specified in the query. If not, it goes on to Phase 2.

2. If Phase 1 fails to generate an acceptable join structure, the Translator attempts to
generate a join structure without joining any table to a table that precedes it in the FROM
clause. Therefore, this phase always makes the first table referenced in the query the
host table. If there is no cost=1 join between two tables, or if using one requires changing
the table order, the Translator abandons Phase 2 and implements Phase 3.

3. The Translator generates the join structure from the lowest-cost joins first, and then from
the more expensive joins as necessary. This sorting process may change the order in
which tables are joined. The efficiency of the join that this procedure generates depends
on the relative sizes of the tables being joined.

Creating Reports 1109

22. Using SQL to Create Reports

If the analysis results in joining to a table that cannot participate as a cross-referenced file
according to FOCUS rules (because it lacks an index, for example), the Translator generates
code to build an indexed HOLD file, and implements the join with this file. However, the
HOLD file does not participate in the analysis of join order.

TABLEF Optimization

How to:

Improve Performance Using SQLTOPTTF

To improve performance, the SQL Translator can be set to generate FOCUS TABLEF commands
instead of TABLE commands. Take advantage of this optimization using the SET SQLTOPTTF
command (SQL Translator OPTimization TableF). See Improving Report Processing on page
903.

How to Improve Performance Using SQLTOPTTFSyntax:

SET SQLTOPTTF = {ON|OFF}

where:

ON

Causes TABLEF commands to be generated when possible (for example, if there is no
join or GROUP BY phrase). ON is the default value.

OFF

Causes TABLE commands to be generated.

1110 Information Builders

TABLEF Optimization

SQL INSERT, UPDATE, and DELETE Commands
The SQL INSERT, UPDATE, and DELETE commands enable SQL users to manipulate and
modify data:

The INSERT statement introduces new rows into an existing table.

The DELETE statement removes a row or combination of rows from a table.

The UPDATE statement enables users to update a row or group of rows in a table.

You can issue an SQL INSERT, UPDATE, or DELETE command against one segment instance
(row) at a time. When you issue one of these commands against a multi-segment Master
File:

All fields referenced in the command must be on a single path through the file structure.

The command must explicitly specify (in the WHERE predicate) every key value from the
root to the target segment instance, and this combination of key values must uniquely
identify one segment instance (row) to be affected by the command.

If you are modifying every field in the row, you can omit the list of field names from the
command.

The SQL Translator does not support subqueries, such as:

INSERT...INTO...SELECT...FROM...

Although each INSERT, UPDATE, or DELETE command can specify only one row, referential
integrity constraints may produce the following modifications to the data source:

If you delete a segment instance that has descendant segment instances (children), the
children are automatically deleted.

If you insert a segment for which parent segments are missing, the parent segments are
automatically created.

Creating Reports 1111

22. Using SQL to Create Reports

1112 Information Builders

SQL INSERT, UPDATE, and DELETE Commands

FOCUS

Master Files and DiagramsA
This appendix contains descriptions and structure diagrams for the sample data sources used throughout
the documentation.

Topics:
TRAINING Data Source

Creating Sample Data Sources COURSE Data Source

EMPLOYEE Data Source JOBHIST Data Source

JOBFILE Data Source JOBLIST Data Source

EDUCFILE Data Source LOCATOR Data Source

SALES Data Source PERSINFO Data Source

PROD Data Source SALHIST Data Source

CAR Data Source PAYHIST File

LEDGER Data Source COMASTER File

FINANCE Data Source VIDEOTRK, MOVIES, and ITEMS Data Sources

REGION Data Source VIDEOTR2 Data Source

COURSES Data Source Gotham Grinds Data Sources

EMPDATA Data Source Century Corp Data Sources

EXPERSON Data Source

Creating Reports 1113

Creating Sample Data Sources
Create sample data sources on your user ID by executing the procedures specified below.
These FOCEXECs are supplied with FOCUS. If they are not available to you or if they produce
error messages, contact your systems administrator.

To create these files, first make sure you have read access to the Master Files.

Load Procedure NameData Source

Under CMS, enter:

EX EMPTEST

Under MVS, enter:

EX EMPTSO

These FOCEXECs also test the data sources by generating
sample reports. If you are using Hot Screen, remember to
press either Enter or the PF3 key after each report. If the
EMPLOYEE, EDUCFILE, and JOBFILE data sources already
exist on your user ID, the FOCEXEC replaces them with new
copies. This FOCEXEC assumes that the high-level qualifier
for the FOCUS data sources is the same as the high-level
qualifier for the MASTER PDS that was unloaded from the
tape.

EMPLOYEE, EDUCFILE,
and JOBFILE

EX SALES

EX PROD

SALES

PROD

None (created automatically during installation).CAR

EX LEDGER

EX FINANCE

EX REGION

EX COURSES

EX EXPERSON

LEDGER

FINANCE

REGION

COURSES

EXPERSON

1114 Information Builders

Creating Sample Data Sources

Load Procedure NameData Source

EX LOADPERSEMPDATA

TRAINING

COURSE

JOBHIST

JOBLIST

LOCATOR

PERSINFO

SALHIST

None (PAYHIST DATA is a sequential data source and is
allocated during the installation process).

PAYHIST

None (COMASTER is used for debugging other Master Files).COMASTER

EX LOADVTRKVIDEOTRK and MOVIES

EX LOADVID2VIDEOTR2

EX DBLGGGotham Grinds

EX LOADCOM

EX LOADFIN

EX LOADHR

EX LOADINV

EX LOADORD

EX LOADCQA

EX LDCENTGL

EX LDCENTSY

EX LDSTMT

Century Corp:

CENTCOMP

CENTFIN

CENTHR

CENTINV

CENTORD

CENTQA

CENTGL

CENTSYSF

CENTSTMT

Creating Reports 1115

A. Master Files and Diagrams

EMPLOYEE Data Source

In this section:

EMPLOYEE Master File

EMPLOYEE Structure Diagram

EMPLOYEE contains sample data about company employees. Its segments are:

EMPINFO

Contains employee IDs, names, and positions.

FUNDTRAN

Specifies employee direct deposit accounts. This segment is unique.

PAYINFO

Contains the employee salary history.

ADDRESS

Contains employee home and bank addresses.

SALINFO

Contains data on employee monthly pay.

DEDUCT

Contains data on monthly pay deductions.

EMPLOYEE also contains cross-referenced segments belonging to the JOBFILE and EDUCFILE
files, also described in this appendix. The segments are:

JOBSEG (from JOBFILE)

Describes the job positions held by each employee.

SKILLSEG (from JOBFILE)

Lists the skills required by each position.

1116 Information Builders

EMPLOYEE Data Source

SECSEG (from JOBFILE)

Specifies the security clearance needed for each job position.

ATTNDSEG (from EDUCFILE)

Lists the dates that employees attended in-house courses.

COURSEG (from EDUCFILE)

Lists the courses that the employees attended.

Creating Reports 1117

A. Master Files and Diagrams

EMPLOYEE Master File
FILENAME=EMPLOYEE, SUFFIX=FOC
 SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
 FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $
 FIELDNAME=CURR_SAL, ALIAS=CSAL, FORMAT=D12.2M, $
 FIELDNAME=CURR_JOBCODE, ALIAS=CJC, FORMAT=A3, $
 FIELDNAME=ED_HRS, ALIAS=OJT, FORMAT=F6.2, $
 SEGNAME=FUNDTRAN, SEGTYPE=U, PARENT=EMPINFO
 FIELDNAME=BANK_NAME, ALIAS=BN, FORMAT=A20, $
 FIELDNAME=BANK_CODE, ALIAS=BC, FORMAT=I6S, $
 FIELDNAME=BANK_ACCT, ALIAS=BA, FORMAT=I9S, $
 FIELDNAME=EFFECT_DATE, ALIAS=EDATE, FORMAT=I6YMD, $
 SEGNAME=PAYINFO, SEGTYPE=SH1, PARENT=EMPINFO
 FIELDNAME=DAT_INC, ALIAS=DI, FORMAT=I6YMD, $
 FIELDNAME=PCT_INC, ALIAS=PI, FORMAT=F6.2, $
 FIELDNAME=SALARY, ALIAS=SAL, FORMAT=D12.2M, $
 FIELDNAME=JOBCODE, ALIAS=JBC, FORMAT=A3, $
 SEGNAME=ADDRESS, SEGTYPE=S1, PARENT=EMPINFO
 FIELDNAME=TYPE, ALIAS=AT, FORMAT=A4, $
 FIELDNAME=ADDRESS_LN1, ALIAS=LN1, FORMAT=A20, $
 FIELDNAME=ADDRESS_LN2, ALIAS=LN2, FORMAT=A20, $
 FIELDNAME=ADDRESS_LN3, ALIAS=LN3, FORMAT=A20, $
 FIELDNAME=ACCTNUMBER, ALIAS=ANO, FORMAT=I9L, $
 SEGNAME=SALINFO, SEGTYPE=SH1, PARENT=EMPINFO
 FIELDNAME=PAY_DATE, ALIAS=PD, FORMAT=I6YMD, $
 FIELDNAME=GROSS, ALIAS=MO_PAY, FORMAT=D12.2M, $
 SEGNAME=DEDUCT, SEGTYPE=S1, PARENT=SALINFO
 FIELDNAME=DED_CODE, ALIAS=DC, FORMAT=A4, $
 FIELDNAME=DED_AMT, ALIAS=DA, FORMAT=D12.2M, $
 SEGNAME=JOBSEG, SEGTYPE=KU, PARENT=PAYINFO, CRFILE=JOBFILE,
 CRKEY=JOBCODE,$
 SEGNAME=SECSEG, SEGTYPE=KLU, PARENT=JOBSEG, CRFILE=JOBFILE, $
 SEGNAME=SKILLSEG, SEGTYPE=KL, PARENT=JOBSEG, CRFILE=JOBFILE, $
 SEGNAME=ATTNDSEG, SEGTYPE=KM, PARENT=EMPINFO, CRFILE=EDUCFILE,
 CRKEY=EMP_ID,$
 SEGNAME=COURSEG, SEGTYPE=KLU, PARENT=ATTNDSEG, CRFILE=EDUCFILE,$

1118 Information Builders

EMPLOYEE Data Source

EMPLOYEE Structure Diagram
The EMPLOYEE structure follows:

Creating Reports 1119

A. Master Files and Diagrams

JOBFILE Data Source

In this section:

JOBFILE Master File

JOBFILE Structure Diagram

JOBFILE contains sample data about company job positions. Its segments are:

JOBSEG

Describes what each position is. The field JOBCODE in this segment is indexed.

SKILLSEG

Lists the skills required by each position.

SECSEG

Specifies the security clearance needed, if any. This segment is unique.

JOBFILE Master File
FILENAME=JOBFILE, SUFFIX=FOC
 SEGNAME=JOBSEG, SEGTYPE=S1
 FIELDNAME=JOBCODE, ALIAS=JC, FORMAT=A3, INDEX=I,$
 FIELDNAME=JOB_DESC, ALIAS=JD, FORMAT=A25 ,$
 SEGNAME=SKILLSEG, SEGTYPE=S1, PARENT=JOBSEG
 FIELDNAME=SKILLS, ALIAS=, FORMAT=A4 ,$
 FIELDNAME=SKILL_DESC, ALIAS=SD, FORMAT=A30 ,$
 SEGNAME=SECSEG, SEGTYPE=U, PARENT=JOBSEG
 FIELDNAME=SEC_CLEAR, ALIAS=SC, FORMAT=A6 ,$

1120 Information Builders

JOBFILE Data Source

JOBFILE Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE JOBFILE ON 05/15/03 AT 14.40.06

 JOBSEG
 01 S1

 *JOBCODE **I
 *JOB_DESC **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SECSEG I SKILLSEG
 02 I U 03 I S1
 ************** *************
 *SEC_CLEAR * *SKILLS **
 * * *SKILL_DESC **
 * * * **
 * * * **
 * * * **
 ************** **************

EDUCFILE Data Source

In this section:

EDUCFILE Master File

EDUCFILE Structure Diagram

EDUCFILE contains sample data about company in-house courses. Its segments are:

COURSEG

Contains data on each course.

ATTNDSEG

Specifies which employees attended the courses. Both fields in the segment are key
fields. The field EMP_ID in this segment is indexed.

Creating Reports 1121

A. Master Files and Diagrams

EDUCFILE Master File
FILENAME=EDUCFILE, SUFFIX=FOC
 SEGNAME=COURSEG, SEGTYPE=S1
 FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, $
 FIELDNAME=COURSE_NAME, ALIAS=CD, FORMAT=A30, $
 SEGNAME=ATTNDSEG, SEGTYPE=SH2, PARENT=COURSEG
 FIELDNAME=DATE_ATTEND, ALIAS=DA, FORMAT=I6YMD, $
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, INDEX=I, $

EDUCFILE Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE EDUCFILE ON 05/15/03 AT 14.45.44

 COURSEG
 01 S1

 *COURSE_CODE **
 *COURSE_NAME **
 * **
 * **
 * **

 I
 I
 I
 I ATTNDSEG
 02 I SH2

 *DATE_ATTEND **
 *EMP_ID **I
 * **
 * **
 * **

1122 Information Builders

EDUCFILE Data Source

SALES Data Source

In this section:

SALES Master File

SALES Structure Diagram

SALES contains sample data about a dairy company with an affiliated store chain. Its
segments are:

STOR_SEG

Lists the stores buying the products.

DAT_SEG

Contains the dates of inventory.

PRODUCT

Contains sales data for each product on each date. The PROD_CODE field is indexed.
The RETURNS and DAMAGED fields have the MISSING=ON attribute.

SALES Master File
FILENAME=KSALES, SUFFIX=FOC
 SEGNAME=STOR_SEG, SEGTYPE=S1
 FIELDNAME=STORE_CODE, ALIAS=SNO, FORMAT=A3, $
 FIELDNAME=CITY, ALIAS=CTY, FORMAT=A15, $
 FIELDNAME=AREA, ALIAS=LOC, FORMAT=A1, $
 SEGNAME=DATE_SEG, PARENT=STOR_SEG, SEGTYPE=SH1,
 FIELDNAME=DATE, ALIAS=DTE, FORMAT=A4MD, $
 SEGNAME=PRODUCT, PARENT=DATE_SEG, SEGTYPE=S1,
 FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I,$
 FIELDNAME=UNIT_SOLD, ALIAS=SOLD, FORMAT=I5, $
 FIELDNAME=RETAIL_PRICE,ALIAS=RP, FORMAT=D5.2M,$
 FIELDNAME=DELIVER_AMT, ALIAS=SHIP, FORMAT=I5, $
 FIELDNAME=OPENING_AMT, ALIAS=INV, FORMAT=I5, $
 FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I3, MISSING=ON,$
 FIELDNAME=DAMAGED, ALIAS=BAD, FORMAT=I3, MISSING=ON,$

Creating Reports 1123

A. Master Files and Diagrams

SALES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE SALES ON 05/15/03 AT 14.50.28

 STOR_SEG
 01 S1

 *STORE_CODE **
 *CITY **
 *AREA **
 * **
 * **

 I
 I
 I
 I DATE_SEG
 02 I SH1

 *DATE **
 * **
 * **
 * **
 * **

 I
 I
 I
 I PRODUCT
 03 I S1

 *PROD_CODE **I
 *UNIT_SOLD **
 *RETAIL_PRICE**
 *DELIVER_AMT **
 * **

1124 Information Builders

SALES Data Source

PROD Data Source

In this section:

PROD Master File

PROD Structure Diagram

The PROD data source lists products sold by a dairy company. It consists of one segment,
PRODUCT. The field PROD_CODE is indexed.

PROD Master File
FILE=KPROD, SUFFIX=FOC
 SEGMENT=PRODUCT, SEGTYPE=S1,
 FIELDNAME=PROD_CODE, ALIAS=PCODE, FORMAT=A3, FIELDTYPE=I, $
 FIELDNAME=PROD_NAME, ALIAS=ITEM, FORMAT=A15, $
 FIELDNAME=PACKAGE, ALIAS=SIZE, FORMAT=A12, $
 FIELDNAME=UNIT_COST, ALIAS=COST, FORMAT=D5.2M, $

PROD Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE PROD ON 05/15/03 AT 14.57.38
 PRODUCT
01 S1

*PROD_CODE **I
*PROD_NAME **
*PACKAGE **
*UNIT_COST **
* **

Creating Reports 1125

A. Master Files and Diagrams

CAR Data Source

In this section:

CAR Master File

CAR Structure Diagram

CAR contains sample data about specifications and sales information for rare cars. Its
segments are:

ORIGIN

Lists the country that manufactures the car. The field COUNTRY is indexed.

COMP

Contains the car name.

CARREC

Contains the car model.

BODY

Lists the body type, seats, dealer and retail costs, and units sold.

SPECS

Lists car specifications. This segment is unique.

WARANT

Lists the type of warranty.

EQUIP

Lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

1126 Information Builders

CAR Data Source

CAR Master File
FILENAME=CAR,SUFFIX=FOC
 SEGNAME=ORIGIN,SEGTYPE=S1
 FIELDNAME=COUNTRY,COUNTRY,A10,FIELDTYPE=I,$
 SEGNAME=COMP,SEGTYPE=S1,PARENT=ORIGIN
 FIELDNAME=CAR,CARS,A16,$
 SEGNAME=CARREC,SEGTYPE=S1,PARENT=COMP
 FIELDNAME=MODEL,MODEL,A24,$
 SEGNAME=BODY,SEGTYPE=S1,PARENT=CARREC
 FIELDNAME=BODYTYPE,TYPE,A12,$
 FIELDNAME=SEATS,SEAT,I3,$
 FIELDNAME=DEALER_COST,DCOST,D7,$
 FIELDNAME=RETAIL_COST,RCOST,D7,$
 FIELDNAME=SALES,UNITS,I6,$
 SEGNAME=SPECS,SEGTYPE=U,PARENT=BODY
 FIELDNAME=LENGTH,LEN,D5,$
 FIELDNAME=WIDTH,WIDTH,D5,$
 FIELDNAME=HEIGHT,HEIGHT,D5,$
 FIELDNAME=WEIGHT,WEIGHT,D6,$
 FIELDNAME=WHEELBASE,BASE,D6.1,$
 FIELDNAME=FUEL_CAP,FUEL,D6.1,$
 FIELDNAME=BHP,POWER,D6,$
 FIELDNAME=RPM,RPM,I5,$
 FIELDNAME=MPG,MILES,D6,$
 FIELDNAME=ACCEL,SECONDS,D6,$
 SEGNAME=WARANT,SEGTYPE=S1,PARENT=COMP
 FIELDNAME=WARRANTY,WARR,A40,$
 SEGNAME=EQUIP,SEGTYPE=S1,PARENT=COMP
 FIELDNAME=STANDARD,EQUIP,A40,$

Creating Reports 1127

A. Master Files and Diagrams

CAR Structure Diagram

1128 Information Builders

CAR Data Source

LEDGER Data Source

In this section:

LEDGER Master File

LEDGER Structure Diagram

LEDGER contains sample accounting data. It consists of one segment, TOP. This data source
is specified primarily for FML examples. Aliases do not exist for the fields in this Master
File, and the commas act as placeholders.

LEDGER Master File
FILENAME=LEDGER, SUFFIX=FOC,$
 SEGNAME=TOP, SEGTYPE=S2,$
 FIELDNAME=YEAR , , FORMAT=A4, $
 FIELDNAME=ACCOUNT, , FORMAT=A4, $
 FIELDNAME=AMOUNT , , FORMAT=I5C,$

LEDGER Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE LEDGER ON 05/15/03 AT 15.17.08

 TOP
 01 S2

 *YEAR **
 *ACCOUNT **
 *AMOUNT **
 * **
 * **

Creating Reports 1129

A. Master Files and Diagrams

FINANCE Data Source

In this section:

FINANCE Master File

FINANCE Structure Diagram

FINANCE contains sample financial data for balance sheets. It consists of one segment,
TOP. This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

FINANCE Master File
FILENAME=FINANCE, SUFFIX=FOC,$
 SEGNAME=TOP, SEGTYPE=S2,$
 FIELDNAME=YEAR , , FORMAT=A4, $
 FIELDNAME=ACCOUNT, , FORMAT=A4, $
 FIELDNAME=AMOUNT , , FORMAT=D12C,$

FINANCE Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE FINANCE ON 05/15/03 AT 15.17.08

 TOP
 01 S2

 *YEAR **
 *ACCOUNT **
 *AMOUNT **
 * **
 * **

1130 Information Builders

FINANCE Data Source

REGION Data Source

In this section:

REGION Master File

REGION Structure Diagram

REGION contains sample account data for the eastern and western regions of the country.
It consists of one segment, TOP. This data source is specified primarily for FML examples.
Aliases do not exist for the fields in this Master File, and the commas act as placeholders.

REGION Master File
FILENAME=REGION, SUFFIX=FOC,$
 SEGNAME=TOP, SEGTYPE=S1,$
 FIELDNAME=ACCOUNT, , FORMAT=A4, $
 FIELDNAME=E_ACTUAL, , FORMAT=I5C,$
 FIELDNAME=E_BUDGET, , FORMAT=I5C,$
 FIELDNAME=W_ACTUAL, , FORMAT=I5C,$
 FIELDNAME=W_BUDGET, , FORMAT=I5C,$

REGION Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE REGION ON 05/15/03 AT 15.18.48

 TOP
 01 S1

 *ACCOUNT **
 *E_ACTUAL **
 *E_BUDGET **
 *W_ACTUAL **
 * **

Creating Reports 1131

A. Master Files and Diagrams

COURSES Data Source

In this section:

COURSES Master File

COURSES Structure Diagram

COURSES contains sample data about education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

COURSES Master File
FILENAME=COURSES, SUFFIX=FOC,$
 SEGNAME=CRSESEG1, SEGTYPE=S1, $
 FIELDNAME=COURSE_CODE, ALIAS=CC, FORMAT=A6, FIELDTYPE=I, $
 FIELDNAME=COURSE_NAME, ALIAS=CN, FORMAT=A30, $
 FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=I3, $
 FIELDNAME=DESCRIPTION, ALIAS=CDESC, FORMAT=TX50, $

COURSES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE COURSES ON 05/15/03 AT 12.26.05

 CRSESEG1
 01 S1

*COURSE_CODE **I
*COURSE_NAME **
*DURATION **
*DESCRIPTION **T
* **

1132 Information Builders

COURSES Data Source

EMPDATA Data Source

In this section:

EMPDATA Master File

EMPDATA Structure Diagram

EMPDATA contains sample data about company employees. It consists of one segment,
EMPDATA. The PIN field is indexed. The AREA field is a temporary field.

EMPDATA Master File
FILENAME=EMPDATA, SUFFIX=FOC
 SEGNAME=EMPDATA, SEGTYPE=S1
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=MIDINITIAL, ALIAS=MI, FORMAT=A1, $
 FIELDNAME=DIV, ALIAS=CDIV, FORMAT=A4, $
 FIELDNAME=DEPT, ALIAS=CDEPT, FORMAT=A20, $
 FIELDNAME=JOBCLASS, ALIAS=CJCLAS, FORMAT=A8, $
 FIELDNAME=TITLE, ALIAS=CFUNC, FORMAT=A20, $
 FIELDNAME=SALARY, ALIAS=CSAL, FORMAT=D12.2M, $
 FIELDNAME=HIREDATE, ALIAS=HDAT, FORMAT=YMD, $
$
DEFINE AREA/A13=DECODE DIV (NE 'NORTH EASTERN' SE 'SOUTH EASTERN'
CE 'CENTRAL' WE 'WESTERN' CORP 'CORPORATE' ELSE 'INVALID AREA');$

EMPDATA Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE EMPDATA ON 05/15/03 AT 14.49.09

 EMPDATA
 01 S1

 *PIN **I
 *LASTNAME **
 *FIRSTNAME **
 *MIDINITIAL **
 * **

Creating Reports 1133

A. Master Files and Diagrams

EXPERSON Data Source

In this section:

EXPERSON Master File

EXPERSON Structure Diagram

The EXPERSON data source contains personal data about individual employees. It consists
of one segment, ONESEG.

EXPERSON Master File
FILE=EXPERSON ,SUFFIX=FOC
 SEGMENT=ONESEG, $
 FIELDNAME=SOC_SEC_NO ,ALIAS=SSN ,USAGE=A9 ,$
 FIELDNAME=FIRST_NAME ,ALIAS=FN ,USAGE=A9 ,$
 FIELDNAME=LAST_NAME ,ALIAS=LN ,USAGE=A10 ,$
 FIELDNAME=AGE ,ALIAS=YEARS ,USAGE=I2 ,$
 FIELDNAME=SEX ,ALIAS= ,USAGE=A1 ,$
 FIELDNAME=MARITAL_STAT ,ALIAS=MS ,USAGE=A1 ,$
 FIELDNAME=NO_DEP ,ALIAS=NDP ,USAGE=I3 ,$
 FIELDNAME=DEGREE ,ALIAS= ,USAGE=A3 ,$
 FIELDNAME=NO_CARS ,ALIAS=CARS ,USAGE=I3 ,$
 FIELDNAME=ADDRESS ,ALIAS= ,USAGE=A14 ,$
 FIELDNAME=CITY ,ALIAS= ,USAGE=A10 ,$
 FIELDNAME=WAGE ,ALIAS=PAY ,USAGE=D10.2SM ,$
 FIELDNAME=CATEGORY ,ALIAS=STATUS ,USAGE=A1 ,$
 FIELDNAME=SKILL_CODE ,ALIAS=SKILLS ,USAGE=A5 ,$
 FIELDNAME=DEPT_CODE ,ALIAS=WHERE ,USAGE=A4 ,$
 FIELDNAME=TEL_EXT ,ALIAS=EXT ,USAGE=I4 ,$
 FIELDNAME=DATE_EMP ,ALIAS=BASE_DATE ,USAGE=I6YMTD ,$
 FIELDNAME=MULTIPLIER ,ALIAS=RATIO ,USAGE=D5.3 ,$

1134 Information Builders

EXPERSON Data Source

EXPERSON Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE EXPERSON ON 05/15/03 AT 14.50.58

 ONESEG
 01 S1

 *SOC_SEC_NO **
 *FIRST_NAME **
 *LAST_NAME **
 *AGE **
 * **

TRAINING Data Source

In this section:

TRAINING Master File

TRAINING Structure Diagram

TRAINING contains sample data about training courses for employees. It consists of one
segment, TRAINING. The PIN field is indexed. The EXPENSES, GRADE, and LOCATION fields
have the MISSING=ON attribute.

TRAINING Master File
FILENAME=TRAINING, SUFFIX=FOC
 SEGNAME=TRAINING, SEGTYPE=SH3
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=COURSESTART, ALIAS=CSTART, FORMAT=YMD, $
 FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, $
 FIELDNAME=EXPENSES, ALIAS=COST, FORMAT=D8.2, MISSING=ON $
 FIELDNAME=GRADE, ALIAS=GRA, FORMAT=A2, MISSING=ON, $
 FIELDNAME=LOCATION, ALIAS=LOC, FORMAT=A6, MISSING=ON, $

Creating Reports 1135

A. Master Files and Diagrams

TRAINING Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE TRAINING ON 05/15/03 AT 14.51.28

 TRAINING
 01 SH3

 *PIN **I
 *COURSESTART **
 *COURSECODE **
 *EXPENSES **
 * **

COURSE Data Source

In this section:

COURSE Master File

COURSE Structure Diagram

COURSE contains sample data about education courses. It consists of one segment,
CRSELIST.

COURSE Master File
FILENAME=COURSE, SUFFIX=FOC
 SEGNAME=CRSELIST, SEGTYPE=S1
 FIELDNAME=COURSECODE, ALIAS=CCOD, FORMAT=A7, INDEX=I, $
 FIELDNAME=CTITLE, ALIAS=COURSE, FORMAT=A35, $
 FIELDNAME=SOURCE, ALIAS=ORG, FORMAT=A35, $
 FIELDNAME=CLASSIF, ALIAS=CLASS, FORMAT=A10, $
 FIELDNAME=TUITION, ALIAS=FEE, FORMAT=D8.2, MISSING=ON, $
 FIELDNAME=DURATION, ALIAS=DAYS, FORMAT=A3, MISSING=ON, $
 FIELDNAME=DESCRIPTN1, ALIAS=DESC1, FORMAT=A40, $
 FIELDNAME=DESCRIPTN2, ALIAS=DESC2, FORMAT=A40, $
 FIELDNAME=DESCRIPTN2, ALIAS=DESC3, FORMAT=A40, $

1136 Information Builders

COURSE Data Source

COURSE Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE COURSE ON 05/15/03 AT 12.26.05

 CRSELIST
 01 S1

*COURSECODE **I
*CTITLE **
*SOURCE **
*CLASSIF **
* **

JOBHIST Data Source

In this section:

JOBHIST Master File

JOBHIST Structure Diagram

JOBHIST contains information about employee jobs. Both the PIN and JOBSTART fields are
keys. The PIN field is indexed.

JOBHIST Master File
FILENAME=JOBHIST, SUFFIX=FOC
SEGNAME=JOBHIST, SEGTYPE=SH2
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I ,$
 FIELDNAME=JOBSTART, ALIAS=SDAT, FORMAT=YMD, $
 FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, $
 FIELDNAME=FUNCTITLE, ALIAS=FUNC, FORMAT=A20, $

Creating Reports 1137

A. Master Files and Diagrams

JOBHIST Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE JOBHIST ON 01/22/08 AT 16.23.46
 JOBHIST
 01 SH2

 *PIN **I
 *JOBSTART **
 *JOBCLASS **
 *FUNCTITLE **
 * **

JOBLIST Data Source

In this section:

JOBLIST Master File

JOBLIST Structure Diagram

JOBLIST contains information about jobs. The JOBCLASS field is indexed.

JOBLIST Master File
FILENAME=JOBLIST, SUFFIX=FOC
SEGNAME=JOBSEG, SEGTYPE=S1
 FIELDNAME=JOBCLASS, ALIAS=JCLASS, FORMAT=A8, INDEX=I ,$
 FIELDNAME=CATEGORY, ALIAS=JGROUP, FORMAT=A25, $
 FIELDNAME=JOBDESC, ALIAS=JDESC, FORMAT=A40, $
 FIELDNAME=LOWSAL, ALIAS=LSAL, FORMAT=D12.2M, $
 FIELDNAME=HIGHSAL, ALIAS=HSAL, FORMAT=D12.2M, $
DEFINE GRADE/A2=EDIT (JCLASS,'$$$99');$
DEFINE LEVEL/A25=DECODE GRADE (08 'GRADE 8' 09 'GRADE 9' 10
'GRADE 10' 11 'GRADE 11' 12 'GRADE 12' 13 'GRADE 13' 14 'GRADE 14');$

1138 Information Builders

JOBLIST Data Source

JOBLIST Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE JOBLIST ON 01/22/08 AT 16.24.52
 JOBSEG
 01 S1

 *JOBCLASS **I
 *CATEGORY **
 *JOBDESC **
 *LOWSAL **
 * **

LOCATOR Data Source

In this section:

LOCATOR Master File

LOCATOR Structure Diagram

JOBHIST contains information about employee location and phone number. The PIN field is
indexed.

LOCATOR Master File
FILENAME=LOCATOR, SUFFIX=FOC
SEGNAME=LOCATOR, SEGTYPE=S1,
 FIELDNAME=PIN, ALIAS=ID_NO, FORMAT=A9, INDEX=I, $
 FIELDNAME=SITE, ALIAS=SITE, FORMAT=A25, $
 FIELDNAME=FLOOR, ALIAS=FL, FORMAT=A3, $
 FIELDNAME=ZONE, ALIAS=ZONE, FORMAT=A2, $
 FIELDNAME=BUS_PHONE, ALIAS=BTEL, FORMAT=A5, $

Creating Reports 1139

A. Master Files and Diagrams

LOCATOR Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE LOCATOR ON 01/22/08 AT 16.26.55
 LOCATOR
 01 S1

 *PIN **I
 *SITE **
 *FLOOR **
 *ZONE **
 * **

PERSINFO Data Source

In this section:

PERSINFO Master File

PERSINFO Structure Diagram

PERSINFO contains employee personal information. The PIN field is indexed.

PERSINFO Master File
FILENAME=PERSINFO, SUFFIX=FOC
SEGNAME=PERSONAL, SEGTYPE=S1
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=INCAREOF, ALIAS=ICO, FORMAT=A35, $
 FIELDNAME=STREETNO, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=APT, ALIAS=APT, FORMAT=A4, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=POSTALCODE, ALIAS=ZIP, FORMAT=A10, $
 FIELDNAME=COUNTRY, ALIAS=CTRY, FORMAT=A15, $
 FIELDNAME=HOMEPHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=EMERGENCYNO, ALIAS=ENO, FORMAT=A10, $
 FIELDNAME=EMERGCONTACT, ALIAS=ENAME, FORMAT=A35, $
 FIELDNAME=RELATIONSHIP, ALIAS=REL, FORMAT=A8, $
 FIELDNAME=BIRTHDATE, ALIAS=BDAT, FORMAT=YMD, $

1140 Information Builders

PERSINFO Data Source

PERSINFO Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE PERSINFO ON 01/22/08 AT 16.27.24
 PERSONAL
 01 S1

 *PIN **I
 *INCAREOF **
 *STREETNO **
 *APT **
 * **

SALHIST Data Source

In this section:

SALHIST Master File

SALHIST Structure Diagram

SALHIST contains information about employee salary history. The PIN field is indexed. Both
the PIN and EFFECTDATE fields are keys.

SALHIST Master File
FILENAME=SALHIST, SUFFIX=FOC
SEGNAME=SLHISTRY, SEGTYPE=SH2
 FIELDNAME=PIN, ALIAS=ID, FORMAT=A9, INDEX=I, $
 FIELDNAME=EFFECTDATE, ALIAS=EDAT, FORMAT=YMD, $
 FIELDNAME=OLDSALARY, ALIAS=OSAL, FORMAT=D12.2, $

SALHIST Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE SALHIST ON 01/22/08 AT 16.28.02
 SLHISTRY
 01 SH2

 *PIN **I
 *EFFECTDATE **
 *OLDSALARY **
 * **
 * **

Creating Reports 1141

A. Master Files and Diagrams

PAYHIST File

In this section:

PAYHIST Master File

PAYHIST Structure Diagram

The PAYHIST data source contains the employees' salary history. It consists of one segment,
PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format sequential file.

PAYHIST Master File
FILENAME=PAYHIST, SUFFIX=FIX
 SEGMENT=PAYSEG,$
 FIELDNAME=SOC_SEC_NO, ALIAS=SSN, USAGE=A9, ACTUAL=A9, $
 FIELDNAME=DATE_OF_IN, ALIAS=INCDATE, USAGE=I6YMTD, ACTUAL=A6, $
 FIELDNAME=AMT_OF_INC, ALIAS=RAISE, USAGE=D6.2, ACTUAL=A10,$
 FIELDNAME=PCT_INC, ALIAS=, USAGE=D6.2, ACTUAL=A6, $
 FIELDNAME=NEW_SAL, ALIAS=CURR_SAL, USAGE=D10.2, ACTUAL=A11,$
 FIELDNAME=FILL, ALIAS=, USAGE=A38, ACTUAL=A38,$

PAYHIST Structure Diagram
SECTION 01
 STRUCTURE OF FIX FILE PAYHIST ON 05/15/03 AT 14.51.59

 PAYSEG
 01 S1

 *SOC_SEC_NO **
 *DATE_OF_IN **
 *AMT_OF_INC **
 *PCT_INC **
 * **

1142 Information Builders

PAYHIST File

COMASTER File

In this section:

COMASTER Master File

COMASTER Structure Diagram

The COMASTER file is used to display the file structure and contents of each segment in a
data source. Since COMASTER is used for debugging other Master Files, a corresponding
FOCEXEC does not exist for the COMASTER file. Its segments are:

FILEID, which lists file information.

RECID, which lists segment information.

FIELDID, which lists field information.

DEFREC, which lists a description record.

PASSREC, which lists read/write access.

CRSEG, which lists cross-reference information for segments.

ACCSEG, which lists DBA information.

Creating Reports 1143

A. Master Files and Diagrams

COMASTER Master File
SUFFIX=COM,SEGNAME=FILEID
 FIELDNAME=FILENAME ,FILE ,A8 , ,$
 FIELDNAME=FILE SUFFIX ,SUFFIX ,A8 , ,$
 FIELDNAME=FDEFCENT ,FDFC ,A4 , ,$
 FIELDNAME=FYRTHRESH ,FYRT ,A2 , ,$
SEGNAME=RECID
 FIELDNAME=SEGNAME ,SEGMENT ,A8 , ,$
 FIELDNAME=SEGTYPE ,SEGTYPE ,A4 , ,$
 FIELDNAME=SEGSIZE ,SEGSIZE ,I4 , A4,$
 FIELDNAME=PARENT ,PARENT ,A8 , ,$
 FIELDNAME=CRKEY ,VKEY ,A66, ,$
SEGNAME=FIELDID
 FIELDNAME=FIELDNAME ,FIELD ,A66, ,$
 FIELDNAME=ALIAS ,SYNONYM ,A66, ,$
 FIELDNAME=FORMAT ,USAGE ,A8 , ,$
 FIELDNAME=ACTUAL ,ACTUAL ,A8 , ,$
 FIELDNAME=AUTHORITY ,AUTHCODE ,A8 , ,$
 FIELDNAME=FIELDTYPE ,INDEX ,A8 , ,$
 FIELDNAME=TITLE ,TITLE ,A64, ,$
 FIELDNAME=HELPMESSAGE ,MESSAGE ,A256, ,$
 FIELDNAME=MISSING ,MISSING ,A4 , ,$
 FIELDNAME=ACCEPTS ,ACCEPTABLE ,A255, ,$
 FIELDNAME=RESERVED ,RESERVED ,A44 , ,$
 FIELDNAME=DEFCENT ,DFC ,A4 , ,$
 FIELDNAME=YRTHRESH ,YRT ,A4 , ,$
SEGNAME=DEFREC
 FIELDNAME=DEFINITION ,DESCRIPTION ,A44, ,$
SEGNAME=PASSREC,PARENT=FILEID
 FIELDNAME=READ/WRITE ,RW ,A32, ,$
SEGNAME=CRSEG,PARENT=RECID
 FIELDNAME=CRFILENAME ,CRFILE ,A8 , ,$
 FIELDNAME=CRSEGNAME ,CRSEGMENT ,A8 , ,$
 FIELDNAME=ENCRYPT ,ENCRYPT ,A4 , ,$
SEGNAME=ACCSEG,PARENT=DEFREC
 FIELDNAME=DBA ,DBA ,A8 , ,$
 FIELDNAME=DBAFILE , ,A8 , ,$
 FIELDNAME=USER ,PASS ,A8 , ,$
 FIELDNAME=ACCESS ,ACCESS ,A8 , ,$
 FIELDNAME=RESTRICT ,RESTRICT ,A8 , ,$
 FIELDNAME=NAME ,NAME ,A66, ,$
 FIELDNAME=VALUE ,VALUE ,A80, ,$

1144 Information Builders

COMASTER File

COMASTER Structure Diagram
SECTION 01
 STRUCTURE OF EXTERNAL FILE COMASTER ON 05/15/03 AT 14.53.38

Creating Reports 1145

A. Master Files and Diagrams

VIDEOTRK, MOVIES, and ITEMS Data Sources

In this section:

VIDEOTRK Master File

VIDEOTRK Structure Diagram

MOVIES Master File

MOVIES Structure Diagram

ITEMS Master File

ITEMS Structure Diagram

VIDEOTRK contains sample data about customer, rental, and purchase information for a
video rental business. It can be joined to the MOVIES or ITEMS data source. VIDEOTRK and
MOVIES are used in examples that illustrate the use of the Maintain facility.

VIDEOTRK Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
 SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

1146 Information Builders

VIDEOTRK, MOVIES, and ITEMS Data Sources

VIDEOTRK Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/15/03 AT 12.25.19

 CUST
 01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

 I
 I
 I
 I TRANSDAT
 02 I SH1

*TRANSDATE **
* **
* **
* **
* **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
 ************** **************

Creating Reports 1147

A. Master Files and Diagrams

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
 SEGNAME=MOVINFO, SEGTYPE=S1
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
 FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
 FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
 FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
 FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
 FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
 FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
 FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

MOVIES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE MOVIES ON 05/15/03 AT 12.26.05

 MOVINFO
 01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

1148 Information Builders

VIDEOTRK, MOVIES, and ITEMS Data Sources

ITEMS Master File
FILENAME=ITEMS, SUFFIX=FOC
 SEGNAME=ITMINFO, SEGTYPE=S1
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=PRODNAME, ALIAS=PROD, FORMAT=A20, $
 FIELDNAME=OURCOST, ALIAS=WCOST, FORMAT=F6.2, $
 FIELDNAME=RETAILPR, ALIAS=PRICE, FORMAT=F6.2, $
 FIELDNAME=ON_HAND, ALIAS=NUM, FORMAT=I5, $

ITEMS Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE ITEMS ON 05/15/03 AT 12.26.05

 ITMINFO
 01 S1

*PRODCODE **I
*PRODNAME **
*OURCOST **
*RETAILPR **
* **

Creating Reports 1149

A. Master Files and Diagrams

VIDEOTR2 Data Source

In this section:

VIDEOTR2 Master File

VIDEOTR2 Structure Diagram

VIDEOTR2 contains sample data about customer, rental, and purchase information for a
video rental business. It consists of four segments.

VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC
 SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
 FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $
 SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
 SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
 SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

1150 Information Builders

VIDEOTR2 Data Source

VIDEOTR2 Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTR2 ON 05/15/03 AT 16.45.48

 CUST
 01 S1

 *CUSTID **
 *LASTNAME **
 *FIRSTNAME **
 *EXPDATE **
 * **

 I
 I
 I
 I TRANSDAT
 02 I SH1

 *TRANSDATE **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
 ************** **************
 *TRANSCODE ** *MOVIECODE **I
 *QUANTITY ** *COPY **
 *TRANSTOT ** *RETURNDATE **
 * ** *FEE **
 * ** * **
 *************** ***************
 ************** **************

Creating Reports 1151

A. Master Files and Diagrams

Gotham Grinds Data Sources

In this section:

GGDEMOG Master File

GGDEMOG Structure Diagram

GGORDER Master File

GGORDER Structure Diagram

GGPRODS Master File

GGPRODS Structure Diagram

GGSALES Master File

GGSALES Structure Diagram

GGSTORES Master File

GGSTORES Structure Diagram

Gotham Grinds is a group of data sources that contain sample data about a specialty items
company.

GGDEMOG contains demographic information about the customers of Gotham Grinds, a
company that sells specialty items like coffee, gourmet snacks, and gifts. It consists of
one segment, DEMOG01.

GGORDER contains order information for Gotham Grinds. It consists of two segments,
ORDER01 and ORDER02.

GGPRODS contains product information for Gotham Grinds. It consists of one segment,
PRODS01.

GGSALES contains sales information for Gotham Grinds. It consists of one segment,
SALES01.

GGSTORES contains information for each of Gotham Grinds 12 stores in the United
States. It consists of one segment, STORES01.

1152 Information Builders

Gotham Grinds Data Sources

GGDEMOG Master File
FILENAME=GGDEMOG, SUFFIX=FOC
 SEGNAME=DEMOG01, SEGTYPE=S1
 FIELD=ST, ALIAS=E02, FORMAT=A02, INDEX=I,TITLE='State',
 DESC='State',$
 FIELD=HH, ALIAS=E03, FORMAT=I09, TITLE='Number of Households',
 DESC='Number of Households',$
 FIELD=AVGHHSZ98,ALIAS=E04, FORMAT=I09, TITLE='Average Household Size',
 DESC='Average Household Size',$
 FIELD=MEDHHI98, ALIAS=E05, FORMAT=I09, TITLE='Median Household Income',
 DESC='Median Household Income',$
 FIELD=AVGHHI98, ALIAS=E06, FORMAT=I09, TITLE='Average Household Income',

 DESC='Average Household Income',$
 FIELD=MALEPOP98,ALIAS=E07, FORMAT=I09, TITLE='Male Population',
 DESC='Male Population',$
 FIELD=FEMPOP98, ALIAS=E08, FORMAT=I09, TITLE='Female Population',
 DESC='Female Population',$
 FIELD=P15TO1998,ALIAS=E09, FORMAT=I09, TITLE='15 to 19',
 DESC='Population 15 to 19 years old',$
 FIELD=P20TO2998,ALIAS=E10, FORMAT=I09, TITLE='20 to 29',
 DESC='Population 20 to 29 years old',$
 FIELD=P30TO4998,ALIAS=E11, FORMAT=I09, TITLE='30 to 49',
 DESC='Population 30 to 49 years old',$
 FIELD=P50TO6498,ALIAS=E12, FORMAT=I09, TITLE='50 to 64',
 DESC='Population 50 to 64 years old',$
 FIELD=P65OVR98, ALIAS=E13, FORMAT=I09, TITLE='65 and over',
 DESC='Population 65 and over',$

GGDEMOG Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE GGDEMOG ON 05/15/03 AT 12.26.05

 GGDEMOG
 01 S1

*ST **I
*HH **
*AVGHHSZ98 **
*MEDHHI98 **
* **

Creating Reports 1153

A. Master Files and Diagrams

GGORDER Master File
FILENAME=GGORDER, SUFFIX=FOC,$
 SEGNAME=ORDER01, SEGTYPE=S1,$
 FIELD=ORDER_NUMBER, ALIAS=ORDNO1, FORMAT=I6, TITLE='Order,Number',
 DESC='Order Identification Number',$
 FIELD=ORDER_DATE, ALIAS=DATE, FORMAT=MDY, TITLE='Order,Date',
 DESC='Date order was placed',$
 FIELD=STORE_CODE, ALIAS=STCD, FORMAT=A5, TITLE='Store,Code',
 DESC='Store Identification Code (for order)',$
 FIELD=PRODUCT_CODE, ALIAS=PCD, FORMAT=A4, TITLE='Product,Code',
 DESC='Product Identification Code (for order)',$
 FIELD=QUANTITY, ALIAS=ORDUNITS, FORMAT=I8, TITLE='Ordered,Units',
 DESC='Quantity Ordered',$
SEGNAME=ORDER02, SEGTYPE=KU, PARENT=ORDER01, CRFILE=GGPRODS, CRKEY=PCD,
CRSEG=PRODS01 ,$

GGORDER Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE GGORDER ON 05/15/03 AT 16.45.48

 GGORDER
 01 S1

 *ORDER_NUMBER**
 *ORDER_DATE **
 *STORE_CODE **
 *PRODUCT_CODE**
 * **

 I
 I
 I
 I ORDER02
 02 I KU

 :PRODUCT_ID :K
 :PRODUCT_DESC:
 :VENDOR_CODE :
 :VENDOR_NAME :
 : :
 :............:

1154 Information Builders

Gotham Grinds Data Sources

GGPRODS Master File
FILENAME=GGPRODS, SUFFIX=FOC
 SEGNAME=PRODS01, SEGTYPE=S1
 FIELD=PRODUCT_ID, ALIAS=PCD, FORMAT=A4, INDEX=I, TITLE='Product,Code',
 DESC='Product Identification Code',$
 FIELD=PRODUCT_DESCRIPTION, ALIAS=PRODUCT, FORMAT=A16, TITLE='Product',
 DESC='Product Name',$
 FIELD=VENDOR_CODE, ALIAS=VCD, FORMAT=A4, INDEX=I, TITLE='Vendor ID',
 DESC='Vendor Identification Code',$
 FIELD=VENDOR_NAME, ALIAS=VENDOR, FORMAT=A23, TITLE='Vendor Name',
 DESC='Vendor Name',$
 FIELD=PACKAGE_TYPE, ALIAS=PACK, FORMAT=A7, TITLE='Package',
 DESC='Packaging Style',$
 FIELD=SIZE, ALIAS=SZ, FORMAT=I2, TITLE='Size',
 DESC='Package Size',$
 FIELD=UNIT_PRICE, ALIAS=UNITPR, FORMAT=D7.2, TITLE='Unit,Price',
 DESC='Price for one unit',$

GGPRODS Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE GGPRODS ON 05/15/03 AT 12.26.05

 GGPRODS
 01 S1

*PRODUCT_ID **I
*PRODUCT_DESC**I
*VENDOR_CODE **
*VENDOR_NAME **
* **

Creating Reports 1155

A. Master Files and Diagrams

GGSALES Master File
FILENAME=GGSALES, SUFFIX=FOC
 SEGNAME=SALES01, SEGTYPE=S1
 FIELD=SEQ_NO, ALIAS=SEQ, FORMAT=I5, TITLE='Sequence#',
 DESC='Sequence number in database',$
 FIELD=CATEGORY, ALIAS=E02, FORMAT=A11, INDEX=I, TITLE='Category',
 DESC='Product category',$
 FIELD=PCD, ALIAS=E03, FORMAT=A04, INDEX=I, TITLE='Product ID',
 DESC='Product Identification code (for sale)',$
 FIELD=PRODUCT, ALIAS=E04, FORMAT=A16, TITLE='Product',
 DESC='Product name',$
 FIELD=REGION, ALIAS=E05, FORMAT=A11, INDEX=I, TITLE='Region',
 DESC='Region code',$
 FIELD=ST, ALIAS=E06, FORMAT=A02, INDEX=I, TITLE='State',
 DESC='State',$
 FIELD=CITY, ALIAS=E07, FORMAT=A20, TITLE='City',
 DESC='City',$
 FIELD=STCD, ALIAS=E08, FORMAT=A05, INDEX=I, TITLE='Store ID',
 DESC='Store identification code (for sale)',$
 FIELD=DATE, ALIAS=E09, FORMAT=I8YYMD, TITLE='Date',
 DESC='Date of sales report',$
 FIELD=UNITS, ALIAS=E10, FORMAT=I08, TITLE='Unit Sales',
 DESC='Number of units sold',$
 FIELD=DOLLARS, ALIAS=E11, FORMAT=I08, TITLE='Dollar Sales',
 DESC='Total dollar amount of reported sales',$
 FIELD=BUDUNITS, ALIAS=E12, FORMAT=I08, TITLE='Budget Units',
 DESC='Number of units budgeted',$
 FIELD=BUDDOLLARS, ALIAS=E13, FORMAT=I08, TITLE='Budget Dollars',
 DESC='Total sales quota in dollars',$

GGSALES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE GGSALES ON 05/15/03 AT 12.26.05

 GGSALES
 01 S1

*SEQ_NO **
*CATEGORY **I
*PCD **I
*PRODUCT **I
* **

1156 Information Builders

Gotham Grinds Data Sources

GGSTORES Master File
FILENAME=GGSTORES, SUFFIX=FOC
 SEGNAME=STORES01, SEGTYPE=S1
 FIELD=STORE_CODE, ALIAS=E02, FORMAT=A05, INDEX=I, TITLE='Store ID',
 DESC='Franchisee ID Code',$
 FIELD=STORE_NAME, ALIAS=E03, FORMAT=A23, TITLE='Store Name',
 DESC='Store Name',$
 FIELD=ADDRESS1, ALIAS=E04, FORMAT=A19, TITLE='Contact',
 DESC='Franchisee Owner',$
 FIELD=ADDRESS2, ALIAS=E05, FORMAT=A31, TITLE='Address',
 DESC='Street Address',$
 FIELD=CITY, ALIAS=E06, FORMAT=A22, TITLE='City',
 DESC='City',$
 FIELD=STATE, ALIAS=E07, FORMAT=A02, INDEX=I, TITLE='State',
 DESC='State',$
 FIELD=ZIP, ALIAS=E08, FORMAT=A06, TITLE='Zip Code',
 DESC='Postal Code',$

GGSTORES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE GGSTORES ON 05/15/03 AT 12.26.05

 GGSTORES
 01 S1

*STORE_CODE **I
*STORE_NAME **
*ADDRESS1 **
*ADDRESS2 **
* **

Creating Reports 1157

A. Master Files and Diagrams

Century Corp Data Sources

In this section:

CENTCOMP Master File

CENTCOMP Structure Diagram

CENTFIN Master File

CENTFIN Structure Diagram

CENTHR Master File

CENTHR Structure Diagram

CENTINV Master File

CENTINV Structure Diagram

CENTORD Master File

CENTORD Structure Diagram

CENTQA Master File

CENTQA Structure Diagram

CENTGL Master File

CENTGL Structure Diagram

CENTSYSF Master File

CENTSYSF Structure Diagram

CENTSTMT Master File

CENTSTMT Structure Diagram

Century Corp is a consumer electronics manufacturer that distributes products through
retailers around the world. Century Corp has thousands of employees in plants, warehouses,
and offices worldwide. Their mission is to provide quality products and services to their
customers.

1158 Information Builders

Century Corp Data Sources

Century Corp is a group of data sources that contain financial, human resources, inventory,
and order information. The last three data sources are designed to be used with chart of
accounts data.

CENTCOMP Master File contains location information for stores. It consists of one
segment, COMPINFO.

CENTFIN Master File contains financial information. It consists of one segment,
ROOT_SEG.

CENTHR Master File contains human resources information. It consists of one segment,
EMPSEG.

CENTINV Master File contains inventory information. It consists of one segment, INVINFO.

CENTORD Master File contains order information. It consists of four segments, OINFO,
STOSEG, PINFO, and INVSEG.

CENTQA Master File contains problem information. It consists of three segments,
PROD_SEG, INVSEG, and PROB_SEG.

CENTGL Master File contains a chart of accounts hierarchy. The field
GL_ACCOUNT_PARENT is the parent field in the hierarchy. The field GL_ACCOUNT is the
hierarchy field. The field GL_ACCOUNT_CAPTION can be used as the descriptive caption
for the hierarchy field.

CENTSYSF Master File contains detail-level financial data. CENTSYSF uses a different
account line system (SYS_ACCOUNT), which can be joined to the SYS_ACCOUNT field in
CENTGL. Data uses "natural" signs (expenses are positive, revenue negative).

CENTSTMT Master File contains detail-level financial data and a cross-reference to the
CENTGL data source.

Creating Reports 1159

A. Master Files and Diagrams

CENTCOMP Master File
FILE=CENTCOMP, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=COMPINFO, SEGTYPE=S1, $
 FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
 TITLE='Store Id#:',
 DESCRIPTION='Store Id#', $
 FIELD=STORENAME, ALIAS=SNAME, FORMAT=A20,
 WITHIN=STATE,
 TITLE='Store,Name:',
 DESCRIPTION='Store Name', $
 FIELD=STATE, ALIAS=STATE, FORMAT=A2,
 WITHIN=PLANT,
 TITLE='State:',
 DESCRIPTION=State, $
 DEFINE REGION/A5=DECODE STATE ('AL' 'SOUTH' 'AK' 'WEST' 'AR' 'SOUTH'
 'AZ' 'WEST' 'CA' 'WEST' 'CO' 'WEST' 'CT' 'EAST'
 'DE' 'EAST' 'DC' 'EAST' 'FL' 'SOUTH' 'GA' 'SOUTH' 'HI' 'WEST'
 'ID' 'WEST' 'IL' 'NORTH' 'IN' 'NORTH' 'IA' 'NORTH'
 'KS' 'NORTH' 'KY' 'SOUTH' 'LA' 'SOUTH' 'ME' 'EAST' 'MD' 'EAST'
 'MA' 'EAST' 'MI' 'NORTH' 'MN' 'NORTH' 'MS' 'SOUTH' 'MT' 'WEST'
 'MO' 'SOUTH' 'NE' 'WEST' 'NV' 'WEST' 'NH' 'EAST' 'NJ' 'EAST'
 'NM' 'WEST' 'NY' 'EAST' 'NC' 'SOUTH' 'ND' 'NORTH' 'OH' 'NORTH'
 'OK' 'SOUTH' 'OR' 'WEST' 'PA' 'EAST' 'RI' 'EAST' 'SC' 'SOUTH'
 'SD' 'NORTH' 'TN' 'SOUTH' 'TX' 'SOUTH' 'UT' 'WEST' 'VT' 'EAST'
 'VA' 'SOUTH' 'WA' 'WEST' 'WV' 'SOUTH' 'WI' 'NORTH' 'WY' 'WEST'
 'NA' 'NORTH' 'ON' 'NORTH' ELSE ' ');,
 TITLE='Region:',
 DESCRIPTION=Region, $

CENTCOMP Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTCOMP ON 05/15/03 AT 10.20.49

 COMPINFO
 01 S1

 *STORE_CODE **I
 *STORENAME **
 *STATE **
 * **
 * **

1160 Information Builders

Century Corp Data Sources

CENTFIN Master File
FILE=CENTFIN, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=ROOT_SEG, SEGTYPE=S4, $
 FIELD=YEAR, ALIAS=YEAR, FORMAT=YY,
 WITHIN='*Time Period', $
 FIELD=QUARTER, ALIAS=QTR, FORMAT=Q,
 WITHIN=YEAR,
 TITLE=Quarter,
 DESCRIPTION=Quarter, $
 FIELD=MONTH, ALIAS=MONTH, FORMAT=M,
 TITLE=Month,
 DESCRIPTION=Month, $
 FIELD=ITEM, ALIAS=ITEM, FORMAT=A20,
 TITLE=Item,
 DESCRIPTION=Item, $
 FIELD=VALUE, ALIAS=VALUE, FORMAT=D12.2,
 TITLE=Value,
 DESCRIPTION=Value, $
 DEFINE ITYPE/A12=IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'E'
 THEN 'Expense' ELSE IF EDIT(ITEM,'9$$$$$$$$$$$$$$$$$$$') EQ 'R'
 THEN 'Revenue' ELSE 'Asset';,
 TITLE=Type,
 DESCRIPTION='Type of Financial Line Item',$
 DEFINE MOTEXT/MT=MONTH;,$

CENTFIN Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTFIN ON 05/15/03 AT 10.25.52

 ROOT_SEG
 01 S4

 *YEAR **
 *QUARTER **
 *MONTH **
 *ITEM **
 * **

Creating Reports 1161

A. Master Files and Diagrams

CENTHR Master File
FILE=CENTHR, SUFFIX=FOC
 SEGNAME=EMPSEG, SEGTYPE=S1, $
 FIELD=ID_NUM, ALIAS=ID#, FORMAT=I9,
 TITLE='Employee,ID#',
 DESCRIPTION='Employee Identification Number', $
 FIELD=LNAME, ALIAS=LN, FORMAT=A14,
 TITLE='Last,Name',
 DESCRIPTION='Employee Last Name', $
 FIELD=FNAME, ALIAS=FN, FORMAT=A12,
 TITLE='First,Name',
 DESCRIPTION='Employee First Name', $
 FIELD=PLANT, ALIAS=PLT, FORMAT=A3,
 TITLE='Plant,Location',
 DESCRIPTION='Location of the manufacturing plant',
 WITHIN='*Location', $
 FIELD=START_DATE, ALIAS=SDATE, FORMAT=YYMD,
 TITLE='Starting,Date',
 DESCRIPTION='Date of employment',$
 FIELD=TERM_DATE, ALIAS=TERM_DATE, FORMAT=YYMD,
 TITLE='Termination,Date',
 DESCRIPTION='Termination Date', $
 FIELD=STATUS, ALIAS=STATUS, FORMAT=A10,
 TITLE='Current,Status',
 DESCRIPTION='Job Status', $
 FIELD=POSITION, ALIAS=JOB, FORMAT=A2,
 TITLE=Position,
 DESCRIPTION='Job Position', $
 FIELD=PAYSCALE, ALIAS=PAYLEVEL, FORMAT=I2,
 TITLE='Pay,Level',
 DESCRIPTION='Pay Level',
 WITHIN='*Wages',$
 DEFINE POSITION_DESC/A17=IF POSITION EQ 'BM' THEN
 'Plant Manager' ELSE
 IF POSITION EQ 'MR' THEN 'Line Worker' ELSE
 IF POSITION EQ 'TM' THEN 'Line Manager' ELSE
 'Technician';
 TITLE='Position,Description',
 DESCRIPTION='Position Description',
 WITHIN='PLANT',$
 DEFINE BYEAR/YY=START_DATE;
 TITLE='Beginning,Year',
 DESCRIPTION='Beginning Year',
 WITHIN='*Starting Time Period',$

1162 Information Builders

Century Corp Data Sources

 DEFINE BQUARTER/Q=START_DATE;
 TITLE='Beginning,Quarter',
 DESCRIPTION='Beginning Quarter',
 WITHIN='BYEAR',
 DEFINE BMONTH/M=START_DATE;
 TITLE='Beginning,Month',
 DESCRIPTION='Beginning Month',
 WITHIN='BQUARTER',$
 DEFINE EYEAR/YY=TERM_DATE;
 TITLE='Ending,Year',
 DESCRIPTION='Ending Year',
 WITHIN='*Termination Time Period',$
 DEFINE EQUARTER/Q=TERM_DATE;
 TITLE='Ending,Quarter',
 DESCRIPTION='Ending Quarter',
 WITHIN='EYEAR',$
 DEFINE EMONTH/M=TERM_DATE;
 TITLE='Ending,Month',
 DESCRIPTION='Ending Month',
 WITHIN='EQUARTER',$
 DEFINE RESIGN_COUNT/I3=IF STATUS EQ 'RESIGNED' THEN 1
 ELSE 0;
 TITLE='Resigned,Count',
 DESCRIPTION='Resigned Count',$
 DEFINE FIRE_COUNT/I3=IF STATUS EQ 'TERMINAT' THEN 1
 ELSE 0;
 TITLE='Terminated,Count',
 DESCRIPTION='Terminated Count',$
 DEFINE DECLINE_COUNT/I3=IF STATUS EQ 'DECLINED' THEN 1
 ELSE 0;
 TITLE='Declined,Count',
 DESCRIPTION='Declined Count',$
 DEFINE EMP_COUNT/I3=IF STATUS EQ 'EMPLOYED' THEN 1
 ELSE 0;
 TITLE='Employed,Count',
 DESCRIPTION='Employed Count',$
 DEFINE PEND_COUNT/I3=IF STATUS EQ 'PENDING' THEN 1
 ELSE 0;
 TITLE='Pending,Count',
 DESCRIPTION='Pending Count',$
 DEFINE REJECT_COUNT/I3=IF STATUS EQ 'REJECTED' THEN 1
 ELSE 0;
 TITLE='Rejected,Count',
 DESCRIPTION='Rejected Count',$
 DEFINE FULLNAME/A28=LNAME||', '|FNAME;
 TITLE='Full Name',
 DESCRIPTION='Full Name: Last, First', WITHIN='POSITION_DESC',$

Creating Reports 1163

A. Master Files and Diagrams

 DEFINE SALARY/D12.2=IF BMONTH LT 4 THEN PAYLEVEL * 12321
 ELSE IF BMONTH GE 4 AND BMONTH LT 8 THEN PAYLEVEL * 13827
 ELSE PAYLEVEL * 14400;,
 TITLE='Salary',
 DESCRIPTION='Salary',$
 DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
 LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
 ELSE 'n/a');$

CENTHR Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTHR ON 05/15/03 AT 10.40.34

 EMPSEG
 01 S1

 *ID_NUM **
 *LNAME **
 *FNAME **
 *PLANT **
 * **

1164 Information Builders

Century Corp Data Sources

CENTINV Master File
FILE=CENTINV, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=INVINFO, SEGTYPE=S1, $
 FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
 TITLE='Product,Number:',
 DESCRIPTION='Product Number', $
 FIELD=PRODNAME, ALIAS=PNAME, FORMAT=A30,
 WITHIN=PRODCAT,
 TITLE='Product,Name:',
 DESCRIPTION='Product Name', $
 FIELD=QTY_IN_STOCK, ALIAS=QIS, FORMAT=I7,
 TITLE='Quantity,In Stock:',
 DESCRIPTION='Quantity In Stock', $
 FIELD=PRICE, ALIAS=RETAIL, FORMAT=D10.2,
 TITLE='Price:',
 DESCRIPTION=Price, $
 FIELD=COST, ALIAS=OUR_COST, FORMAT=D10.2,
 TITLE='Our,Cost:',
 DESCRIPTION='Our Cost:', $
 DEFINE PRODCAT/A22 = IF PRODNAME CONTAINS 'LCD'
 THEN 'VCRs' ELSE IF PRODNAME
 CONTAINS 'DVD' THEN 'DVD' ELSE IF PRODNAME CONTAINS 'Camcor'
 THEN 'Camcorders'
 ELSE IF PRODNAME CONTAINS 'Camera' THEN 'Cameras' ELSE IF PRODNAME
 CONTAINS 'CD' THEN 'CD Players'
 ELSE IF PRODNAME CONTAINS 'Tape' THEN 'Digital Tape Recorders'
 ELSE IF PRODNAME CONTAINS 'Combo' THEN 'Combo Players'
 ELSE 'PDA Devices'; WITHIN=PRODTYPE, TITLE='Product Cateogory:' ,$
 DEFINE PRODTYPE/A19 = IF PRODNAME CONTAINS 'Digital' OR 'DVD' OR 'QX'
 THEN 'Digital' ELSE 'Analog';,WITHIN='*Product Dimension',
 TITLE='Product Type:',$

CENTINV Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTINV ON 05/15/03 AT 10.43.35

 INVINFO
 01 S1

 *PROD_NUM **I
 *PRODNAME **
 *QTY_IN_STOCK**
 *PRICE **
 * **

Creating Reports 1165

A. Master Files and Diagrams

CENTORD Master File
FILE=CENTORD, SUFFIX=FOC
 SEGNAME=OINFO, SEGTYPE=S1, $
 FIELD=ORDER_NUM, ALIAS=ONUM, FORMAT=A5, INDEX=I,
 TITLE='Order,Number:',
 DESCRIPTION='Order Number', $
 FIELD=ORDER_DATE, ALIAS=ODATE, FORMAT=YYMD,
 TITLE='Date,Of Order:',
 DESCRIPTION='Date Of Order', $
 FIELD=STORE_CODE, ALIAS=SNUM, FORMAT=A6, INDEX=I,
 TITLE='Company ID#:',
 DESCRIPTION='Company ID#', $
 FIELD=PLANT, ALIAS=PLNT, FORMAT=A3, INDEX=I,
 TITLE='Manufacturing,Plant',
 DESCRIPTION='Location Of Manufacturing Plant',
 WITHIN='*Location',$
 DEFINE YEAR/YY=ORDER_DATE;,
 WITHIN='*Time Period',$
 DEFINE QUARTER/Q=ORDER_DATE;,
 WITHIN='YEAR',$
 DEFINE MONTH/M=ORDER_DATE;,
 WITHIN='QUARTER',$
 SEGNAME=PINFO, SEGTYPE=S1, PARENT=OINFO, $
 FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4,INDEX=I,
 TITLE='Product,Number#:',
 DESCRIPTION='Product Number#', $
 FIELD=QUANTITY, ALIAS=QTY, FORMAT=I8C,
 TITLE='Quantity:',
 DESCRIPTION=Quantity, $
 FIELD=LINEPRICE, ALIAS=LINETOTAL, FORMAT=D12.2MC,
 TITLE='Line,Total',
 DESCRIPTION='Line Total', $
 DEFINE LINE_COGS/D12.2=QUANTITY*COST;,
 TITLE='Line,Cost Of,Goods Sold',
 DESCRIPTION='Line cost of goods sold', $
 DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
 LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
 ELSE 'n/a');
 SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PINFO, CRFILE=CENTINV,
 CRKEY=PROD_NUM, CRSEG=INVINFO,$
 SEGNAME=STOSEG, SEGTYPE=DKU, PARENT=OINFO, CRFILE=CENTCOMP,
 CRKEY=STORE_CODE, CRSEG=COMPINFO,$

1166 Information Builders

Century Corp Data Sources

CENTORD Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTORD ON 05/15/03 AT 10.17.52

 OINFO
 01 S1

 *ORDER_NUM **I
 *STORE_CODE **I
 *PLANT **I
 *ORDER_DATE **
 * **

 I
 +-----------------+
 I I
 I STOSEG I PINFO
 02 I KU 03 I S1
 **************
 :STORE_CODE :K *PROD_NUM **I
 :STORENAME : *QUANTITY **
 :STATE : *LINEPRICE **
 : : * **
 : : * **
 :............: ***************
 JOINED CENTCOMP **************
 I
 I
 I
 I INVSEG
 04 I KU

 :PROD_NUM :K
 :PRODNAME :
 :QTY_IN_STOCK:
 :PRICE :
 : :
 :............:
 JOINED CENTINV

Creating Reports 1167

A. Master Files and Diagrams

CENTQA Master File
FILE=CENTQA, SUFFIX=FOC, FDFC=19, FYRT=00
 SEGNAME=PROD_SEG, SEGTYPE=S1, $
 FIELD=PROD_NUM, ALIAS=PNUM, FORMAT=A4, INDEX=I,
 TITLE='Product,Number',
 DESCRIPTION='Product Number', $
 SEGNAME=PROB_SEG, PARENT=PROD_SEG, SEGTYPE=S1, $
 FIELD=PROBNUM, ALIAS=PROBNO, FORMAT=I5,
 TITLE='Problem,Number',
 DESCRIPTION='Problem Number',
 WITHIN=PLANT,$
 FIELD=PLANT, ALIAS=PLT, FORMAT=A3, INDEX=I,
 TITLE=Plant,
 DESCRIPTION=Plant,
 WITHIN=PROBLEM_LOCATION,$
 FIELD=PROBLEM_DATE, ALIAS=PDATE, FORMAT=YYMD,
 TITLE='Date,Problem,Reported',
 DESCRIPTION='Date Problem Was Reported', $
 FIELD=PROBLEM_CATEGORY, ALIAS=PROBCAT, FORMAT=A20, $
 TITLE='Problem,Category',
 DESCRIPTION='Problem Category',
 WITHIN=*Problem,$
 FIELD=PROBLEM_LOCATION, ALIAS=PROBLOC, FORMAT=A10,
 TITLE='Location,Problem,Occurred',
 DESCRIPTION='Location Where Problem Occurred',
 WITHIN=PROBLEM_CATEGORY,$
 DEFINE PROB_YEAR/YY=PROBLEM_DATE;,
 TITLE='Year,Problem,Occurred',
 DESCRIPTION='Year Problem Occurred',
 WITHIN=*Time Period,$
 DEFINE PROB_QUARTER/Q=PROBLEM_DATE;
 TITLE='Quarter,Problem,Occurred',
 DESCRIPTION='Quarter Problem Occurred',
 WITHIN=PROB_YEAR,$
 DEFINE PROB_MONTH/M=PROBLEM_DATE;
 TITLE='Month,Problem,Occurred',
 DESCRIPTION='Month Problem Occurred',
 WITHIN=PROB_QUARTER,$
 DEFINE PROBLEM_OCCUR/I5 WITH PROBNUM=1;,
 TITLE='Problem,Occurrence'
 DESCRIPTION='# of times a problem occurs',$
 DEFINE PLANTLNG/A11=DECODE PLANT (BOS 'Boston' DAL 'Dallas'
 LA 'Los Angeles' ORL 'Orlando' SEA 'Seattle' STL 'St Louis'
 ELSE 'n/a');$
 SEGNAME=INVSEG, SEGTYPE=DKU, PARENT=PROD_SEG, CRFILE=CENTINV,
 CRKEY=PROD_NUM, CRSEG=INVINFO,$

1168 Information Builders

Century Corp Data Sources

CENTQA Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTQA ON 05/15/03 AT 10.46.43

 PROD_SEG
 01 S1

 *PROD_NUM **I
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I INVSEG I PROB_SEG
 02 I KU 03 I S1
 **************
 :PROD_NUM :K *PROBNUM **
 :PRODNAME : *PLANT **I
 :QTY_IN_STOCK: *PROBLEM_DATE**
 :PRICE : *PROBLEM_CAT>**
 : : * **
 :............: ***************
 JOINED CENTINV **************

CENTGL Master File
FILE=CENTGL ,SUFFIX=FOC
 SEGNAME=ACCOUNTS, SEGTYPE=S1
 FIELDNAME=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
 TITLE='Ledger,Account', FIELDTYPE=I, $
 FIELDNAME=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
 TITLE=Parent,
 PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
 FIELDNAME=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
 TITLE=Type,$
 FIELDNAME=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
 TITLE=Op, $
 FIELDNAME=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
 TITLE=Lev, $
 FIELDNAME=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
 TITLE=Caption,
 PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
 FIELDNAME=SYS_ACCOUNT, ALIAS=ALINE, FORMAT=A6,
 TITLE='System,Account,Line', MISSING=ON, $

Creating Reports 1169

A. Master Files and Diagrams

CENTGL Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTGL ON 05/15/03 AT 15.18.48

 ACCOUNTS
 01 S1

 *GL_ACCOUNT **I
 *GL_ACCOUNT_>**
 *GL_ACCOUNT_>**
 *GL_ROLLUP_OP**
 * **

CENTSYSF Master File
FILE=CENTSYSF ,SUFFIX=FOC
 SEGNAME=RAWDATA ,SEGTYPE=S2
 FIELDNAME = SYS_ACCOUNT , ,A6 , FIELDTYPE=I,
 TITLE='System,Account,Line', $
 FIELDNAME = PERIOD , ,YYM , FIELDTYPE=I,$
 FIELDNAME = NAT_AMOUNT , ,D10.0 , TITLE='Month,Actual', $
 FIELDNAME = NAT_BUDGET , ,D10.0 , TITLE='Month,Budget', $
 FIELDNAME = NAT_YTDAMT , ,D12.0 , TITLE='YTD,Actual', $
 FIELDNAME = NAT_YTDBUD , ,D12.0 , TITLE='YTD,Budget', $

CENTSYSF Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTSYSF ON 05/15/03 AT 15.19.27

 RAWDATA
 01 S2

 *SYS_ACCOUNT **I
 *PERIOD **I
 *NAT_AMOUNT **
 *NAT_BUDGET **
 * **

1170 Information Builders

Century Corp Data Sources

CENTSTMT Master File
FILE=CENTSTMT, SUFFIX=FOC
 SEGNAME=ACCOUNTS, SEGTYPE=S1
 FIELD=GL_ACCOUNT, ALIAS=GLACCT, FORMAT=A7,
 TITLE='Ledger,Account', FIELDTYPE=I, $
 FIELD=GL_ACCOUNT_PARENT, ALIAS=GLPAR, FORMAT=A7,
 TITLE=Parent,
 PROPERTY=PARENT_OF, REFERENCE=GL_ACCOUNT, $
 FIELD=GL_ACCOUNT_TYPE, ALIAS=GLTYPE, FORMAT=A1,
 TITLE=Type,$
 FIELD=GL_ROLLUP_OP, ALIAS=GLROLL, FORMAT=A1,
 TITLE=Op, $
 FIELD=GL_ACCOUNT_LEVEL, ALIAS=GLLEVEL, FORMAT=I3,
 TITLE=Lev, $
 FIELD=GL_ACCOUNT_CAPTION, ALIAS=GLCAP, FORMAT=A30,
 TITLE=Caption,
 PROPERTY=CAPTION, REFERENCE=GL_ACCOUNT, $
 SEGNAME=CONSOL, SEGTYPE=S1, PARENT=ACCOUNTS, $
 FIELD=PERIOD, ALIAS=MONTH, FORMAT=YYM, $
 FIELD=ACTUAL_AMT, ALIAS=AA, FORMAT=D10.0, MISSING=ON,
 TITLE='Actual', $
 FIELD=BUDGET_AMT, ALIAS=BA, FORMAT=D10.0, MISSING=ON,
 TITLE='Budget', $
 FIELD=ACTUAL_YTD, ALIAS=AYTD, FORMAT=D12.0, MISSING=ON,
 TITLE='YTD,Actual', $
 FIELD=BUDGET_YTD, ALIAS=BYTD, FORMAT=D12.0, MISSING=ON,
 TITLE='YTD,Budget', $

Creating Reports 1171

A. Master Files and Diagrams

CENTSTMT Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE CENTSTMT ON 05/15/03 AT 14.45.44

 ACCOUNTS
 01 S1

 *GL_ACCOUNT **I
 *GL_ACCOUNT_>**
 *GL_ACCOUNT_>**
 *GL_ROLLUP_OP**
 * **

 I
 I
 I
 I CONSOL
 02 I S1

 *PERIOD **
 *ACTUAL_AMT **
 *BUDGET_AMT **
 *ACTUAL_YTD **
 * **

1172 Information Builders

Century Corp Data Sources

FOCUS

Error MessagesB
Topics:

To see the text or explanation for any
error message, you can display it online
in your FOCUS session or find it in a
standard FOCUS ERRORS file. All of the
FOCUS error messages are stored in
eight system ERRORS files.

Accessing Error Files

Displaying Messages

For CMS, the file type is ERRORS.

For z/OS, the ddname is ERRORS.

Creating Reports 1173

Accessing Error Files
For CMS, the ERRORS files are:

FOT004 ERRORS

FOG004 ERRORS

FOM004 ERRORS

FOS004 ERRORS

FOA004 ERRORS

FSQLXLT ERRORS

FOCSTY ERRORS

FOB004 ERRORS

For z/OS, these files are the following members in the ERRORS PDS:

FOT004

FOG004

FOM004

FOS004

FOA004

FSQLXLT

FOCSTY

FOB004

Displaying Messages
To display the text and explanation for any message, issue the following query command at
the FOCUS command level

? n

where:

n

Is the message number.

1174 Information Builders

Accessing Error Files

The message number and text appear, along with a detailed explanation of the message (if
one exists). For example, issuing the following command

? 210

displays the following:

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:

An alphabetic character has been found where all numerical digits are required.

Creating Reports 1175

B. Error Messages

1176 Information Builders

Displaying Messages

FOCUS

Table Syntax SummaryC
Topics:

This appendix summarizes FOCUS
reporting commands and options.

TABLE Syntax Summary

TABLEF Syntax Summary

MATCH Syntax Summary

FOR Syntax Summary

Creating Reports 1177

TABLE Syntax Summary
The syntax of a TABLE request is:

DEFINE FILE filename CLEAR|ADD
tempfield [/format] [WITH realfield] = expression;
tempfield [/format] REDEFINES qualifier.fieldname = expression;
.
.
.
END
TABLE FILE filename
HEADING [CENTER]
"text"
{display_command} [SEG.] field [/R|/L|/C] [/format]
{display_command} [prefixop.] [field] [/R|/L|/C] [/format]
 [NOPRINT|AS 'title1,...,title5'] [AND|OVER] [obj2...obj1024]
 [WITHIN field] [IN n]
COMPUTE field [/format] = expression; [AS 'title,...,title5'] [IN n]
[AND] ROW-TOTAL [/R|/L|/C] [/format][AS 'name']
[AND] COLUMN-TOTAL [/R|/L|/C] [AS 'name']
ACROSS [HIGHEST] sortfieldn [IN-GROUPS-OF qty]
 [NOPRINT| AS 'title1,...,title5']
BY [HIGHEST] sortfieldn [IN-GROUPS-OF qty]
 [NOPRINT| AS 'title1,...,title5']
BY [HIGHEST|LOWEST{n}] TOTAL [prefix_operator] {field|code_value}
RANKED [AS 'name'] BY {TOP|HIGHEST|LOWEST} [n] field
 [PLUS OTHERS AS 'othertext']
 [IN-GROUPS-OF qty [TILES [TOP m]] [AS 'heading']]
 [NOPRINT|AS 'title1,...,title5']

{BY|ACROSS} sortfield IN-RANGES-OF value [TOP limit]
ON sfld option1 [AND] option2 [WHEN expression;...]
ON sfld RECAP fld1 [/fmt] = FORECAST (fld2, intvl, npredct,
 '{MOVAVE|EXPAVE}',npnt);

ON sfld RECAP fld1[/fmt] = FORECAST(fld2, interval, npredict, 'DOUBLEXP',
 npoint1, npoint2);

ON sfld RECAP fld1[/fmt] = FORECAST(fld2, interval, npredict, 'SEASONAL',
 nperiod, npoint1, npoint2, npoint3);

ON sfld RECAP fld1 [/fmt] = FORECAST (fld2, intvl, npredct,
'REGRESS');

1178 Information Builders

TABLE Syntax Summary

ON {sortfield|TABLE} RECAP y[/fmt] = REGRESS(n, x1, [x2, [x3,]] z);
ON sfld RECAP fld1 [/fmt] = FORECAST (infield, interval, npredict,
 'DOUBLEXP',npoint, npoint2);
ON sfld RECAP fld1 [/fmt] = FORECAST (infield, interval, npredict,
 'SEASONAL', nperiod, npoint, npoint2, npoint3);{BY|ON} fieldname
SUBHEAD
 [NEWPAGE]
"text"

{BY|ON} fieldname SUBFOOT [WITHIN] [MULTILINES][NEWPAGE]
"text" [<prefop.fieldname ...]" [WHEN expression;]

WHERE [TOTAL] expression
WHERE {RECORDLIMIT|READLIMIT} EQ n
IF [TOTAL] field relation value [OR value...]
ON TABLE SET parameter value
ON TABLE HOLD [VIA program][AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE {PCHOLD|SAVE|SAVB} [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE NOTOTAL
ON TABLE COLUMN-TOTAL [/R|/L|/C] [AS 'name'] fieldname
ON TABLE {ROW-TOTAL|ACROSS-TOTAL}[/R|/L|/C][format] [AS 'name'] fldname
{BY|ON} sfld [AS 'text1'] {SUBTOTAL|SUB-TOTAL|SUMMARIZE|RECOMPUTE}
 [MULTILINES] [pref.] [field1 [pref.] field2 ...] [AS 'text2']
 [WHEN expression;]
{ACROSS|ON} sfld [AS 'text1'] {SUBTOTAL|SUB-TOTAL|SUMMARIZE|RECOMPUTE}
 [AS 'text2'] [COLUMNS c1 [AND c2 ...]]
ON TABLE {SUBTOTAL|SUB-TOTAL|SUMMARIZE|RECOMPUTE}
 [pref.] [field1 [pref.] field2 ...] [AS 'text2']
FOOTING [CENTER] [BOTTOM]
"text"
MORE
FILE file2
 [IF field relation value [OR value...]|WHERE expression]
{END|RUN|QUIT}

Creating Reports 1179

C. Table Syntax Summary

TABLEF Syntax Summary
The syntax of a TABLEF request is:

TABLEF FILE filename
HEADING [CENTER]
"text"

{display_command} [SEG.]field [/R|/L|/C] [/format]
{display_command} [prefixop.][field] [/R|/L|/C] [/format]
 [NOPRINT|AS 'title1,...,title5'] [AND|OVER] [obj2...obj495]
 [IN n]

COMPUTE field [/format]=expression; [AS 'title1,...title5']
[AND] ROW-TOTAL [AND] COLUMN-TOTAL

BY [HIGHEST] keyfieldn [NOPRINT]

ON keyfield option1 [AND] option2...

WHERE [TOTAL] expression

IF [TOTAL] field relation value [OR value...]

ON TABLE SET parameter value

ON TABLE HOLD [VIA program] [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE PCHOLD [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE SAVE [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE SAVB [AS name] [FORMAT format] [MISSING {ON|OFF}]

ON TABLE NOTOTAL
ON TABLE COLUMN-TOTAL fieldname
ON TABLE ROW-TOTAL fieldname

 FOOTING [CENTER] [BOTTOM]
 "text"

{END|RUN|QUIT}

Note: Prefix operators for TABLEF can be: AVE., ASQ., MAX., MIN., PCT., RPCT., PCT.CNT.,
FST., LST., CNT., SUM., or TOT. TABLEF requests cannot use prefix operators PCT.CNT.,
RPCT., and TOT.

1180 Information Builders

TABLEF Syntax Summary

MATCH Syntax Summary
The syntax of a MATCH request is:

MATCH FILE filename (the OLD file) report request
BY field1 [AS sortfield]
MORE
FILE file3
subrequest
RUN
.
.
.
FILE filename2 (the NEW file) report request
BY field1 [AS sortfield1]
.
.
.
[AFTER MATCH HOLD [AS filename] [FORMAT FOCUS] matchtype]
MORE
FILE file4
subrequest
END

where:

matchtype

Can be any of the following:

OLD

NEW

OLD-NOT-NEW

NEW-NOT-OLD

OLD-AND-NEW

OLD-OR-NEW

OLD-NOR-NEW

Creating Reports 1181

C. Table Syntax Summary

FOR Syntax Summary
The formal syntax of the FOR statement is:

FOR fieldname [NOPRINT]
row
[OVER row]
.
.
.
.
END

where:

row

Can be any of the following:

tag [OR tag...][options]
[fieldname]
DATA n,[n,....] $
DATA PICKUP [FROM filename] tag [LABEL label] [AS 'text']
RECAP name[/format]=expression;
BAR [AS 'character'] [OVER]
"text"
parentvalue {GET|WITH} CHILD[REN] [{n|ALL}] [ADD [m|ALL]]
 [AS {CAPTION|'text'}] [LABEL label]parentvalue ADD [{m|ALL}] [AS
{CAPTION|'text'}] [LABEL label]
PAGE-BREAK [OVER]

tag

Can be any of the following:

value [OR value...] value TO value

options

Can be any of the following:

AS 'text'
[INDENT m]
NOPRINT
[LABEL label]
WHEN EXISTS
[POST [TO filename]]

1182 Information Builders

FOR Syntax Summary

FOCUS

Writing User-Coded Programs to Create HOLD
Files

D
Topics:

HOLD files can be created by a user-
coded program. This enables you to use
the FOCUS Report Writer to obtain
records from any FOCUS-readable data
source, and write the records to another
data source for use by an external
program. This feature is most useful
when an external program requires an
internal format or arrangement of data
other than those already provided with
the HOLD command formats (for
example, FORMAT FOCUS, LOTUS, SQL).

Arguments Used in Calls to Programs
That Create HOLD Files

FOCUS collects records from the report
request and passes them to the user
program one at a time.

Creating Reports 1183

Arguments Used in Calls to Programs That Create HOLD Files
Call the program with the following arguments:

RECNO is the record number in the HOLD file. The format is integer.

LEN is the length of this record in the HOLD file. The format is integer.

DDNAME is the name given in the HOLD AS phrase. The format is A8.

RECORD is the record of data in the HOLD file. The format is Annnn (the maximum record
length is 4096).

RETCOD is the return code. The format is integer. A RETCOD of 0 signifies that the request
has been processed normally. If RETCOD is non-zero, FOCUS terminates the report and
display:

(FOC350) ERROR WRITING OUTPUT FILE:

The error message includes the non-zero value of RETCOD.

ACVT is a one-word integer; reserved.

In z/OS, the subroutine must be allocated to the ddname FOCLIB. Compile and link the
subroutine as a separate module with AMODE=31,RMODE=24.

In CMS, the program should be compiled, and the TEXT deck should be available at run time.

1184 Information Builders

Arguments Used in Calls to Programs That Create HOLD Files

Sample User-Coded Program That Creates a HOLD FileExample:

This simple COBOL program shows the use of these parameters. It executes when a report
request includes the phrase ON TABLE HOLD VIA EXAMPLE, or when HOLD VIA EXAMPLE is
issued from Hot Screen or after a report is displayed:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 INSTALLATION. IBI.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-370.
 OBJECT-COMPUTER. IBM-370.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

 DATA DIVISION.
 FILE SECTION.

 WORKING-STORAGE SECTION.
 LINKAGE SECTION.

 01 RECNO PIC S9(9) COMP.
 01 LEN PIC S9(9) COMP.
 01 DDNAME PIC X(8).
 01 REC PIC X(4096).
 01 RETCOD PIC S9(9) COMP.
 01 ACVT PIC S9(9) COMP.

 PROCEDURE DIVISION USING RECNO, LEN, DDNAME, REC, RETCOD, ACVT.

 PERFORM SHOWPARMS.
 GOBACK.

 SHOWPARMS.
 DISPLAY " "
 DISPLAY " EXAMPLE COBOL DISPLAY: "
 DISPLAY " RECORD NUMBER " RECNO.
 DISPLAY " LENGTH OF RECORD IS " LEN.
 DISPLAY " DDNAME IS " DDNAME.
 DISPLAY " RECORD IS " REC.
 DISPLAY " RETURN CODE IS " RETCOD.
 DISPLAY " ACVT IS " ACVT.
 MOVE SPACES TO REC.

Creating Reports 1185

D. Writing User-Coded Programs to Create HOLD Files

1186 Information Builders

Arguments Used in Calls to Programs That Create HOLD Files

FOCUS

Index

_ masking character 180

-SET command 324

? DEFINE command 216

? FILTER command 199, 200

? JOIN command 873

? STAT command 147

? STYLE command 517

? STYLE query command 517

?F command 43

?FF command 44

[F]DEFCENT attribute 339

[F]YRTHRESH attribute 339

* multiplication operator 327, 329

** exponentiation operator 329

- subtraction operator 329

/ division operator 327, 329

% masking character 180, 182, 183

+ addition operator 329

$ masking character 180, 182

$* masking character 180, 182, 184

0X spot marker 376

A

absolute starting positions 712

ACCEPT attribute 441, 442

accessing help 35

ACROSS attribute 541

ACROSS COLUMNS AND phrase 119, 121

ACROSS field 541

ACROSS phrase 47, 64, 97, 107, 108, 110, 228,
1033, 1034

GRAPH 1033, 1034

ACROSS summary commands 313

ACROSS values 276, 277, 549

ACROSS with ROW-TOTAL 274

ACROSS-TOTAL component 276, 277

ACROSSCOLUMN attribute 529, 532, 599, 600,
601

using with WHEN 599, 600, 601

ACROSSLINE parameter 108

ACROSSPRT parameter 111

ACROSSTITLE component 550, 551

ACROSSVALUE component 541, 550, 551

ADD command 53

ADD option 215

ADD parameter 982

adding blank rows 968

adding calculated values in financial reports 971

adding columns to financial reports 971

adding data to financial reports 941, 952

adding financial data to reports 952

Creating Reports 1187

adding graphics to reports 773, 774, 780

adding images to reports 773, 774, 780

adding rows to financial reports 941, 944

adding tag rows to financial reports 941, 942, 978

adding text rows to financial reports 968

adding Type 1 PostScript fonts 692

adding underlines to financial reports 993

adding values 54

adding values for numeric fields 54

adding virtual fields 216

addition operator 329

addressing columns 961

aggregate values 167

aggregation 153, 418

aggregation and external sorting 153, 154, 155

aliases 40, 41, 44, 1098
displaying 44

aliases and SQL Translator 1098

aligning decimal points 758, 760, 762

aligning headings and footings 742, 744, 745,
746, 747

in HTML reports 744

aligning text fields 753

alignment methods 742

ALL parameter 166, 826, 836

ALL parameter and JOIN command 835, 836

ALL parameter and missing values 826, 827

ALL parameters 826

ALL prefix 825

ALL prefix and missing values 825

ALLOCATE command 422

ALPHA format 456

alphanumeric fields 179, 180, 181, 182, 183, 184,

185, 186, 287

alphanumeric fields and text fields 263

ALT attribute 774

alternate file views 904, 905

alternate indexes 204

AND operator 169, 352

ANSI-compliant reports with no records 419

AnV fields 347

applying CSS styles 614

applying grids to a report 772

arithmetic expressions 327

arithmetic operators 327, 329

AS CAPTION phrase 978, 979

AS phrase 95, 406, 407, 423, 436
in extract files 95

ascending sort order 116, 117

ASNAMES command 434, 435, 436, 437, 438

ASQ calculations on field values 63

ASQ prefix operators 63

assigning row labels 955

assigning row titles 990, 991

assigning row titles PICKUP rows 1005

assigning row titles RECAP rows 992

assigning row titles TAG rows 991

assigning titles to rows 990, 991, 992

attribute inheritance 493, 581, 582, 584
augmenting attributes 582
overriding 584

AUTOINDEX parameter 907, 908, 909

1188 Information Builders

Index

AUTOPATH parameter 907

AUTOTABLEF parameter 67, 68

AUTOTICK parameter 1060, 1062, 1063, 1081

AVE field 63

AVE prefix operator 63

AVE prefix operators 63

B

BACK command in Hot Screen 86

background images 773, 780

BACKIMAGE attribute 773, 780

bar charts 1048

BAR command 993

bar rows 993

BARNUMB parameter 1050, 1066, 1081

BARSPACE parameter 1048, 1050, 1081

BARWIDTH parameter 1048, 1050, 1081

base dates 332, 333

BASEURL SET parameter 794

BINARY format 457

BINARY HOLD format 457

BINARY output file format 457

BINARY PCHOLD format 457

BINS parameter 147

blank lines 401, 402, 403, 565, 574
formatting 574
inserting 402, 403

blank rows 968

blank spaces 706, 716
above data values 716

blanks 817

Boolean expressions 351, 353

Boolean operator 352

Boolean operators 351

BORDER attribute 768, 770

borders 767, 768, 770
around headings and footings 768
colors 768
styles 768
width of 768

BOTTOM command in Hot Screen 85

BOTTOMGAP attribute 707, 715

BOTTOMMARGIN attribute 515, 516

boundaries for Pooled Tables 919

boundaries sub pool 917

browser fonts 524

browser support for Cascading Style Sheets 607,

625, 626

browser titles 549

BSTACK parameter 1048, 1081

BY 103

BY attribute 534

BY field in Hot Screen 90

BY phrase 47, 55, 64, 97, 99, 100, 102, 113,
950, 1033, 1034

GRAPH 1033, 1034

BY phrase using with financial reports 950, 951

BY ROWS OVER phrase 119, 120

BY TOTAL phrase 135, 136, 137

BYDISPLAY parameter 102

BYLASTPAGE system variable 554

BYPANEL parameter 90

Creating Reports 1189

Index

BYSCROLL parameter 87

byte precision 57, 58

C

CA TELLAGRAF Interface 1074

CACHEFIELDS phrase 661, 662

calculated values 206, 208, 228, 229, 270, 273,

283, 284, 285, 286, 971

calculated values and row totals 270

calculated values in column totals 273

calculated values in row totals 273

calculating column and row totals 270

calculating column percents 64

calculating column totals 270, 271, 272, 273

calculating dates 334

calculating MAX field values 64

calculating maximum field values 64

calculating maximum values for field values 64

calculating MIN field values 64

calculating minimum field values 64

calculating minimum values for field values 64

calculating row percents 64

calculating row totals 270, 271, 272

calculating trends with FORECAST 239

calculating values for temporary fields 224

calculation on field values 66

calculations 966

calculations and functions 966, 967

calculations counting field values 71

calculations on counting field values 71

calculations on field values 60, 63, 64, 113

calculations on sum numeric field values 71

calculations on SUM numeric field values 71

calculations on TOT field values 71

calculations on total field values 71

calling functions 966, 967

CAPTION parameter 977, 982, 988, 989

captions 549

captions in a hierarchy 981

captions in Master Files 977, 988, 989

CAR data source 1126, 1127

Cartesian product 900, 901, 902

Cartesian product answer sets 1102

Cartesian product answer sets and SQL Translator

1102

Cascading Style Sheet classes 609, 610, 614,
615, 617, 618, 625, 627

assigning to report components 614, 615, 627
naming 610, 615

Cascading Style Sheet rules 609, 618, 625

Cascading Style Sheets (CSS) 492, 495, 496,
605, 606, 607, 609, 610, 612, 613,
614, 615, 616, 617, 618, 620, 621,
622, 623, 624, 625, 626, 627

browser support 607, 625, 626
conditional styling 615, 620, 621, 625
external 496, 607, 609, 614
formatting 614, 620
hyperlinks 621
images 621
inheritance 610, 627
internal 607, 612, 620
linking to 617, 618, 622, 623, 624
naming classes 610, 615

1190 Information Builders

Index

Cascading Style Sheets (CSS) (continued)
report formatting 616, 617
rules 609, 618, 625
troubleshooting 626

CDN (Continental Decimal Notation) 1102

CDN (Continental Decimal Notation) and SQL

Translator 1103

cell formatting 992

cell notation 965

cells 965

CENTCOMP data source 1160

CENTFIN data source 1158

CENTGL data source 1169, 1170

CENTHR data source 1158

CENTINV data source 1158

CENTORD data source 1158

CENTQA data source 1158

CENTSTMT data source 1171, 1172

CENTSYSF data source 1170

Century Corp data sources 1158, 1160, 1161,

1162, 1164, 1165, 1166, 1167, 1168, 1169

changing row titles 990, 991

changing row titles PICKUP rows 1005

changing row titles RECAP rows 992

changing row titles TAG rows 991

character expressions 325, 344

character strings 88, 179, 345, 346
locating 88

chart of accounts hierarchies 975, 977

charts of accounts 978

CHECK FILE command 872

CHECK FILE command and join structures 871, 872

CHECK PICTURE command 51

CHECK STYLE command 508

CLASS attribute 614, 615, 617, 618, 625

class intervals 1062

classes in Cascading Style Sheets 609, 614, 615,
617, 618, 625, 627

assigning to report components 609, 614, 615,
618, 625, 627

clearing conditional join structures 874, 875

clearing join structures 874, 875

clearing virtual fields 216, 217

clusters 917

CMS requirements 147

CNOTATION SET parameter 229, 230, 962, 963

CNT prefix operator 71

collapsing PRINT with ACROSS 111

COLOR attribute 519

color values 522

COLSPAN attribute 748

column addresses 961, 962

column and row totals in calculated values 270

COLUMN attribute 529, 530, 540

column notation 229, 230, 962, 963

column numbers 959

column reference numbers 229, 962

column spacing 405

column titles 406, 407, 408, 409, 410, 549, 551
creating 406, 407
customizing 408
identifying 551
justifying 409, 410

Creating Reports 1191

Index

column totals 270, 272, 273

column values 964

column width 644, 646

COLUMN-TOTAL phrase 270, 271, 272

columns 76, 395, 396, 397, 398, 399, 400, 405,
529, 530, 532, 540, 549, 550, 551,
644, 706, 707, 717, 719, 720, 721, 732

and SQUEEZE attribute 644
compressing 395, 396, 397
controlling order 717
controlling spacing 717
determining width 717, 719, 720, 721
formatting 76
identifying in a style sheet 530, 532, 540
justifying 732
positioning 398, 399, 400, 706, 707
spacing 405
stacking 717
titles of 549, 550, 551
width 644

columns in financial reports 941

columns numbers 959

COLUMNS parameter 93

COM format 458

COM HOLD format 458

COM output file format 458

COM PCHOLD format 458

COM SAVE format 458

COMASTER Master File 1144

combination of summary commands 307

combinations of subtotals 306

combining CSS with other formatting methods 620,

625

combining expressions 170

combining fields in date expressions 336, 337

combining multiple values 944

combining range of records 946

combining range of values 946, 947

combining records 944, 945

combining values 944, 945, 947

COMMA format 457

COMMA HOLD format 457

COMMA output file format 457

COMMA SAVE format 457

comma-delimited files 834

commands 88, 367, 381, 387, 388, 389, 391,
395, 396, 401, 403, 599

canceling in Hot Screen 88
FOLDLINE 395
MULTILINES 367
NOPRINT 391
NOSPLIT 387, 388, 389
OVER 396
PAGEBREAK 381
REPAGE 381
repeating in Hot Screen 88
SKIP-LINE 401
SUBFOOT 367
SUPPRINT 391
UNDERLINE 403
WHEN 599

comments 507

common high-order sort fields 884, 885, 887, 897,

899

comparing characters with masks 180, 181, 182,

183, 184

comparing records 881, 882, 883

compiling calculated values 914

1192 Information Builders

Index

compiling expressions 912, 913

compiling virtual fields 912

complex expressions 323

COMPMISS parameter 78, 820

compound expressions 169, 170

compound reports 466, 689, 690
displaying 689

COMPUTE command 55, 224, 225, 226, 228, 283,

302, 315, 316, 318, 324

COMPUTE command expressions 324

computing the average field values 63

COMT format 459

COMT HOLD format 459

COMT output file format 459

COMT PCHOLD format 459

COMT SAVE format 459

concatenated data sources and MATCH FILE

command 895

concatenating character strings 346

concatenating data sources 890, 891, 892

concatenating data sources and field names 894

concatenation 345, 1036
MORE phrase 1036
universal 1036

concatenation data sources 892, 895

concatenation for data sources 890

concatenation operators 345

concatenation usage formats 893

conditional drill-down 789, 790

conditional expression types 353

conditional expressions 325, 353, 354, 355

conditional formatting 411, 412, 413, 414, 415,

416, 593, 598

conditional grid formatting 603

conditional join structures 832, 834, 843, 861,

862, 863, 870

conditional links 789, 790

conditional operators 171, 175, 176

conditional styling 585, 586, 587, 588, 589, 590,
615, 620, 625

sequential conditional formatting 586
StyleSheets and 585, 587, 588, 589, 590

conditional text 320, 321

configuring PostScript fonts in z/OS 693

connected point plot graphs 1041, 1042

consolidating financial data 978, 981, 982, 984,
985

single row 984

consolidating financial data in multiple rows 985

consolidating financial data single row 982

constant dates 331, 335

constants 953

constants in date expressions 335

constants in Financial Modeling Language (FML)

952

constants in financial reports 952

constants in FML (Financial Modeling Language)

952

constants in FML requests 952, 953

CONTAINS operator 179

contiguous columns 960

contiguous columns in financial reports 960

Creating Reports 1193

Index

Continental Decimal Notation (CDN) 1102

Continental Decimal Notation (CDN) and SQL

Translator 1102, 1103

controlling attributes 434, 439, 440, 441, 442

controlling attributes and HOLD Master Files 440

controlling column reference numbers 229, 962

controlling field names 435, 436, 437, 438

controlling field names HOLD Master Files 435

controlling fields 439

converting data types for join structures 861

COUNT * command 56, 57

COUNT command 55, 56, 98

COUNT command for unique segments 56

count of occurrences 71

counting field values 55

COUNTWIDTH SET parameter 55, 57, 58

COURSE data source 1136, 1137

COURSES data source 1132

CREATE TABLE command 1099, 1100

CREATE VIEW command 1100, 1101

creating calculated values 208, 224, 225, 226

creating financial reports 939, 944

creating FOCUS data sources 429, 432, 433, 434

creating free-form reports 1010, 1014, 1015, 1016

creating HOLD files 423, 424, 425, 426, 429, 430,

432, 1183

creating multiple virtual fields 215

creating numeric expressions 327

creating output files 423

creating PCHOLD files 453

creating RECAP expressions 953

creating reports 31, 32, 33, 34, 36

creating rows 941, 942, 943

creating rows from multiple records 944

creating rows in financial reports 941

creating SAVB files 452

creating SAVE files 449, 450, 451

creating tag rows 942, 943

creating temporary fields 36

creating temporary fields with COMPUTE phrases

224

creating temporary fields with DEFINE FUNCTION

264, 265, 267

creating virtual fields 208, 209, 210, 211, 213,

215, 218

cross-century dates 335

cross-referenced fields 853

cross-referenced files 835, 843

CSS (Cascading Style Sheets) 492, 495, 496,
605, 606, 607, 609, 610, 612, 613,
614, 615, 616, 617, 618, 620, 621,
622, 623, 624, 625, 626, 627

browser support 607, 625, 626
conditional styling 615, 620, 621, 625
external 496, 607, 609, 614
formatting 614, 620
hyperlinks 621
images 621
inheritance 610, 627
internal 607, 612, 620
linking to 617, 618, 622, 623, 624
naming classes 610, 615
report formatting 616, 617

1194 Information Builders

Index

CSS (Cascading Style Sheets) (continued)
troubleshooting 626

CSSURL attribute 617, 623, 624

CSSURL parameter 617, 618, 622

custom report titles 549

custom reports 499

custom sort order 119

custom worksheet names 549

customizing reports 38, 357, 394, 410, 411, 1014
with SET parameters 410

customizing sort order 119

D
data 32, 644

descriptions 32
source types 32
wrapping 644

DATA component 538, 539

data extraction 423, 426

data fields 180

data formats for cross-referenced fields 859

data formats for host fields 859

data formats for join structures 859

data retrieval 162, 164, 903, 904, 905, 907, 908,

909, 911, 941, 1004, 1005

data retrieval and TABLEF command 910, 911

data retrieval using TABLEF command 910

data source 51

data sources 32, 34, 36, 878, 890, 1113
joining 36
merging 878
types 32

data structures 906

data type conversion 860

data type conversions 860, 861

data types 264, 860, 861

data wrapping 644, 646

date constants 331

date expressions 331, 336

date fields 331

date formats 641, 643, 1104, 1105
unsupported 643

date formats and SQL Translator 1104, 1105

date value formats 332, 333

date values 332

date-time data types 337

date-time expression types 331

date-time expressions 331

date-time field formats 337

date-time format 342

date-time format and display fields 337

date-time values 331, 1106, 1107, 1108

date-time values and SQL Translator 1106, 1107,

1108

DATEFORMAT parameter 337

DATEFORMAT setting 337

dates 334, 644, 1067
in graphs 1067
separators 644

DB2 format 460

DB2 HOLD format 460

DB2 output file format 460

DBAFILE attribute 835

Creating Reports 1195

Index

decimal points 755, 758, 760, 762
aligning with data 755

decimal values 758, 760, 762
comparing 760

declaring filters 196

default formatting 625

default proportional fonts 523

DEFAULT- FIXED attribute 524

DEFAULT- PROPORTIONAL attribute 524

deferred graphics output 1072

DEFINE and dates 220, 222, 335

DEFINE attribute 324, 1039
GRAPH command 1039

DEFINE command 211, 213, 215, 324

DEFINE command and join structures 855, 856,

857, 858, 865, 866, 868

DEFINE command and missing values 810, 811,

812, 813, 814

DEFINE command expressions 324

DEFINE compiler 912, 913

DEFINE FILE RETURN command 868

DEFINE FILE SAVE command 219, 868

DEFINE FUNCTION command 264, 265, 267

DEFINE function deleting 264

DEFINE function displaying 264, 267

DEFINE function limitations 264, 266

DEFINE function querying 264

DEFINE functions 264, 265, 267

defining custom groups 126, 127

defining filters 195, 196, 197

defining virtual fields 213

DELETE command 1111

deleting DEFINE functions 267

delimited file, creating 473

delimited output files 460

descending sort order 116, 118

designating missing values 828

DEVICE parameter 1029, 1081

DFIX 473

DFIX format 460

DFSORT utility 146, 147, 931

DHTML HOLD format 460

DHTML output format 460, 632

Dialect Translation 1090

Dialogue Manager 324, 938

DIF format 461

DIF output file format 461

DIF PCHOLD format 461

DIF SAVE format 461

direct percent 66

direct percent of counts (PCT.CNT) 66

display ADD command 53

display commands 45, 98, 888

display commands and MATCH FILE command 888

display COUNT * command 56

display COUNT command 55, 98

display field values 47, 49

display fields 39, 60, 61, 77
limitations 39

display fields for prefix operators 60

display LIST * command 49

1196 Information Builders

Index

display LIST command 98

display LIST commands 45, 47

display PRINT * command 49

display PRINT command 98

display PRINT commands 45, 47

display SUM command 53, 54, 98

display SUM commands 45

display values 45

display WRITE command 53

displaying ADD command 53

displaying all fields in a segment 50

displaying all fields in segments 49

displaying captions 978

displaying children 978, 980, 981

displaying error messages 149, 150

displaying excluded values 103

displaying field names 43, 44

displaying field values 45, 47, 48, 49

displaying FML hierarchies 975, 978

displaying grand totals 278

displaying graphs 1026

displaying hierarchies 975

displaying hierarchy values as captions 981

displaying HOLD Master Files 423, 426

displaying join structures 871, 872, 873

displaying LIST * command 49

displaying LIST command 47

displaying LIST commands 45

displaying parents and children 978, 980, 981

displaying PRINT * command 49

displaying PRINT command 47

displaying PRINT commands 45

displaying reports 81, 82, 89, 95, 157, 419, 496

displaying retrieval order 51

displaying retrieval order for multi-path data sources

51

displaying structure for multi-path data sources 51

displaying sub-totals 281, 282, 283

displaying subtotals 278, 279, 280, 281, 282, 283

displaying SUM command 53

displaying summary lines 321

displaying values 45

displaying virtual fields 216

displaying WRITE command 53

distinct prefix operators 67

distinguishing virtual fields and calculated values

208

division operator 327, 329

DOC format 461

DOC output file format 461

DOC PCHOLD format 461

DOC SAVE format 461

double exponential smoothing 251, 252

double exponential smoothing FORECAST 251, 252

DOWN command in Hot Screen 85

DROP VIEW command 1100

DROP VIEW command and SQL Translator 1101

DST prefix operator 67

Creating Reports 1197

Index

DST prefix operator restrictions 67

DST prefix operators 67

DUPLICATECOL parameter 141

dynamic reporting 975

dynamically formatting virtual fields 220, 222, 223

E

EDUCFILE data source 1121, 1122

ELEMENT attribute 801, 802

embedded fields 559, 560

embedded quotation marks 344, 345

embedding images 621

EMPDATA data source 1133, 1134, 1135

EMPLOYEE data source 1116, 1118, 1119

empty reports 419

EMPTYREPORT parameter 419

END command 35, 1032
in GRAPH request 1032

ending a report request 35

EQ operator 178, 352

equijoins 832, 834, 845

error files 1173, 1174
CMS 1174
z/OS 1174

error messages 35, 1173, 1174

escape characters 184, 185, 186

ESSBASE hierarchies 975

establishing segment locations 218

estimating number of records 148

estimating records to be pooled 925

estimating report lines 925

ESTLINES 925

ESTLINES parameter 148

ESTRECORDS 925

ESTRECORDS parameter 148

evaluation of temporary fields 207

ex_forecast_dist 259

ex_forecast_mov 258

ex_forecast_mult 257

ex_regress_mult 262

Excel 2000 alignment 744

Excel 2000 format 635, 639, 657, 684
date formatting 639
numeric formatting 639
PIVOT option 657
transferring files 684

Excel 2000 TOCs (tables of contents) 671, 672

EXCEL format 461

Excel formats supported with AnV fields 461

Excel formulas 635, 655, 656, 657
character limit 656
generating 655
generating calculated values 656
PIVOT option 657
translation support 655

excel locking 647

Excel Named Ranges 665, 666, 667
Compound Excel reports 667
support for 667

EXCEL output file format 461

EXCEL PCHOLD format 461

Excel reports 671, 672

EXCEL SAVE format 461

Excel workbook 665, 666, 667

1198 Information Builders

Index

EXCEPT operator 1103

EXCLUDES operator 187

excluding missing values from tests 817

existing data 178

EXL2K alignment 744

EXL2K display format 462

EXL2K format 635, 637, 638, 639, 640, 641,
644, 646, 651, 653, 655, 659, 660,
662, 664, 684

CACHEFIELDS phrase 662
column width 644, 646
conditional styling in 637
data wrapping 644, 646
default languages for 639
displaying calculated values 653
displaying column totals 651
displaying dates 641
displaying numeric data 640
displaying row totals 653
FORMULA option 651
interactive spreadsheets 651
National Language Support 638
PAGEFIELDS phrase 664
PIVOT option 659
TABLE syntax 660
transferring files 684
translation support 655

EXL2K FORMULA 462

EXL2K FORMULA display format 462

EXL2K output 629

EXL2K output file format 462

EXL2K PCHOLD format 462

EXL2K PIVOT 463

EXL2K PIVOT format 463

EXL2K SAVE format 462

EXL2K TOCs (tables of contents) 671, 672

EXL97 display format 463

EXL97 format 635, 685, 686, 687
HOLD option 685
limitations 687
StyleSheet syntax 685
styling reports 685, 686

expanding byte precision 58

expanding byte precision for COUNT command 57

expanding precision 58

explicit labels 955, 956, 957

EXPN and numeric functions 328, 329

EXPN function 328, 329

exponential moving average 239, 241, 248, 249

exponential moving average FORECAST 239, 241,

248, 249

exponentiation operator 329

exporting from data sources 423, 426

expression dates 325, 335

expression types 325

expressions 206, 323, 324, 1104

expressions and SQL Translator 1104

expressions IF phrase 324

expressions, relational 353

EXTAGGR parameter 153

extending heading and footing code 376, 377

extending underlines 569

external Cascading Style Sheet classes 609, 614,
615, 617, 618, 625, 626

assigning to report components 614, 615, 626
names 615

external Cascading Style Sheet rules 609, 610,
618, 626

BODY element 609

Creating Reports 1199

Index

external Cascading Style Sheet rules (continued)
TD element 609, 610

external Cascading Style Sheets 495, 607, 609,
610, 614, 615, 616, 617, 618, 620,
621, 622, 623, 624, 625, 626, 627

browser support 625, 626
classes 609, 617, 618, 625
combining with other formatting methods 620,
622
conditional styling 615, 620, 625
hyperlinks 620, 621
images 620, 621
inheritance 610, 627
linking to 617, 618, 621, 622, 623, 624
refreshing 626
report formatting 610, 614, 616, 617, 620,
621, 625
rules 609, 618, 626
troubleshooting 626

external files 950

external sorting 146, 147, 149, 150

external sorting and aggregation 153

external sorting and HOLD files 155, 156

external sorting by aggregation 153, 154, 155

external sorting requirements 147

EXTHOLD parameter 156

extract files 422, 445, 448, 449, 481

extract files and missing values 818

EXTRACT function 1108

extracting date components 336

EXTSORT parameter 146, 147

EXTUNDERLINE attribute 569

F

field dates 331

field format expressions 326

field formats 89, 326, 335
redefining 89

field names 40, 41, 42, 43, 44, 436, 437, 438,
1103

aliases 40, 41
displaying 43, 44
long 41, 42
qualified 40, 41, 42
truncated 40, 41

field names and concatenating data sources 894

field names and SQL Translator 1103

field names and universal concatenating 894

field names and universal concatenation 893

field padding 478, 479

field references for COMPUTE command 227

field reformatting and missing values 78, 820

field types not supported for EXCEL format 461

field values 45, 113, 372, 373
embedding 372, 373

field-based reformatting 220, 222, 223

FIELDNAME command 41

fields 40, 41, 206, 326, 391, 392
in report requests 40, 41
suppressing display 391, 392

FILE command 34

FILEDEF command 422

FILTER parameter 195, 196, 197, 198

FILTER query command 195, 199, 200

filters 195, 196, 198, 199, 200, 201

FINANCE data source 1130

financial data 981

financial data values 941

1200 Information Builders

Index

Financial Modeling Language (FML) 533, 552,
938, 1182

free text in 552

Financial Modeling Language (FML) and Dialogue

Manager 938

financial report hierarchies 978

financial reports 938, 975

financial reports and external files 950

financial reports and HOLD files 1006

financial reports and inter-row calculations 954, 955

financial reports and recursive models 973, 974

financial reports charts of accounts 975, 978, 980,

981

financial reports hierarchies 982, 988, 989, 990

financial reports inserting text rows 968

financial reports inserting variables in text rows 970

financial reports records in multiple rows 949

financial reports repeating rows 957

financial reports saving intermediate results 1002

financial reports sorting with BY 950

financial reports sorting with FOR 950

financial reports supplying data as constants 952

fixed-axis scales (fixed limits) 1061, 1063, 1071

FIXRETRIEVE parameter 443, 444

FML (Financial Modeling Language) 533, 552,
938, 939, 1182

free text in 552

FML (Financial Modeling Language) and Dialogue

Manager and 938

FML hierarchies 975, 977, 978, 980, 981

FML hierarchies indenting captions 998

FML hierarchies indenting row titles 997

FML hierarchies indenting text or numbers 993

FML hierarchies loading into memory 988, 989

FOCFIELDNAME amper variable 42

FOCPOOLT 926

FOCPOST files 1002

FOCSTYLE files 506, 688

FOCUS data sources 159, 160, 429

FOCUS file structure 429, 431

FOCUS format 463

FOCUS StyleSheet attributes 614, 615, 617, 618,
623, 624, 625

CLASS 614, 615, 617, 618, 625
CSSURL 617, 623, 624

FOCUS StyleSheets 616, 620, 992

FOLD-LINE command 718

FOLDLINE command 395, 396, 406

FONT attribute 523

font files 687, 693

font map files 687, 692, 693, 695, 696
entries 695
Portable Document Format (PDF) 695

fonts 518, 519, 520, 521, 523, 524, 692, 693,
695, 761

adding PostScript fonts 692
adding PostScript Type 1 fonts 692
browser type 524
colors 518, 520, 521
configuring PostScript fonts 693
default type 523
in HTML Reports 523
inherited styles 520
measuring 761
PostScript (PS) 693
PostScript Type 1 693, 695
relative point sizes and HTML fonts 519

Creating Reports 1201

Index

fonts (continued)
sizes 518, 519

footers 1037, 1039
embedding field values 1039

footing code 377

FOOTING command 1014

FOOTING component 554, 556

footings 358, 359, 372, 373, 378, 548, 554,
556, 559, 706, 762, 1037

aligning 762
creating 1037
embedded fields in 559
identifying in a style sheet 554, 556
inserting data in 372, 373, 378
limitations 359
positioning 706

FOR phrase 67, 68, 119, 126, 127, 938, 939,
942, 950, 951, 1182

syntax 1182

FOR phrase reusing values 948

FORECAST 244, 257, 258, 259

FORECAST double exponential smoothing 251, 252

FORECAST exponential moving average 239, 241,

248, 249

FORECAST limit 244

FORECAST linear regression analysis 239, 241

FORECAST linear regression equation 254, 256

FORECAST processing 241

FORECAST simple moving average 239, 241, 245,

247

FORECAST triple exponential smoothing 252, 254

forecasted values 598

format ALPHA 456

format dates 332, 333

FORMAT DFIX 473

format DHTML 460, 632

formats 95
extracting files 95

formatted graphs 1072

formatting cells 992

formatting columns 76, 77, 78, 992

formatting data 537, 538

formatting fields 326, 335

formatting financial reports 992, 993

formatting graphs 1026

formatting heading and footing lines 757

formatting HOLD files 423

formatting options for financial reports 992

formatting output files 455

formatting PCHOLD files 453

formatting report columns 76, 77, 78

formatting reports 357, 359, 363, 365, 374, 380,

391, 394, 395, 396, 398, 401, 405, 408, 409,

410, 411, 494, 610, 614, 616, 617, 620, 625,

1094

formatting reports and SQL Translator 1094

formatting rows 992

formatting SAVB files 452

formatting SAVE files 449, 450

FORMULA option 651, 653
displaying calculated values 653
displaying column totals 651
displaying operation results 651
displaying row totals 653

FORMULTIPLE parameter 948, 949

1202 Information Builders

Index

FORWARD command in Hot Screen 85

free text 548, 552, 968, 969
identifying in FML reports 552

free-form reports 614, 615, 758, 762, 1009, 1016

FREETEXT component 552

FROM ... TO operator 175, 176

FST prefix operator 69, 70

function keys in Hot Screen 92, 95

functions 323, 966

FYRTHRESH attribute
date-time data type and 337

G

GCOLOR parameter 1081

GDDM graphics 1076

GE operator 176, 177, 352

generating internal Cascading Style Sheets 612,

613

generating TABLEF commands 1110

GET CHILDREN parameter 978, 982

GGDEMOG data source 1152

GGORDER data source 1152

GGPRODS data source 1152

GGSALES data source 1152

GGSTORES data source 1152

GMISSING parameter 1069, 1081

GMISSVAL parameter 1069, 1081

Gotham Grinds data sources 1152, 1153, 1154,

1155, 1156, 1157

GPROMPT parameter 1026, 1081

grand totals 278

GRANDTOTAL component 534, 535, 542, 543, 544

GRAPH command 1018, 1032, 1078

graph formatting 609, 610, 614, 617
BODY element 609
external Cascading Style Sheets 614, 617
TD element 610

graph forms 1040, 1041, 1042, 1045, 1048,
1053, 1056

bar charts 1048
connected point plots 1041, 1042
histograms 1045
pie charts 1053
scatter diagrams 1056

GRAPH parameters 1026, 1029, 1047, 1048,
1050, 1053, 1056, 1057, 1058, 1060,
1061, 1062, 1063, 1064, 1065, 1066,
1069, 1075, 1081

AUTOTICK 1060, 1081
BARNUMB 1050, 1066, 1081
BARSPACE 1048, 1050, 1081
BARWIDTH 1048, 1050, 1081
BSTACK 1048, 1081
DEVICE 1029, 1081
GCOLOR 1081
GMISSING 1069, 1081
GMISSVAL 1069, 1081
GPROMPT 1026, 1081
GRAPH 1058
GRIBBON 1081
GRID 1056, 1065, 1081
GTREND 1056, 1066, 1081
HAUTO 1061, 1081
HAXIS 1061, 1081
HCLASS 1062, 1081
HISTOGRAM 1047, 1081
HMAX 1061, 1081
HMIN 1061, 1081
HSTACK 1047, 1081
HTICK 1062, 1081
PAUSE 1075, 1081
PIE 1053, 1081

Creating Reports 1203

Index

GRAPH parameters (continued)
PLOT 1081
PRINT 1029, 1081
TERMINAL 1081
VAUTO 1063, 1081
VAXIS 1063, 1081
VCLASS 1064, 1081
VGRID 1057, 1065, 1081
VMAX 1063, 1081
VMIN 1063, 1081
VTICK 1064, 1081
VZERO 1069, 1081

GRAPH requests 1031, 1032, 1033, 1034, 1035,
1036, 1037, 1053, 1081

ACROSS phrase 1033, 1034
BY phrase 1033, 1034
concatenating files 1036
END command 1032, 1081
IF phrase 1035
pie charts 1053
QUIT command 1081

graph types 1017, 1018, 1040, 1041, 1042,
1045, 1048, 1053, 1056

bar charts 1048
connected point plots 1041, 1042
histograms 1045
pie charts 1053
scatter diagrams 1056

GRAPH vs. TABLE 1018, 1032

graphic devices 1029, 1081

graphics 773, 774, 776, 780, 781, 783, 784,
791, 792

adding to HTML reports 783
adding to PDF reports 784
adding to reports 773, 774, 776, 781
linking 791, 792

graphs 549, 1017, 1018, 1026, 1029, 1033,
1034, 1035, 1036, 1037, 1045, 1058,
1060, 1062, 1063, 1065, 1067, 1069,
1071, 1072, 1073, 1075, 1081

adding footings 1037
adding grids 1065
adjusting parameter settings 1058, 1081

graphs (continued)
annotating 1037
class and tick intervals 1062
creating from unlike data sources 1036
deferred output 1073
displaying 1026
displaying stored graphs 1073
fixed axis scales 1071
formatting 1026, 1081
headings 1037
horizontal axis features 1033, 1034, 1060,
1081
missing data 1069, 1081
naming subjects 1033, 1034
parameter settings 1081
plotting dates 1067
printer/plotter selection 1029, 1081
prompting for values 1026
redisplaying with REPLOT 1018
saving 1072
saving formatted graphs 1075
selecting records 1035
stacking bars with OVER 1045
titles 549
verb phrases 1033, 1034
vertical axis features 1063

GRIBBON parameter 1081

GRID attribute 767, 768, 771

GRID parameter 728, 1026, 1056, 1065, 1081

grids 767, 768, 771, 772, 1057

group fields 854

group fields and join structures 854

group key values 188

grouping numeric data 124, 125, 126, 127

grouping numeric data into tiles 127, 129, 130,

131, 132, 133

groups of values 947

GT operator 176, 177, 352

1204 Information Builders

Index

GTREND parameter 1056, 1066, 1081

GUTTER attribute 801, 802

H

H data type 337

HAUTO parameter 1061, 1081

HAXIS parameter 1061, 1081

HCLASS parameter 1062, 1081

HEADALIGN attribute 744, 745, 749

headers and footers 1037, 1039
embedding field values 1039

heading code 377

HEADING command 1014

HEADING component 554, 556

headings 358, 359, 362, 372, 373, 374, 378,
548, 554, 556, 706, 714, 717, 762,
1037

aligning 714, 762
annotated text in 1037
creating 362, 1037
identifying in a style sheet 556
inserting data in 372, 373, 374, 378
limitations 359
positioning 706, 717

help reports 35

HewlettPackard plotters 1077

HGRID attribute 767, 772

hiding rows 1001, 1002

hiding sort field values 138

hiding sort values 138

hierarchies 975, 982, 989, 990

hierarchies in MASTER Files 989

high-order sort fields 884, 885, 887, 897, 899

high-resolution graphic devices 1029, 1030, 1076,
1077, 1078, 1081

Hewlett Packard plotters 1077, 1081
IBM devices and GDDM 1076, 1081
Tektronics terminals 1078, 1081

HISTOGRAM parameter 1047, 1081

histograms 1045, 1061, 1063, 1081
HAXIS 1061, 1081
VAXIS 1063, 1081

HMAX parameter 1061, 1081

HMIN parameter 1061, 1081

HOLD AT CLIENT command 423, 453

HOLD command 422, 423

HOLD file INTERNAL format 480

HOLD file keys and indexes 449

HOLD file structured 481

HOLD file suppressing field padding 478, 479

HOLD file text fields 472, 473

HOLD files 422, 423, 430, 443, 444, 481, 878,
1183

creating 1183

HOLD files and external sorting 155, 156

HOLD files and merge phrases 881, 882, 883

HOLD files and missing values 818

HOLD files for financial reports 1006

HOLD files text fields 455

HOLD format ALPHA 456

HOLD format DFIX 460

HOLD format DHTML 632

HOLD format INGRES 464

HOLD format INTERNAL 464, 478, 479

HOLD format PowerPoint 466

HOLD format Red Brick 466

Creating Reports 1205

Index

HOLD format SQL 467

HOLD format SQLDBC 467

HOLD format SQLINF 467

HOLD format SQLMSS 467

HOLD format SQLODBC 468

HOLD format SQLORA 468

HOLD format SQLSYB 468

HOLD format SYLK 468

HOLD format TAB 469

HOLD format TABT 469

HOLD format WP 470

HOLD format XFOCUS 471

HOLD formats 455

HOLD formats EXL97 463

HOLD formats FOCUS 463

HOLD Master Files 423, 427, 434, 436, 437, 438,

439, 440, 441, 442

HOLD option 685

HOLDATTR command 434, 441

HOLDATTR parameter 442

HOLDLIST command 434, 439, 440

horizontal axis features 1033, 1034, 1060, 1061,
1062, 1063, 1065

class and tick intervals 1062
grids 1065
scale 1063
sorting graph subjects 1033, 1034
width 1061

horizontal bar charts 1048

horizontal sort values 549, 551
identifying 551

host fields 859

host files 835, 843

Hot Screen 81, 82, 85, 86, 87, 88, 89, 90, 92,
93, 95

activating 82
canceling commands 88
displaying BY fields with panels 90
function keys 92, 95
locating character strings 88
panel 93
previewing reports 90
printing 81
redisplaying reports 89
reissuing previous command 88
repeating commands 88
SAVE files 88
saving selected data 88
scrolling 85, 86, 87, 92

Hot Screen commands 85, 86, 89, 94
BACK 86
BOTTOM 85
DOWN 85
FORW(ARD) 85
LEFT 86
NEXT 85
OFFLINE 94
OFFLINE CLOSE 94
RESET 86
RETYPE 89, 94
RIGHT 86
TOP 86
UP 86

HSTACK parameter 1047, 1081

HTICK parameter 1062, 1081

HTML alignment 744

HTML format 463

HTML output 629

HTML reports 523, 524, 796
fonts in 523, 524
hyperlinks in 796

HTMLCSS SET parameter 612, 613

1206 Information Builders

Index

hyperlinks 621, 796, 797

I

ICU (Interactive Chart Utility) Interface 1033, 1074

identifying cells 965

identifying columns 959, 960, 961, 962

identifying columns by address 961

identifying columns by number 959

identifying columns by relative address 962

identifying columns by value 964

identifying columns in financial reports 958, 959

identifying contiguous columns 960

identifying groups of values 947

identifying ranges of multiple values 946

identifying report components 527, 529, 530,
532, 533, 534, 535, 536, 537, 538,
539, 540, 541, 542, 543, 545, 549,
550, 551, 552, 554, 556, 558, 559,
560, 565, 566, 567

columns 529, 530, 532, 540
data 537, 538, 539
embedded fields 559, 560
free text 552
headings and footings 554, 556
page numbers 565, 566, 567
rows 533, 534, 541
skipped lines 565, 566, 567
sort values 551
text strings 558, 559
titles 549, 550, 551, 552
totals and subtotals 534, 535, 536, 542, 543,
545
underlines 565, 566

identifying rows 955, 956, 957

identifying rows in financial reports 956

IF command 1035

IF command with LIKE or UNLIKE 181

IF operator 171, 173

IF phrase 158, 181, 190, 191, 324

IF phrase expressions 324

IF/THEN/ELSE statements 354

IMAGE attribute 773, 774, 776, 780, 781

IMAGEALIGN attribute 774

IMAGEBREAK attribute 774

images 621, 773, 774, 776, 780, 781, 783, 784,
791, 792

adding to HTML reports 783
adding to PDF reports 784
adding to reports 773, 774, 776, 781
linking 791, 792

improving performance 155, 845, 903, 1110

IN phrase 398, 399, 400

IN-GROUPS-OF phrase 124, 125

IN-RANGES-OF phrase 124, 125

INCLUDES operator 187

indenting captions 981

independent paths 162, 164

index optimized retrieval 1109

INGRES formats 464

inheritance in style sheets 610, 627

inheriting attributes 581, 582

inline Style Sheets 607, 608

inner join 832, 848, 851

inner join structures 851

INSERT command 1111

INSERT INTO command 1099

Creating Reports 1207

Index

inserting blank lines 565

inserting text in financial reports 968, 969

inserting underlines 565

inserting variables in free text 970

installing Pooled Tables 935

installing Pooled Tables on MVS 936

installing Pooled Tables on VM/CMS 936

inter-row calculations 953, 954

internal Cascading Style Sheets 607, 612, 620

INTERNAL format 464, 478, 479

internal matrixes 229, 911, 962

internal storage and field formats 333

INTERSECT operator 1103

irrelevant report data 807, 808

IS NOT operator 180, 181

IS operator 180, 181

ISO standard date-time formats 342

ITEM attribute 558

ITEMS data source 1149

J
JavaScript functions 788

linking to 788

JOBFILE data source 1120, 1121

JOBHIST data source 1137

JOBLIST data source 1138

JOIN CLEAR command 874, 875

JOIN command 834, 839, 840, 843, 845, 856,

862, 1096, 1097, 1098

JOIN command and ALL parameter 835, 836

JOIN command and SQL Translator 1096, 1097,

1098

join structures 834, 843, 845, 853, 860, 1096,

1097, 1098

join structures and CHECK FILE command 871, 872

join structures and DBA security 835

join structures and DEFINE command 855, 856,

857, 858, 865, 866, 868

join structures and group fields 854

join structures and numeric data types 861

join structures and qualified field names 1098

join structures and virtual fields 855, 856, 857,

858, 866, 868

join structures and WHERE phrase 870

join types 832

joining data sources 36, 201, 834, 835, 843, 860

joining fields 860, 861

joins 832

justification regions 736

JUSTIFY attribute 732, 735, 737, 761

JUSTIFY syntax 755

justifying column titles 409, 410, 737, 738, 739,

740

justifying data 722, 733

justifying grand totals 740, 741

justifying headings and footings 734, 735, 736

justifying subtotals 740, 741

1208 Information Builders

Index

K

KEEPDEFINES parameter 865, 866

KEEPFILTERS SET parameter 201

key fields 429, 431

keyed retrieval 443, 444

L

LABEL attribute 533, 534, 552

LABELPROMPT attribute 801, 802

labels 801, 802, 803, 955

labels for rows 956, 957

lagging values 837

landscape orientation 513

last page number 554

last page number in a sort group 554

LE operator 176, 177, 352

LEDGER data source 1129

LEFT command in Hot Screen 86

left outer join 832, 851

left outer join structures 851

LEFTGAP attribute 707

LEFTMARGIN attribute 515, 516

LIKE operator 180, 181

limit FORECAST 244

limitations for headings and footings 359

limitations in display fields 59

limiting display fields 59

limits for display fields 39, 59

LINE attribute 556, 557

line termination characters 700

line-by-line formatting 755, 757

linear regression 260, 262

linear regression analysis 239, 241

linear regression analysis FORECAST 239, 241

linear regression equation 254, 256

linear regression equation FORECAST 254, 256

LINES SET parameter 730

linking report components 786, 787, 788

linking report pages 585, 797, 799
heading text and 799
images and 797
in HTML reports 797
page numbers and 799
setting conditions 585

linking to external Cascading Style Sheets 617,

618, 621, 622, 623, 624

linking to JavaScript functions 788

linking with conditions 789, 790

LIST * command 49

LIST command 45, 47, 57, 98

list records 47

listing join structures 873

listing records 47, 48

literals 1104

LOAD CHART command 988, 989

load procedures 1113

loading a hierarchy into memory 988, 989

LOCATE command 88

locating character strings 88

Creating Reports 1209

Index

LOCATOR data source 1139

LOCKED attribute 648

locking in excel spreadsheets 647

logical expression types 351

logical expressions 169, 179, 325, 351

logical operator 179

logical operators 169, 170, 171, 352

long field names 40, 41, 42

LOTUS format 464

low-resolution graphic devices 1029

LST prefix operator 69

LT operator 176, 177, 352

M

MACRO attribute 579, 580

macros 492, 578, 579, 580
applying 579, 580
defining 580
overriding 580

mailing labels 801, 802, 803

maintaining across joins 201

maintaining filters 201

maintaining filters across joins 201

masked fields 180, 182

masking characters 180, 182, 947

masks 180, 181

Master Files 32, 178, 195, 977, 988, 1113
hierarchies in 988

Master Files and MISSING attribute 810, 811, 812

Master Files for financial reports 977

Master Files for FML hierarchies 977, 988, 989

Master Files for hierarchies 977

Master Files HOLD files 423

MATCH command 878, 879, 880, 881, 1181

MATCH FILE command 879, 880, 881, 882, 883

MATCH FILE command and concatenated data

sources 895

MATCH FILE command and display commands 888

MATCH FILE command and merge phrases 881,

882

MATCH FILE commands 878

matrix reports 115, 116, 270, 272

matrix type reports 115

matrixes 911, 912

MATRIXORDER attribute 801, 802

MAX prefix operator 64

MAX prefix operators 64

MAXEXTSRTS 931

maximum prefix operators 64

measurement 613

measurement units 515

measuring for column width alignment 761

measuring for decimal alignment 761

medium-resolution graphic devices 1029, 1030,
1075, 1081

Anderson Jacobson 1081
Gencom 1081

merge phrases 881, 883

merge phrases and HOLD files 881, 882, 883

merge phrases and MATCH FILE command 881,

882

1210 Information Builders

Index

merging data sources 878, 879, 880, 881, 882,

883, 884, 885, 887, 888, 895, 897, 899

merging data sources and display commands 888

merging data sources and PRINT command 888

merging data sources and SUM command 888

metrics files 687, 692, 693

METRICSFILE name 693

MIN prefix operator 64

MIN prefix operators 64

minimum prefix operators 64

MISSING attribute 178, 809, 815, 816, 817

MISSING attribute and extract files 818

MISSING attribute and Master Files 810, 811, 812

MISSING attribute and virtual fields 812

MISSING attribute limits 812

missing descendants 826, 827

missing instances 809

missing value data sources 807

missing values 178, 807, 808, 809, 810, 825,
826, 1069, 1081

GRAPH requests 1069, 1081

missing values and ALL parameter 826, 827

missing values and ALL prefix 825

missing values and DEFINE command 810, 811,

812, 813, 814

missing values and extract files 818

missing values and segment instances 809, 822,

823, 824

missing values and temporary fields 812

missing values for reformatted fields 78, 820

MODIFY procedure 753

MORE phrase 890, 891, 892, 895, 1036

MORE phrase and universal concatenation 891, 892

MOVIES data source 1148

multi-pane reports 801, 804
printing 804

multi-path data sources 51, 53, 218

multi-segment data sources 187

multi-segment files 187

multi-table HTML reports 730, 731

MULTILINES command 279, 280, 284, 367

multipath join structures 851

MULTIPATH parameter 162, 163, 164, 166

multiple display commands 139, 140

multiple display commands and ROW-TOTAL 274

multiple records 944

multiple sort fields 102, 103, 110, 139, 140

multiple values 944

multiple verbs 139

multiple virtual fields 215

multiple WHERE phrases 161

multiplication operator 327, 329

multivariate REGRESS 260, 261, 262

MVSMSGDF utility 931

MVSMSGSS utility 931

N

naming CSS classes 610, 615

naming extract files 422

Creating Reports 1211

Index

naming output files 422

National Language Support (NLS) 146

NE operator 178, 352

NEWPAGE command 365

NEXT command in Hot Screen 85

NLS (National Language Support) 146

NODATA character 808, 809, 828, 829

non-numeric fields 53, 54

non-recursive models 973

non-unique join structures 832, 835, 836

NOPAGE command 387

NOPRINT command 138, 391, 1001

NOSPLIT command 387, 388, 389

NOT FROM ... TO operator 175, 176

NOT LIKE operator 180

NOT operator 352

NOTOTAL command 319

numeric constants 1104

numeric data 124, 127, 640, 643
unsupported formats 643

numeric data types 860

numeric data types and join structures 861

numeric expressions 325, 330

numeric fields 53

numeric functions 328

numeric operator expressions 327, 329

O

OBJECT attribute 558

OFFLINE CLOSE 94

OFFLINE command 81, 94
TABLE 81

offline printing in Hot Screen 94

OMITS operator 179

ON GRAPH command 1072

ON phrase 411, 412, 413

ONLINE command 81
TABLE 81

operators 327, 351

operators prefix 61

optimized join structures 1109

optimizing join structures 1109

optimizing sorting data 146

OR operator 169, 352, 945

order of evaluation 330

ORIENTATION attribute 510, 513

outer join 832

output file format 456

output file format DFIX 460

output file format HTML 463

output file format INGRES 464

output file format INTERNAL 464

output file format LOTUS 464

output file format PDF 465

output file format PDF OPEN/CLOSE 466

output file format PostScript (PS) 466

output file format PPT 466

output file format Red Brick 466

output file format SQL 467

1212 Information Builders

Index

output file format SQLDBC 467

output file format SQLINF 467

output file format SQLMSS 467

output file format SQLODBC 468

output file format SQLORA 468

output file format SQLSYB 468

output file format SYLK 468

output file format TAB 469

output file format TABT 469

output file format WP 470

output file format XFOCUS 471

output file formats 455, 462, 463

output file formats EXL97 463

output file formats FOCUS 463

output file text fields 472, 473

output files 422, 445

output files and missing values 818

output files text fields 455

output format DHTML 632

output formats 455

OVER command 395, 396, 397, 718, 1045
GRAPH 1045

P

padded fields 478, 479

PAGE BREAK command 994

page breaks 381, 382, 387, 388, 389
suppressing 388, 389

page breaks in financial reports 994

page colors 510, 514
setting 514

page count 554

page fields 663

page footings 363, 364
creating 363, 364

page headings 359, 360, 361
creating 360, 361

page margins 515, 516
attributes 515

page numbers 380, 382, 383, 387, 554, 565,
566, 567

inserting 383
suppressing 387

page orientation 510, 513
landscape 513
portrait 513

PAGE parameter 387

page size 510, 511

PAGEBREAK command 381, 382

PAGECOLOR attribute 510, 514

PAGEFIELDS phrase 663, 664

PAGEMATRIX attribute 801, 802

PAGENUM component 565, 566, 567

PAGESIZE attribute 510, 511

panels 93

parent and descendant components 493

parent instances 826, 827

parent segments in qualified field values 187

partitioned FOCUS data sources 160

PAUSE parameter 1075, 1081
GRAPH 1081

PCHOLD command 422, 453

PCHOLD files 453

PCHOLD format 456

PCHOLD format DFIX 460

Creating Reports 1213

Index

PCHOLD format HTML 463

PCHOLD format LOTUS 464

PCHOLD format PDF 465

PCHOLD format PDF OPEN/CLOSE 466

PCHOLD format PS (PostScript) 466

PCHOLD format TAB 469

PCHOLD format TABT 469

PCHOLD format WP 470

PCHOLD formats 455, 462, 463

PCHOLD formats EXL97 463

PCT percent 64

PCT prefix operators 64

PCT.CNT prefix operator 66

PDF (Portable Document Format) 465, 687, 688,
689, 693, 695

compound reports 689
font files 687
font map files 687
generating reports in 687
metrics files 687
PostScript Type 1 fonts 693
requirements 688

PDF format on UNIX 699, 700

PDF OPEN/CLOSE format 466

PDF output 629

PDFLINETERM parameter 699, 700

percent (PCT) 64

percentiles 127

performance 146, 903, 1110

performing calculations on dates 334

PERSINFO data source 1140

personal Cascading Style Sheets 627

PICTURE RETRIEVE command 51

pie charts 1053

PIE parameter 1053, 1081

PIVOT option 657

PivotTables 657, 658, 660, 661, 663, 664
CACHEFIELDS phrase 661
generating 657
output 660
page fields 663
PAGEFIELDS phrase 663, 664
requests 657, 658
styling 658
TABLE syntax 660

PLOT parameter 1081

PLUS OTHERS 103

PLUS OTHERS phrase 103

POOL command 917

POOLBATCH command 930

Pooled Tables 916, 917, 922, 926, 932
memory management 926
subroutines for use with 922
trace facility 932

Pooled Tables commands and sub pool boundaries

920

Pooled Tables common selection criteria 928

Pooled Tables configuration 936

Pooled Tables example 918

Pooled Tables FOCPARM parameters 936

Pooled Tables FOCPOOLT 926

Pooled Tables memory requirements 927

Pooled Tables single TABLE clusters 921

Pooled Tables sort selection 931

Pooled Tables statistics 923

1214 Information Builders

Index

Pooled Tables sub pool boundaries 919

Pooled Tables temporary work file 926

Pooled Tables use with batch requests 930

Pooled Tables use with non-relational databases

928

Pooled Tables use with relational databases 928

POOLFEATURE 936

pooling criteria 917

POOLMEMORY 926

POOLRESERVE 927

Portable Document Format (PDF) 687, 688, 689,
693, 695

compound reports 689
font files 687
font map files 687
generating reports in 687
metrics files 687
PostScript Type 1 fonts 693
requirements 688

portrait orientation 513

POSITION attribute 706, 707, 708, 710, 711

positional column referenced calculated values 227

positional field references for COMPUTE command

227

positional labels 955, 956

positional referencing for columns 227

positioning columns 707, 710, 711, 717

positioning headings and footings 706, 708

positioning report components 706, 707

positioning text 374, 375

POST command 1003

posting data 1003, 1004

posting data in financial reports 1003

posting financial data 1002

PostScript (PS) format 466, 508, 513, 687, 688,
689, 693

compound reports 689
font files 687
font map files 687
fonts 693
generating reports in 687
metrics files 687
PostScript Type 1 fonts 693
printing 513
requirements 688

PostScript fonts 692

PostScript Type1 fonts 692

PowerPoint format 466

PPT format 466

precision 57

predicting values with FORECAST 239

prefix operators 60, 61, 62, 287, 288, 290, 302,
304, 305, 310, 313, 1033, 1034

GRAPH 1033, 1034

prefix operators for display fields 60

prefix operators in free-form reports 1015

preserving field names 434

preserving missing values 817, 818, 822

preserving virtual fields 219

PRINT * command 49

PRINT command 45, 47, 49, 98, 888, 1029, 1081
GRAPH 1029, 1081

PRINT command and merging data sources 888

PRINT command unique segments 53

printer/plotter selection for graphs 1029, 1081

printing 801, 802, 803, 804
labels 801, 802, 803

Creating Reports 1215

Index

printing (continued)
multi-pane reports 804

PRINTONLY parameter 439, 440

PRINTPLUS parameter 83

procedures sorting data 146

PROD data source 1125

producing a direct percent of a count 66

PROTECTED attribute 648

protecting virtual fields 219, 220

PS (PostScript) format 508, 513, 687, 688, 689,
693

compound reports 689
font files 687
font map files 687
fonts 693
generating reports in 687
metrics files 687
PostScript Type 1 fonts 693
printing 513
requirements 688

PS output 629

Q

qualified field names 40, 41, 42, 1098, 1103

qualified field names and SQL join structures 1098

qualified field names and SQL Translator 1103

qualified field values 113, 187

QUALTITLES parameter 408

query ? STAT command 147

query commands
? DEFINE 216
? STYLE 517
?F 43
?FF 44

querying HOLD files 423, 426

querying sort types 147

QUIT command 35, 1032, 1081
in GRAPH request 1032, 1081

quotation marks 344

quote-delimited string 344, 345

R

range of values 946, 947

range tests 175, 176, 177

ranges 124, 125, 126, 127

RANKED BY phrase 122, 123

RANKED BY TOTAL phrase 122

ranking sort field values 73, 122, 123, 133, 134

reading selection values from a file 191, 192

reading values from a file 193

READLIMIT operator 189

READLIMIT relational operator 189

RECAP command 315, 316, 317, 318, 324, 938,

939, 954, 955

RECAP command and FML reports 953

RECAP command expressions 324

RECAP component 534, 542, 543, 547

RECAP expressions 955

RECAP rows 953

RECOMPUTE command 283, 284, 286, 287, 288,

302, 306, 307, 308, 310, 311, 313

RECOMPUTE command and propagation to grand

total 296

RECOMPUTE prefix operators 313

1216 Information Builders

Index

RECORDLIMIT operator 189, 190

RECORDLIMIT relational operator 189, 190

records 47, 159, 944

records in multiple rows 948, 949

recursive join structures 839, 840, 841, 1098

recursive models 973, 974

recursive structures 839, 840

Red Brick format 466

REDBRICK format 466

ref_regress_usage 261

reformatting fields 220, 222, 223

refreshing external Cascading Style Sheets 626

REGION data source 1131

relational expressions 169, 351, 353

relational operator 180

relational operators 171, 173, 175, 176, 177, 178,

180, 182, 351

relative column addresses 962

relative starting positions 713

renaming column totals 270, 273

renaming HOLD files AS phrase 423

renaming PCHOLD files 453

renaming row totals 270, 273

REPAGE command 381

repeating fields 839

repeating fields in join structures 839

repeating rows 957

repeating sort values 102

REPLOT command 1018

report columns 76, 135
formatting 76

REPORT component 529

report components 493, 506, 518, 525, 527,
609, 614, 615, 617, 618, 706, 707,
785, 786, 787, 788

columns 527
linking 785, 786, 787, 788
positioning 706, 707
rows 527

report footings 358, 363
creating 363

report formatting 607, 610, 612, 614, 616, 617,
620, 625

external Cascading Style Sheets 614, 616, 617
inheritance in style sheets 610
internal Cascading Style Sheets 607, 612
tabular reports 617

report headings 358, 359, 360, 361
creating 360, 361

report output 36, 629
styled 629

report panels 93

report requests 36, 1089
creating 36

report requests and SQL statements 1089

report styling 605, 614, 616, 617, 620
external Cascading Style Sheets 614, 616, 617

report SUM columns 135

report syntax 492

report titles 549, 553

reporting against hierarchies 975, 978, 980, 981,

982, 990

reporting commands 1177

reporting options 1177

reports 31, 32, 33, 34, 35, 36, 38, 40, 81, 82,
85, 89, 95, 357, 359, 363, 365, 374,
380, 381, 382, 383, 387, 391, 394,
395, 396, 398, 401, 402, 403, 404,

Creating Reports 1217

Index

reports (continued)
405, 406, 408, 409, 410, 411, 419,
491, 492, 494, 495, 496, 499, 502,
518, 522, 523, 537, 538, 597, 635,
687, 689, 690, 723, 728, 730, 732, 796

applying sequential conditional formatting to
597
color values 522
comparing styled and non-styled 502
compound 689, 690
customizing 36, 38, 357, 499
displaying 36, 81, 82, 89, 95, 419, 496
displaying data 36
formatting 359, 363, 365, 374, 380, 381,
382, 383, 387, 391, 394, 395, 396, 398,
401, 402, 403, 404, 405, 406, 408, 409,
410, 411
formatting with Excel 2000 635
formatting with EXL97 635
formatting with style sheets 492, 495
formatting with StyleSheets 492, 494
identifying data 537, 538
in Portable Document Format (PDF) 687
in PostScript (PS) format 687
justifying columns 732
linking 796
positioning headers and footers 732
printing 36, 95
running 35
saving 36
scrolling in Hot Screen 85
selecting data 36
sorting data 36
specifying fields 36
specifying fonts for 523
styling 537, 538, 730
wrapping data 723
wrapping with alternative methods 728

requirements for external sorting 146

reserved words 1092

RESET command in Hot Screen 86

restricting sort field values 122, 123, 133, 134

restrictions for distinct prefix operators 67, 68

restrictions for DST prefix operators 68

restructuring data 906

retrieval data 162, 164

retrieval limits 189, 190

retrieval logic 904

retrieval order 154, 155

retrieving data 162, 164

retrieving data values 943

retrieving financial data 1002

retrieving financial data values for rows 942, 943

retrieving multiple values with masking characters

947

retrieving posted data 1004, 1005

retrieving records 69, 189, 190, 845

retrieving values for rows 942

retrieving values with masking characters 947

returned fields 335

RETYPE command 89, 94

reusing FOR field values 948

reusing output reports 421

reusing records 948, 949

reusing report output 421

reusing tag values 942, 948, 949, 982

reusing values 949

RIGHT command in Hot Screen 86

RIGHTGAP attribute 707

RIGHTMARGIN attribute 515, 516

RNK. prefix operator 73

1218 Information Builders

Index

rotating data sources 904

rounding numeric values 327

row formatting 992

row labels 957

row percent (RPCT) 64

row titles 552, 990, 991, 992

row totals 270, 272, 273, 276, 277

ROW-TOTAL phrase 270, 271

ROW-TOTAL with ACROSS and multiple display

commands 274

rows 533, 534, 541
identifying in a style sheet 541

rows and calculations 953, 954, 955

rows in financial reports 941

ROWTOTAL attribute 536

RPCT prefix operator 64

RPCT row percent 64

rules in Cascading Style Sheets 609, 618, 625

RUN command 35

S

SALES data source 1123, 1124

SALHIST data source 1141

SAME DB 445

SAME_DB extract files 445, 446, 448, 449

SAME_DB HOLD files 445, 446, 448, 449

SAME_DB HOLD format 445, 446, 448

SAME_DB HOLD format columns 448

SAME_DB output files 445, 446, 448, 449

sample data sources 1113, 1116, 1118, 1119,
1120, 1121, 1122, 1123, 1124, 1125,
1126, 1127, 1129, 1130, 1131, 1132,
1135, 1136, 1137, 1138, 1139, 1140,
1141, 1142, 1144, 1146, 1147, 1148,
1149, 1150, 1151, 1152, 1153, 1154,
1155, 1156, 1157, 1158, 1160, 1161,
1162, 1164, 1165, 1166, 1167, 1168,
1169, 1170, 1171, 1172

CAR 1126, 1127
CENTGL 1169, 1170
CENTSTMT 1171, 1172
CENTSYSF 1170
Century Corp 1158, 1160, 1161, 1162, 1164,
1165, 1166, 1167, 1168, 1169
COMASTER Master File 1144
COURSE 1136, 1137
COURSES 1132
EDUCFILE 1121, 1122
EMPLOYEE 1116, 1118, 1119
FINANCE 1130
Gotham Grinds 1152, 1153, 1154, 1155,
1156, 1157
ITEMS 1149
JOBFILE 1120, 1121
JOBHIST 1137
JOBLIST 1138
LEDGER 1129
LOCATOR 1139
MOVIES 1148
PERSINFO 1140
PROD 1125
REGION 1131
SALES 1123, 1124
SALHIST 1141
TRAINING 1135, 1136, 1142
VIDEOTR2 1150, 1151
VideoTrk 1146, 1147

SAVB command 449

SAVB files 449

SAVE command 422, 449

Creating Reports 1219

Index

SAVE files 88, 449, 1072
GRAPH 1072
in Hot Screen 88

SAVE format 456

SAVE format EXL2K 462

SAVE format HTML 463

SAVE format LOTUS 464

SAVE format PDF 465

SAVE format SYLK 468

SAVE format TAB 469

SAVE format TABT 469

SAVE format WP 470

SAVE formats 455, 463

SAVEMATRIX parameter 911, 912

saving intermediate report results 1002

saving output files 422

saving report output 421, 422

saving reports 421, 422

saving rows 1003, 1004

saving selected data 88

saving virtual fields 865, 866, 868

scalar functions 1104

scatter diagrams 1056

SCREEN parameter 82

screening conditions 195

screening segments 870

screening values 229

scrolling in Hot Screen 85

SEG. operator 43

segment instances 807, 826, 827

segment instances and missing values 822, 823,

824

segment locations 217

segment types 69, 70

segments 43, 162, 166, 809

SEGTYPE parameter 443

selecting records 157, 158, 162, 164, 167, 168,

169, 170, 171, 173, 174, 179, 180, 187, 188,

190, 191, 192, 193, 194, 204, 1016

selecting records with IF phrase 192, 194

selecting records with VSAM 204

selecting sort procedures 147

selecting sort types 147

selecting values using WHERE phrase 192

selecting values with IF phrase 194

selection criteria 157, 159, 160, 161, 162, 164,

171, 173, 174, 191, 192, 193, 194, 320

selection values 193

selection values with IF phrase 194

SEQUENCE attribute 718

sequential conditional formatting 586, 597

SET ACROSSPRT 111

SET ALL parameter 826, 827

SET ASNAMES parameter 434

SET AUTOINDEX parameter 907

SET AUTOPATH parameter 907

SET BLANKINDENT parameter 997, 998

SET CNOTATION parameter 229, 230, 962, 963

SET COMPMISS parameter 820

1220 Information Builders

Index

SET COMPUTE = NEW command 912

SET COMPUTE command 915

SET COUNTWIDTH parameter 57

SET DATEFORMAT parameter 337

SET DEFINES command 915

SET DUPLICATECOL command 141

SET END command in GRAPH 1081

SET ESTLINES parameter 925

SET ESTRECORDS parameter 925

SET EXTSORT parameter 146, 147

SET FILTER parameter 195, 198

SET FORMULTIPLE parameter 948, 949

SET HOLDATTR parameter 434, 441, 442

SET HOLDLIST parameter 434, 439, 440

SET HOLDMISS parameter 818

SET KEEPFILTER parameter 201

SET MAXEXTSRTS parameter 931

SET parameter ACROSSLINE 108

SET parameter ESTLINES 148

SET parameter ESTRECORDS 148

SET parameter EXTAGGR 153

SET parameter EXTHOLD 156

SET parameter for BYDISPLAY 102

SET parameter NULL=ON 470

SET parameters 34, 41, 82, 83, 87, 90, 93, 108,
387, 405, 408, 410, 411, 419, 505,
612, 613, 630, 699, 700, 718, 728,
729, 730, 907, 999, 1078, 1081

BYPANEL 90
BYSCROLL 87
COLUMNS 93
EMPTYREPORT 419

SET parameters (continued)
FIELDNAME 41
FILE 34
GRAPH 1081
GRID 728
HTMLCSS 612, 613
LINES 730
PAGE 387
PANEL 93
PDFLINETERM 699, 700
PRINTPLUS 83
QUALTITLES 408
SCREEN 82
SHOWBLANKS 630
SPACES 405, 718
SQUEEZE 728
STYLEMODE 730
STYLESHEET (STYLE) 505
UNITS 612, 613
XRETRIEVAL 90

SET parameters and EXTHOLD 156

SET POOL parameter 917

SET POOL=OFF command 917

SET POOL=ON command 917

SET POOLBATCH parameter 930

SET POOLFEATURE parameter 936

SET POOLMEMORY parameter 926

SET POOLRESERVE parameter 927

SET PSPAGESETUP command 510, 513

SET SAVEMATRIX parameter 911, 912

SET SORTLIB parameter 931

SET SQLTOPTTF parameter 1110

SET SQUEEZE parameter 728

SET SUMARYLINES parameter 296

SET SUMMARYLINES parameter 295, 297, 307

SET TARGETFRAME command 794

Creating Reports 1221

Index

SET TRACEOFF parameter 932

SET TRACEON parameter 932

SET WPMINWIDTH 471

setting retrieval order 155

sheet names 549

short path definitions 824

SHOWBLANKS SET parameter 630

simple moving average 239, 241, 245, 247

simple moving average FORECAST 241, 245, 247

SIZE attribute 781

SKIP-LINE command 401, 402, 403

SKIPLINE component 565, 566, 567, 574

skipped lines 565, 566, 567, 574
formatting 574

sort field values 133

sort fields 97, 950

sort fields for multi-path data sources 99

sort fields using multi-path data sources 107

sort footings
limitations 359

sort headings 359, 758, 762
aligning 762
limitations 359

sort multiple fields 102, 110

sort order 102, 110, 124, 125, 126, 127

sort phrases 47

sort selection with Pooled Tables 931

sort sequence 99, 107, 950

sort temporary fields 99, 107

sort values 98, 99, 124

sorting by calculated values 135, 136, 137

sorting by columns 107, 108, 110, 137

sorting by rows 99

sorting columns 135, 136

sorting columns by 107

sorting data 103, 146, 147

sorting data by columns 107, 108

sorting data by multiple fields 102, 110

sorting data by rows 99, 100, 103

sorting report columns 135, 136

sorting reports 97, 98, 1016

sorting reports by calculated values 229

sorting rows by 99, 100, 102, 103

sorting with COMPUTE command 137

SORTLIB 931

SORTWORK files 148

SPACES parameter 405

SPACES SET parameter 718

spacing between columns 717

specifying date-time values 337

specifying fields in reports 36

specifying indentation between levels 997

specifying ranges in financial reports 947

specifying sort order 116, 117, 118, 119, 120, 121

specifying URLs 776

splits 387, 388, 389
preventing 388, 389

spot markers 374, 376, 559
0X 376

SQL format 467

SQL join structures 1096, 1097, 1098

1222 Information Builders

Index

SQL join structures and qualified field names 1098

SQL SELECT statement 1095

SQL statements 1089, 1090, 1092

SQL statements and FOCUS TABLE requests 1089

SQL Translation Services 1090, 1092

SQL Translator 1089

SQL Translator and aliases 1098

SQL Translator and Cartesian product answer sets

1102

SQL Translator and Continental Decimal Notation

(CDN) 1102, 1103

SQL Translator and CREATE TABLE command 1099,

1100

SQL Translator and CREATE VIEW command 1100,

1101

SQL Translator and date formats 1104, 1105

SQL Translator and date-time values 1106, 1107,

1108

SQL Translator and DELETE command 1111

SQL Translator and DROP VIEW command 1100,

1101

SQL Translator and expressions 1104

SQL Translator and field names 1103

SQL Translator and index optimized retrieval 1109

SQL Translator and INSERT command 1111

SQL Translator and INSERT INTO command 1099

SQL Translator and JOIN command 1096, 1097,

1098

SQL Translator and join structures 1109

SQL Translator and reserved words 1092

SQL Translator and SQLTOPTTF parameter 1110

SQL Translator and time and timestamp fields

1104, 1105

SQL Translator and UPDATE command 1111

SQL Translator commands 1093, 1095

SQL Translator commands and formatting

commands 1094

SQL Translatorand INSERT INTO command 1099

SQLDBC format 467

SQLINF format 467

SQLMSS formats 467

SQLODBC formats 468

SQLORA formats 468

SQLSYB formats 468

SQLTOPTTF parameter 1110

SQUEEZE attribute 644, 718, 719, 720, 729, 730

stacking columns 717

STAT query 147

structure diagrams 1113

structured HOLD files 481

STYLE attribute 519

STYLE parameter 505

style sheet attributes 617

Style Sheet files 494

style sheets 495, 527, 537, 548, 605, 606, 610,
612, 613, 616, 620, 625, 626, 627,
695, 992

Cascading Style Sheets (CSS) 606, 612, 613
declarations 695
FOCUS StyleSheets 620

Creating Reports 1223

Index

style sheets (continued)
inheritance 610, 627
refreshing external Cascading Style Sheets 626
selecting 495
troubleshooting 626

styled output formats 629

styled reports 502

STYLEMODE SET parameter 730

StyleSheet attributes 614, 615, 617, 618, 621,
623, 624, 992

CLASS 614, 615, 617, 618
CSSURL 623, 624

StyleSheet declarations 500, 501, 506, 507, 785
attribute=value pairs 506
defining links with 785
improving readability 507

StyleSheet syntax 506, 508

StyleSheets 491, 492, 495, 498, 499, 505, 506,
507, 508, 518, 525, 526, 529, 578,
579, 580, 581, 582, 585, 587, 588,
589, 590, 599, 620, 688, 705, 732,
796, 801, 804

ACROSSCOLUMN attribute 599
activating 505
attribute inheritance 581, 582
attributes 518
CHECK STYLE command 508
comments 507
conditional styling and 585, 587, 588, 589,
590
customizing 498, 499
declarations 578
FOCSTYLE file 506
identifying report components 526
linking reports with 796
macros 578, 579, 580
multi-pane reports and 801, 804
positioning components 732
printing 508
REPORT component 529
report components 525
requirements 688

StyleSheets (continued)
sample files 498
syntax 506
WHEN command 599

styling reports 605, 614, 615, 616, 617, 620
external Cascading Style Sheets 614, 616, 617
free-form reports 614, 615

sub pools 919

sub pools boundaries 919

sub pools pooling restrictions 919

sub-total calculated values 284

SUB-TOTAL command 279, 280, 281, 282, 287,

288, 290, 304, 305, 306, 307, 309, 310, 311,

313

SUB-TOTAL command and propagation to grand total

296

SUB-TOTAL prefix operators 313

subcomponents 527

SUBFOOT command 367, 368

SUBFOOT component 554, 556

subfootings 367, 368, 372, 378, 379, 414, 416
creating 367
displaying 414, 416
inserting data in 372, 378, 379

SUBHEAD component 554, 556, 777
embedding images in 777

subheadings 365, 366, 372, 378, 415
creating 365
displaying 415
inserting data in 372, 378

subroutines 966

subroutines and Pooled Tables 922

subtotal calculated values 284

1224 Information Builders

Index

SUBTOTAL command 279, 280, 281, 282, 287,

288, 290, 304, 305, 306, 308, 309, 310, 311,

313

SUBTOTAL command and propagation to grand total

296

SUBTOTAL component 534, 542, 543, 545

SUBTOTAL prefix operators 313

SUBTOTAL SUMMARYLINES command 307

subtotals 283, 284, 285, 286, 306, 307, 315,
316, 317, 318, 414, 534, 535, 536,
542, 543, 544, 545, 547

displaying 414
identifying in a style sheet 544, 545, 547

subtraction operator 329

SUM command 45, 53, 54, 98, 888

SUM command and merging data sources 888

SUM prefix operator 71

SUMMARIZE command 283, 284, 285, 287, 288,

302, 304, 305, 306, 307, 313

SUMMARIZE command and propagation to grand

total 296

SUMMARIZE prefix operators 313

summary commands 306, 310, 312

summary line processing 295

summary lines 320, 321

summary values 287, 288, 313

SUMMARYLINES SET parameter 295, 296, 297,

307

summing columns 135, 136

summing field values 98

summing report columns 135, 136

summing values 98

SUMPREFIX parameter 155

SUP-PRINT command 138

supplying data directly in FML 952, 953

supported data sources 834

suppressing display in financial reports 1001, 1002

suppressing field display 391, 392

suppressing field padding 478, 479

suppressing grand totals 319

suppressing rows 1001, 1002

suppressing rows in financial reports 1001, 1002

suppressing sort field values 138

SUPPRINT command 391, 392

SYLK format 468

syn_regress_mult 260

SYNCSORT 931

SyncSort utility 146, 147

system variables
TABPAGENO 382

T

TAB format 469

tab-delimited output files 469

TABFOOTING component 554, 556

TABHEADING component 554, 556

TABLASTPAGE system variable 554, 561

TABLE command 81, 88, 89, 90, 94, 95, 1178
displaying reports in Hot Screen 81
displaying reports in TOE 95
displaying reports with parameter set to ONLINE
81

Creating Reports 1225

Index

TABLE command (continued)
extracting data 95
extracting data from Hot Screen 88
OFFLINE 81, 94
ONLINE 81
previewing reports 89, 90
printing reports 81
redefining field formats 89
redisplaying reports 89, 94

TABLE FILE command 33, 34, 36

TABLE language formatting 622

TABLE requests 1089

TABLE syntax 660

TABLEF command 910, 1110, 1180

TABLEF command and data retrieval 910, 911

TABLEF command and SQL Translator 1110

TABPAGENO variable 382, 383

TABT format 469

tabular reports 614, 615, 617, 626

tag names 840

TAG rows 1001, 1002

TAG rows suppressing display in financial reports

1001, 1002

tag values 942

target frames 794, 795, 796
specifying 794, 795

TARGETFRAME SET parameter 796

TD element 609

Tektronics terminals 1078

temporary field types 206

temporary fields 36, 206, 208, 209, 224
calculated values 224
creating 36

temporary fields and missing values 812

temporary sort fields 107

temporary tables 445, 448, 449

temporary tables extract files 446

temporary tables HOLD files 448, 449

temporary tables output files 446, 448, 449

Terminal Operator Environment (TOE) 95

TERMINAL parameter 1081

testing character strings 179, 180, 181, 182, 183,

184, 185, 186

testing data fields 180, 181

testing for blanks or zeros 817

testing for existing data 178, 816

testing for missing segment instances 827, 828

testing for missing values 815, 816, 827, 828

testing multi-segment files 187

text 374, 375
positioning 375

TEXT component 558

text field output files 472, 473

text fields 99, 753, 754, 755
aligning 753, 755
formatting 753
styling 754

text fields and alphanumeric fields 263

text fields in DEFINE and COMPUTE 263

text fields output files 455

text rows 968, 970

text strings 559

tick intervals in GRAPH 1062

TILE column 127, 129, 132

tile fields 127, 129, 132, 133

1226 Information Builders

Index

TILES phrase 127, 129, 132, 133

time fields 1104

time fields and SQL Translator 1105

timestamp data type 337

timestamp fields 1104

timestamp fields and SQL Translator 1105

TITLE attribute 441, 442

TITLE component 550, 551

titles 548, 549

TITLETEXT attribute 553

TO phrase 946, 947

TOP command in Hot Screen 86

TOPGAP attribute 707, 715, 716

TOPMARGIN attribute 515, 516

TOT prefix operator 71

total page count 554

totals 270, 276, 277, 278, 534, 535, 536, 544,
545, 547

identifying in a style sheet 544, 545, 547

trace facility for Pooled Tables 932

TRACEOFF command 932

TRACEON command 932

TRAINING data source 1135, 1136, 1142

transferring files using FTP 684

treating as literal masking characters 184, 185

treating as literal wildcard characters 184, 185

treating literal masking characters 186

treating literal wildcard characters 186

triple exponential smoothing 252, 254

triple exponential smoothing FORECAST 252, 254

troubleshooting Cascading Style Sheets 626

TYPE attribute 526, 529, 783
in StyleSheets 526
REPORT component 529

U

UNDERLINE command 403, 404

UNDERLINE component 565, 566, 574, 575

underlines 565, 566, 576, 577
adding 576, 577
deleting 576, 577

underlines in financial reports 993

underlining values 574, 575

Uniform Resource Locators (URLs) 776, 786, 787,
793, 794

linking to 786, 787
specifying 793, 794

UNION operator 1103

unique join structures 832, 835, 836, 848

unique segments 49, 56

unique segments for PRINT command 51

UNITS attribute 515, 612, 613

units of measurement 515, 613

UNITS parameter 612, 613

universal concatenation 890, 1036
MORE phrase 1036

universal concatenation and field names 893, 894

universal concatenation and MORE phrase 890,

891, 892

UNIX, PDF files for 699

UNLIKE 181

unsupported date and numeric formats 643

Creating Reports 1227

Index

UP
command in Hot Screen 86

UPDATE command 1111

URLs (Uniform Resource Locators) 776, 786, 787,
793, 794

linking to 786, 787
specifying 793, 794

user-coded programs 1183

using concatenation with AnV fields 347

using CONTAINS and OMITS with AnV fields 348

using EDIT function with AnV fields 348

using LIKE fields with AnV fields 348

using operators with AnV fields 349

V

value dates 332

value format for dates 333

values 372, 945
embedding 372

values for columns 964

values in multiple rows 948, 949

varchar fields 461

variable length character expressions 347

VAUTO parameter 1063, 1081

VAXIS parameter 1063, 1081

VCLASS parameter 1064, 1081

verbs 45, 98

VERBSET attribute 143

verifying external sorting 147

vertical axis features 1026, 1057, 1062, 1063,
1064, 1065, 1081

class and tick intervals 1062, 1064, 1081
graph element 1026

vertical axis features (continued)
grids 1026, 1057, 1065, 1081
height 1063
scale 1063

vertical spacing 715

VGRID attribute 767, 772

VGRID parameter 1057, 1065, 1081

VIDEOTR2 data source 1150, 1151

VideoTrk data source 1146, 1147

virtual fields 195, 196, 206, 208, 209, 217, 218

virtual fields and join structures 855, 856, 857,

858, 865, 866, 868

virtual fields and MISSING attribute 812

virtual fields and missing values 812

VMAX parameter 1063, 1081

VMIN parameter 1063, 1081

VMSORT utility 147, 931

VSAM data sources 204

VSAM record selection efficiencies 204

VTICK parameter 1064, 1081

VZERO parameter 1069, 1081

W

Web browser support for Cascading Style Sheets

607, 625, 626

WHEN attribute 585, 587

WHEN clause 411, 412, 413, 418

WHEN command 599

WHEN EXISTS phrase 1002

WHEN phrase 280, 320, 324

1228 Information Builders

Index

WHEN phrase expressions 324

WHEN=FORECAST attribute 244

WHERE operator 171, 173, 176, 177

WHERE phrase 158, 159, 160, 161, 167, 169,

180, 182, 191, 192, 193, 324

WHERE phrase and existing data 816

WHERE phrase and join structures 870

WHERE phrase and missing values 815, 816, 817

WHERE phrase expressions 324

WHERE TOTAL phrase 167, 168, 169

WHERE-based join structures 832

widow lines 387, 388, 389
preventing 388

WIDTH attribute 755, 761
measuring 761

width of columns 719, 720, 721

WIDTH syntax 755

wildcard characters 180, 182

window titles 549

WITH CHILDREN parameter 978

WITHIN phrase 113

worksheet titles 549

WP format 470

WPMINWIDTH parameter 471

WRAP attribute 723, 730

WRAP parameter 723

wrapgap StyleSheet attribute 725

wrapping data 722, 723, 724, 728
alternative methods 728
by Web browser functionality 724
using a SET command 724

WRITE command 53

X

XFOCUS format 471

Y

Y2K attributes in Master Files 337

Year 2000 attributes in Master Files 337

YRTHRESH attribute 337

Z

z/OS requirements 147

zero records in a report 419

zeros 817

Creating Reports 1229

Index

1230 Information Builders

Index

FOCUS

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff
at Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to
corrections. Identify specific pages where applicable. You can contact us through the following
methods:

Documentation Services - Customer SupportMail:
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

(212) 967-0460Fax:

books_info@ibi.comE-mail:

http://www.informationbuilders.com/bookstore/derf.htmlWeb form:

Name:

Company:

Address:

Telephone: Date:

Email:

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
Creating Reports DN1001056.0310
Version 7.6

mailto:books_info@ibi.com
http://www.informationbuilders.com/bookstore/derf.html

Creating Reports With
WebFOCUS Language

Version 7 Release 6

 Information Builders

Two Penn Plaza

New York, NY 10121-2898

 Printed on recycled paper in the U.S.A.

FOCUS for Mainframe

Creating Reports

Version 7.6

	Contents
	Preface
	Documentation Conventions
	Related Publications
	Customer Support
	Information You Should Have
	User Feedback
	Information Builders Consulting and Training

	1. Creating Tabular Reports
	Requirements for Creating a Report
	Creating a Report Request
	Beginning a Report Request
	Requesting Help When Issuing a Report Request
	Completing a Report Request
	Selecting a Report Output Destination

	Developing Your Report Request
	Including Display Fields in a Report Request
	Referring to Fields in a Report Request
	Referring to an Individual Field
	Referring to Fields Using Qualified Field Names
	Referring to All of the Fields in a Segment
	Displaying a List of Field Names
	Listing Field Names, Aliases, and Format Information

	2. Displaying Report Data
	Using Display Commands in a Request
	Displaying Individual Values
	Displaying All Fields
	Displaying All Fields in a Segment
	Displaying the Structure and Retrieval Order of a Multi-Path Data Source

	Adding Values
	Counting Values
	Counting Segment Instances

	Expanding Byte Precision for COUNT and LIST
	Maximum Number of Display Fields Supported in a Request
	Manipulating Display Fields With Prefix Operators
	Prefix Operator Basics
	Averaging Values of a Field
	Averaging the Sum of Squared Fields
	Calculating Maximum and Minimum Field Values
	Calculating Column and Row Percents
	Producing a Direct Percent of a Count
	Aggregating and Listing Unique Values
	Retrieving First and Last Records
	Summing and Counting Values
	Ranking Sort Field Values With RNK.

	Changing the Format of a Report Column
	Determining the Width of a Report Column
	Controlling Missing Values for a Reformatted Field

	3. Viewing and Printing Report Output
	Displaying Reports in Hot Screen
	Using PRINTPLUS
	Accessing Help Information

	Scrolling a Report
	Scrolling Forward
	Scrolling Backward
	Scrolling Horizontally
	Scrolling From Fixed Columns (Fencing)
	Scrolling Report Headings
	Saving Selected Data
	Locating Character Strings
	Repeating Commands
	Redisplaying Reports
	Previewing Your Report
	Displaying BY Fields With Panels
	Scrolling by Columns of BY Fields
	The SET COLUMNS Command

	Displaying Reports in the Panel Facility
	Printing Reports
	The OFFLINE Command
	Printing Reports in Hot Screen

	Displaying Reports in the Terminal Operator Environment

	4. Sorting Tabular Reports
	Sorting Tabular Reports Overview
	Sorting Rows
	Displaying All Vertical (BY) Sort Field Values
	Using Multiple Vertical (BY) Sort Fields
	Displaying a Row for Data Excluded by a Sort Phrase

	Sorting Columns
	Controlling Underlines for ACROSS Objects
	Using Multiple Horizontal (ACROSS) Sort Fields
	Collapsing PRINT With ACROSS

	Manipulating Display Field Values in a Sort Group
	Creating a Matrix Report
	Specifying the Sort Order
	Specifying Your Own Sort Order

	Ranking Sort Field Values
	Grouping Numeric Data Into Ranges
	Grouping Numeric Data Into Tiles

	Restricting Sort Field Values by Highest/Lowest Rank
	Sorting and Aggregating Report Columns
	Restricting the Number of Columns in a Report

	Hiding Sort Values
	Sorting With Multiple Display Commands
	Controlling Formatting of Reports With Multiple Display Commands

	Improving Efficiency With External Sorts
	Providing an Estimate of Input Records or Report Size for Sorting
	Mainframe External Sort Utilities and Message Options
	Diagnosing External Sort Errors

	Aggregation by External Sort (Mainframe Environments Only)
	Changing Retrieval Order With Aggregation
	Creating a HOLD File With an External Sort

	5. Selecting Records for Your Report
	Selecting Records Overview
	Choosing a Filtering Method
	Selections Based on Individual Values
	Controlling Record Selection in Multi-path Data Sources

	Selection Based on Aggregate Values
	Using Compound Expressions for Record Selection
	Using Operators in Record Selection Tests
	Types of Record Selection Tests
	Range Tests With FROM and TO
	Range Tests With GE and LE or GT and LT
	Missing Data Tests
	Character String Screening With CONTAINS and OMITS
	Screening on Masked Fields With LIKE and IS
	Using an Escape Character for LIKE
	Qualifying Parent Segments Using INCLUDES and EXCLUDES

	Selections Based on Group Key Values
	Setting Limits on the Number of Records Read
	Selecting Records Using IF Phrases
	Reading Selection Values From a File
	Assigning Screening Conditions to a File
	Preserving Filters Across Joins

	VSAM Record Selection Efficiencies
	Reporting From Files With Alternate Indexes

	6. Creating Temporary Fields
	What Is a Temporary Field?
	Defining a Virtual Field
	Defining Multiple Virtual Fields
	Displaying Virtual Fields
	Clearing a Virtual Field
	Establishing a Segment Location for a Virtual Field
	Defining Virtual Fields Using a Multi-Path Data Source
	Increasing the Speed of Calculations in Virtual Fields
	Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN
	Applying Dynamically Formatted Virtual Fields to Report Columns

	Creating a Calculated Value
	Using Positional Column Referencing With Calculated Values
	Using ACROSS With Calculated Values
	Sorting Calculated Values
	Screening on Calculated Values

	Assigning Column Reference Numbers
	Using Column Notation in a Report Request

	Calculating Trends and Predicting Values With FORECAST
	FORECAST Processing
	Using a Simple Moving Average
	Using Single Exponential Smoothing
	Using Double Exponential Smoothing
	Using Triple Exponential Smoothing
	Using a Linear Regression Equation
	FORECAST Reporting Techniques

	Calculating Trends and Predicting Values With Multivariate REGRESS
	Using Text Fields in DEFINE and COMPUTE
	Creating Temporary Fields Independent of a Master File

	7. Including Totals and Subtotals
	Calculating Row and Column Totals
	Producing Row Totals for Horizontal (ACROSS) Sort Field Values

	Including Section Totals and a Grand Total
	Including Subtotals
	Recalculating Values for Subtotal Rows
	Manipulating Summary Values With Prefix Operators
	Controlling Summary Line Processing
	Using Prefix Operators With Calculated Values
	Using Multiple SUB-TOTAL or SUMMARIZE Commands With Prefix Operators

	Combinations of Summary Commands
	Producing Summary Columns for Horizontal Sort Fields
	Performing Calculations at Sort Field Breaks
	Suppressing Grand Totals
	Conditionally Displaying Summary Lines and Text

	8. Using Expressions
	Using Expressions in Commands and Phrases
	Types of Expressions
	Expressions and Field Formats

	Creating a Numeric Expression
	Order of Evaluation

	Creating a Date Expression
	Formats for Date Values
	Performing Calculations on Dates
	Cross-Century Dates With DEFINE and COMPUTE
	Returned Field Format Selection
	Using a Date Constant in an Expression
	Extracting a Date Component
	Combining Fields With Different Formats in an Expression

	Creating a Date-Time Expression
	Specifying a Date-Time Value
	Manipulating Date-Time Values

	Creating a Character Expression
	Embedding a Quotation Mark in a Quote-Delimited Literal String
	Concatenating Character Strings

	Creating a Variable Length Character Expression
	Using Concatenation With AnV Fields
	Using the EDIT Function With AnV Fields
	Using CONTAINS and OMITS With AnV Fields
	Using LIKE With AnV Fields
	Using the EQ, NE, LT, GT, LE, and GE Operators With AnV Fields
	Using the DECODE Function With AnV Fields
	Using the Assignment Operator With AnV Fields

	Creating a Logical Expression
	Creating a Conditional Expression

	9. Customizing Tabular Reports
	Producing Headings and Footings
	Limits for Headings and Footings
	Report and Page Headings
	Report and Page Footings
	Subheads and Subfoots
	Using Data in Headings and Footings
	Positioning Text
	Extending Heading and Footing Code to Multiple Lines
	Producing a Free-Form Report

	Creating Paging and Numbering
	Specifying a Page Break: PAGE-BREAK
	Inserting Page Numbers: TABPAGENO
	Controlling Report Page Numbering
	Suppressing Page Numbers: SET PAGE
	Preventing an Undesirable Split: NOSPLIT

	Suppressing Fields: SUP-PRINT or NOPRINT
	Reducing a Report's Width: FOLD-LINE and OVER
	Compressing the Columns of Reports: FOLD-LINE
	Decreasing the Width of a Report: OVER

	Positioning Columns: IN
	Separating Sections of a Report: SKIP-LINE and UNDER-LINE
	Adding Blank Lines: SKIP-LINE
	Underlining Values: UNDER-LINE

	Controlling Column Spacing: SET SPACES
	Creating New Column Titles: AS
	Customizing Column Names: SET QUALTITLES
	Column Title Justification
	Customizing Reports With SET Parameters
	Conditionally Formatting Reports With the WHEN Clause
	Controlling the Display of Empty Reports

	10. Saving and Reusing Your Report Output
	Saving Your Report Output
	Naming and Storing Report Output Files

	Creating a HOLD File
	Holding Report Output in FOCUS Format
	Controlling Attributes in HOLD Master Files
	Controlling Field Names in a HOLD Master File
	Controlling Fields in a HOLD Master File
	Controlling the TITLE and ACCEPT Attributes in the HOLD Master File

	Keyed Retrieval From HOLD Files
	Using DBMS Temporary Tables as HOLD Files
	Column Names in the HOLD File
	Primary Keys and Indexes in the HOLD File

	Creating SAVE and SAVB Files
	Creating a PCHOLD File
	Choosing Output File Formats
	Using Text Fields in Output Files
	Creating a Delimited Sequential File
	Saving Report Output in INTERNAL Format
	Creating a Structured HOLD File

	11. Styling Reports
	Introduction to Styled Reports
	Choosing a Type of Style Sheet

	Choosing an Output Format
	Styling Reports With StyleSheets
	What Is a StyleSheet?
	What Is a Style?
	Comparison of Reports With and Without StyleSheets
	Creating a StyleSheet
	StyleSheet Syntax
	Improving FOCUS StyleSheet Readability
	Adding a Comment to a FOCUS StyleSheet
	Checking StyleSheet Syntax

	Creating a Styled Report
	Styling the Page Layout
	Selecting Page Size, Orientation, and Color
	Setting Page Margins
	Displaying Current Settings: The ? SET STYLE Query

	Specifying Font Format in a Report
	Specifying Fonts for Reports

	Identifying Report Components
	Identifying an Entire Report, Column, or Row
	Identifying Data
	Identifying Totals and Subtotals
	Identifying a Heading, Footing, Title, or FML Free Text
	Identifying a Column or Row Title
	Identifying a Heading or Footing
	Identifying a Page Number, Underline, or Skipped Line

	Reusing FOCUS StyleSheet Declarations With Macros
	Defining a FOCUS StyleSheet Macro
	Applying a FOCUS StyleSheet Macro

	FOCUS StyleSheet Attribute Inheritance
	Conditionally Formatting in a StyleSheet
	Applying Sequential Conditional Formatting
	Using WHEN With ACROSSCOLUMN

	Using Conditional Grid Formatting in a Field

	12. Cascading Style Sheets
	What Are Cascading Style Sheets?
	Benefits of Cascading Style Sheets
	The Notion of Browser Dependence
	Types of Cascading Style Sheets

	Cascading Style Sheets and Precedence Rules
	Cascading Style Sheet Formatting Statements: Rules and Classes
	Selecting a CSS Rule
	Naming CSS Classes
	Inheritance and CSS

	Generating an Internal Cascading Style Sheet
	Selecting a Unit of Measurement

	Working With External Cascading Style Sheets
	Applying CSS Styles
	Using an External CSS - A Graphical Overview

	Combining CSS Styling With Other Formatting Methods
	Combining an External CSS With a FOCUS StyleSheet
	Combining an External CSS With TABLE Language Formatting

	Linking to an External Cascading Style Sheet
	FAQ About Using External Cascading Style Sheets
	Troubleshooting Cascading Style Sheets

	13. Working With Styled Output Formats
	Working With HTML Reports
	Preserving Leading and Internal Blanks in Report Output
	Creating HTML Reports With Absolute Positioning

	Working With Excel 2000 and Excel 97 Reports
	Creating Styled Excel 2000 Files
	National Language Support With EXL2K
	Displaying Formatted Dates and Numeric Values
	Controlling Column Width and Wrapping
	Locking Columns in Excel Report Output
	Using the Excel 2000 Formula Option
	Using the Excel 2000 PIVOT Option
	Designating CACHEFIELDS in PivotTables
	Designating PAGEFIELDS in PivotTables
	Excel Named Ranges
	Identifying Null Values in Excel 2000
	Excel Table of Contents
	Excel Compound Reports
	Transferring Excel 2000 Formatted Files Using FTP
	Creating Styled Excel 97 Files

	Working With PostScript and PDF Reports
	Creating Compound PDF or PostScript Reports
	Adding PostScript Type 1 Fonts for PS and PDF Formats
	Creating PDF Files for Use With UNIX Systems
	Displaying An and AnV Fields With Line Breaks

	14. Advanced StyleSheet Features
	Positioning a Report Component
	Arranging Pages and Columns on a Page
	Determining Column Width

	Wrapping and Justifying Report Components
	Controlling Wrapping of Report Data
	Controlling Wrapping With Alternative Methods
	Justifying Report Columns
	Justifying a Heading or Footing
	Justifying a Column Title
	Justifying a Label for a Subtotal or Grand Total

	Aligning Heading and Footing Elements
	Aligning a Heading or Footing Element in an HTML Report
	Aligning a Heading or Footing Element Across Columns in an HTML Report
	Aligning Content in a Multi-Line Heading or Footing
	Aligning Decimals in a Multi-Line Heading or Footing
	Combining Column and Line Formatting in Headings and Footings

	Adding Grids and Borders
	Adding an Image to a Report
	Linking in a Report
	Linking to a URL
	Linking to a JavaScript Function
	Linking With Conditions
	Linking From a Graphic Image
	Specifying a Base URL
	Specifying a Target Frame
	Linking Report Pages

	Working With Mailing Labels and Multi-Pane Pages

	15. Handling Records With Missing Field Values
	Irrelevant Report Data
	Missing Field Values
	MISSING Attribute in the Master File
	MISSING Attribute in a DEFINE or COMPUTE Command
	Testing for a Segment With a Missing Field Value
	Preserving Missing Data Values in an Output File
	Propagating Missing Values to Reformatted Fields in a Request

	Handling a Missing Segment Instance
	Including Missing Instances in Reports With the ALL. Prefix
	Including Missing Instances in Reports With the SET ALL Parameter
	Testing for Missing Instances in FOCUS Data Sources

	Setting the NODATA Character String

	16. Joining Data Sources
	Types of Joins
	Unique and Non-Unique Joined Structures
	Recursive Joined Structures

	How the JOIN Command Works
	Creating an Equijoin
	Joining From a Virtual Field to a Real Field Using an Equijoin
	Data Formats of Shared Fields
	Joining Fields With Different Numeric Data Types

	Using a Conditional Join
	Preserving Virtual Fields During Join Parsing
	Preserving Virtual Fields Using KEEPDEFINES
	Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN
	Screening Segments With Conditional JOIN Expressions
	Parsing WHERE Criteria in a Join

	Displaying Joined Structures
	Clearing Joined Structures
	Clearing a Conditional Join

	17. Merging Data Sources
	Merging Data
	MATCH Processing
	MATCH Processing With Common High-Order Sort Fields
	Fine-Tuning MATCH Processing
	Universal Concatenation
	Field Name and Format Matching

	Merging Concatenated Data Sources
	Using Sort Fields in MATCH Requests

	Cartesian Product

	18. Improving Report Processing
	Rotating a Data Structure for Enhanced Retrieval
	Optimizing Retrieval Speed for FOCUS Data Sources
	Automatic Indexed Retrieval
	Data Retrieval Using TABLEF
	Preserving the Internal Matrix of Your Last Report
	Compiling Expressions
	Compiling Expressions Using the DEFINES Parameter
	Compiling Expressions Using the COMPUTE Parameter

	Producing Multiple Outputs in One Pass of a Data Source (Pooled Tables)
	Overview
	Sub-Pool Boundaries and Pooling Restrictions
	Estimating Memory Requirements
	Memory Requirements
	Sharing Selection Criteria and Filters Across Requests in a Pool
	Criteria When Pooling Non-Relational Database Requests
	Criteria When Pooling Relational Database Requests
	Criteria When Pooling Batch Requests
	Selecting a Sort Utility
	Observing the Results of Pooling (TRACEON)
	Installing the Pooled Tables Option

	19. Creating Financial Reports With Financial Modeling Language (FML)
	Reporting With FML
	Creating Rows From Data
	Creating Rows From Multiple Records
	Using the BY Phrase in FML Requests
	Combining BY and FOR Phrases in an FML Request

	Supplying Data Directly in a Request
	Performing Inter-Row Calculations
	Referring to Rows in Calculations
	Referring to Columns in Calculations
	Referring to Column Numbers in Calculations
	Referring to Contiguous Columns in Calculations
	Referring to Column Addresses in Calculations
	Referring to Relative Column Addresses in Calculations
	Applying Relative Column Addressing in a RECAP Expression
	Controlling the Creation of Column Reference Numbers
	Referring to Column Values in Calculations

	Referring to Cells in Calculations
	Using Functions in RECAP Calculations
	Inserting Rows of Free Text
	Adding a Column to an FML Report
	Creating a Recursive Model
	Reporting Dynamically From a Hierarchy
	Requirements for FML Hierarchies
	Displaying an FML Hierarchy
	Consolidating an FML Hierarchy
	Loading a Hierarchy Manually

	Customizing a Row Title
	Formatting an FML Report
	Indenting Row Titles in an FML Hierarchy

	Suppressing the Display of Rows
	Suppressing Rows With No Data

	Saving and Retrieving Intermediate Report Results
	Posting Data

	Creating HOLD Files From FML Reports

	20. Creating a Free-Form Report
	Creating a Free-Form Report
	Designing a Free-Form Report
	Incorporating Text in a Free-Form Report
	Incorporating Data Fields in a Free-Form Report
	Incorporating Graphic Characters in a Free-Form Report
	Laying Out a Free-Form Report
	Sorting and Selecting Records in a Free-Form Report

	21. Creating Graphs: GRAPH
	Introduction
	GRAPH vs. TABLE Requests
	Running Graph Requests Offline
	Controlling the Format
	Graphic Devices Supported
	Medium-Resolution Devices
	High-Resolution Devices

	Command Syntax
	GRAPH vs. TABLE Syntax
	Specifying Graph Forms and Contents
	Naming Subjects: Verb Phrases
	Selecting Forms: BY and ACROSS Phrases
	Selecting the Contents: Selection Phrases
	Concatenating Unlike Data Sources
	Adding Annotating Text: HEADING and FOOTING Lines
	Inserting Formatting Controls
	Inserting Field References

	Graph Forms
	Connected Point Plots
	Point Plot Features

	Histograms
	Histogram Features

	Bar Charts
	Bar Chart Features

	Pie Charts
	Pie Chart Features

	Scatter Diagrams
	Scatter Diagram Features

	Adjusting Graph Elements
	The Horizontal Axis: System Defaults
	The Vertical Axis: System Defaults
	Highlighting Facilities

	Special Topics
	Plotting Dates
	Handling Missing Data
	Using Fixed-Axis Scales
	Saving Formatted GRAPH Output
	Creating Formatted Input for CA-TELLAGRAF
	Using the FOCUS ICU Interface

	Special Graphics Devices
	Medium-Resolution Devices
	High-Resolution Devices
	IBM Devices Using GDDM
	GDDM Default Conditions
	GDDM Save and Print Facilities
	Graphics Device Characteristics
	Hewlett-Packard Plotters
	Tektronix Color Terminals

	Command and SET Parameter Summary
	GRAPH Command
	SET Parameters

	22. Using SQL to Create Reports
	Supported and Unsupported SQL Statements
	Using SQL Translator Commands
	The SQL SELECT Statement
	SQL Joins
	SQL CREATE TABLE and INSERT INTO Commands
	SQL CREATE VIEW and DROP VIEW Commands
	SQL PREPARE, EXECUTE, and COMMIT Commands
	Cartesian Product Style Answer Sets
	Continental Decimal Notation (CDN)
	Specifying Field Names in SQL Requests
	SQL UNION, INTERSECT, and EXCEPT Operators
	Numeric Constants, Literals, Expressions, and Functions

	SQL Translator Support for Date, Time, and Timestamp Fields
	Extracting Date-Time Components Using the SQL Translator

	Index Optimized Retrieval
	Optimized Joins

	TABLEF Optimization
	SQL INSERT, UPDATE, and DELETE Commands

	A. Master Files and Diagrams
	Creating Sample Data Sources
	EMPLOYEE Data Source
	EMPLOYEE Master File
	EMPLOYEE Structure Diagram

	JOBFILE Data Source
	JOBFILE Master File
	JOBFILE Structure Diagram

	EDUCFILE Data Source
	EDUCFILE Master File
	EDUCFILE Structure Diagram

	SALES Data Source
	SALES Master File
	SALES Structure Diagram

	PROD Data Source
	PROD Master File
	PROD Structure Diagram

	CAR Data Source
	CAR Master File
	CAR Structure Diagram

	LEDGER Data Source
	LEDGER Master File
	LEDGER Structure Diagram

	FINANCE Data Source
	FINANCE Master File
	FINANCE Structure Diagram

	REGION Data Source
	REGION Master File
	REGION Structure Diagram

	COURSES Data Source
	COURSES Master File
	COURSES Structure Diagram

	EMPDATA Data Source
	EMPDATA Master File
	EMPDATA Structure Diagram

	EXPERSON Data Source
	EXPERSON Master File
	EXPERSON Structure Diagram

	TRAINING Data Source
	TRAINING Master File
	TRAINING Structure Diagram

	COURSE Data Source
	COURSE Master File
	COURSE Structure Diagram

	JOBHIST Data Source
	JOBHIST Master File
	JOBHIST Structure Diagram

	JOBLIST Data Source
	JOBLIST Master File
	JOBLIST Structure Diagram

	LOCATOR Data Source
	LOCATOR Master File
	LOCATOR Structure Diagram

	PERSINFO Data Source
	PERSINFO Master File
	PERSINFO Structure Diagram

	SALHIST Data Source
	SALHIST Master File
	SALHIST Structure Diagram

	PAYHIST File
	PAYHIST Master File
	PAYHIST Structure Diagram

	COMASTER File
	COMASTER Master File
	COMASTER Structure Diagram

	VIDEOTRK, MOVIES, and ITEMS Data Sources
	VIDEOTRK Master File
	VIDEOTRK Structure Diagram
	MOVIES Master File
	MOVIES Structure Diagram
	ITEMS Master File
	ITEMS Structure Diagram

	VIDEOTR2 Data Source
	VIDEOTR2 Master File
	VIDEOTR2 Structure Diagram

	Gotham Grinds Data Sources
	GGDEMOG Master File
	GGDEMOG Structure Diagram
	GGORDER Master File
	GGORDER Structure Diagram
	GGPRODS Master File
	GGPRODS Structure Diagram
	GGSALES Master File
	GGSALES Structure Diagram
	GGSTORES Master File
	GGSTORES Structure Diagram

	Century Corp Data Sources
	CENTCOMP Master File
	CENTCOMP Structure Diagram
	CENTFIN Master File
	CENTFIN Structure Diagram
	CENTHR Master File
	CENTHR Structure Diagram
	CENTINV Master File
	CENTINV Structure Diagram
	CENTORD Master File
	CENTORD Structure Diagram
	CENTQA Master File
	CENTQA Structure Diagram
	CENTGL Master File
	CENTGL Structure Diagram
	CENTSYSF Master File
	CENTSYSF Structure Diagram
	CENTSTMT Master File
	CENTSTMT Structure Diagram

	B. Error Messages
	Accessing Error Files
	Displaying Messages

	C. Table Syntax Summary
	TABLE Syntax Summary
	TABLEF Syntax Summary
	MATCH Syntax Summary
	FOR Syntax Summary

	D. Writing User-Coded Programs to Create HOLD Files
	Arguments Used in Calls to Programs That Create HOLD Files

	Index
	Reader Comments

