The California State University
Office of the Chancellor
400 Golden Shore
Long Beach, CA 90802-4275
(310) 985-2669

Code: TECHNICAL LETTER

HR/APPT 5200
96-01

Ref.: HR 92-27

Date: May 14, 1996

To: Personnel Officers

From: Cathy Robinson
Senior Director
Human Resources Administration

Subject: Commission on Peace Officer Standards and Training - Pre-Employment Medical Standards and Dispatcher Selection Standards

The Commission on Peace Officer Standards and Training (POST) recently announced changes to the pre-employment medical standards for sworn officers and dispatcher selection standards as summarized below:

Pre-Employment Medical Standards For Sworn Police Officers

The Commission on Peace Officer Standards and Training (POST) recently revised the pre-employment medical testing standards for sworn peace officers contained in the POST Medical Screening Manual for California Law Enforcement. These standards do not apply to any other public safety classifications.

The most significant changes to the medical standards are as follows:

- Diabetics who are either diet or insulin dependent are now eligible for appointment to a sworn police officer position, under clearly defined conditions. These changes were made in order to provide accommodation under the Americans With Disabilities Act when a diabetic candidate is able to achieve and maintain specified levels of medical control. This is a significant change from their most recent policy that deemed diabetics ineligible for appointment to any sworn peace officer position.

- POST dermatology and visual standards, particularly those applicable to vision problems frequently identified among diabetics who are not insulin dependent, have been clarified.

(Over)

Distribution:

With Attachments
- Presidents
- Vice Presidents, Administration
- Vice Presidents, Student Affairs

Without Attachments
- Presidents
- Vice Presidents, Administration
- Vice Presidents, Student Affairs

Directors, Public Safety
Employee Relations Designees
Attachment A includes revised pages that provide detailed information on these changes for your POST Medical Screening Manual for California Law Enforcement. Revised page III-15 provides a sample Pre-employment Notice of Reasonable Accommodation Requirements which can be adapted for use on your campus. Please forward this information to your campus medical contractor.

Entry Level Dispatcher Selection Test Battery

POST recently made available a new Entry Level Dispatcher Selection Test Battery to comply with POST's new selection standards that will take effect July 1997. Instructions and other details for obtaining additional information on these scheduled changes and related test program are contained in Attachment B.

Requests for more specific medical standards, as well as Dispatcher testing information, may be obtained from your campus POST Representative through your Director of Public Safety. If you need further information or assistance, please contact Mike Lordanich, Public Safety Administrator, at (310) 516-3639 or Trudy McGuane in Human Resources at (310) 985-2655.

CR/tm

Attachments
April 10, 1996

Dear Chief Executive:

Enclosed are revisions to the POST Medical Screening Manual for California Law Enforcement. The major change represented in these revisions involves a new set of recommendations for the screening of patrol officer candidates with diabetes. This change was prompted by recent case law, legal interpretations, and additional guidance from the EEOC, all of which indicated a need to reassess our previous position which warned against the hiring of all insulin-dependant diabetics as patrol officers.

Our new guidance is based upon the most current medical research and consultation with a panel of leading endocrinologists and diabetologists. It provides sophisticated examination and evaluation procedures that are intended to be in compliance with the Americans with Disabilities Act but at the same time ensure that those selected for patrol officers are fully able to perform all essential functions of the job under all circumstances.

Also included are replacement pages for both the Vision and Dermatology sections of the Manual to correct oversights detected since the last publication. Instructions for inserting all of the enclosures are provided.

Questions and comments concerning the new diabetes guidelines or any other sections of the Manual should be directed to Shelley Weiss Spilberg, Ph.D., at (916) 227-4824.

Sincerely,

NORMAN C. BOEHM
Executive Director

Enclosures
LIST OF TABLES

BACKGROUND INFORMATION

Table 1 Patrol Officer Training Periods and Tenure Rates from 1980 - 1991 21
Table 2 Patrol Officer Duties and Task Groups (1979) 33
Table 3 Patrol Officer Physical Job Demands (1985) 36
Table 4 Patrol Officer Rates of Critical Physical Activities by Type of Activity (1992) 37
Table 5 Environmental Factors and Working Conditions That Can Be Associated With Patrol Officer Job Duties 38
Table 6 Role of the Physician and the Employer in the Medical Screening Process 42

MEDICAL EXAMINATION AND EVALUATION PROTOCOLS

CHAPTER I: Cardiovascular System

Table I-1 New York Heart Association Cardiovascular Classification System, Functional Classification I-4
Table I-2 New York Heart Association Cardiovascular Classification System, Therapeutic Classification I-4
Table I-3 Relationship of METS and Functional Class According to 5 Treadmill Protocols I-7

CHAPTER II: Dermatology

Table II-1 Description of Primary Skin Lesions II-3

Revised 4/96
CHAPTER II: **Dermatology** ... II-1
 Conditions of Concern ... II-1
 Evaluation of Common Clinical Syndromes II-4

CHAPTER III: **Endocrine System** III-1
 Diabetes Mellitus .. III-2
 Parathyroid Disorders .. III-16
 Hyper and Hypothyroidism III-16
 Adrenal Disorders ... III-17

CHAPTER IV: **Gastrointestinal System** IV-1
 Hernias .. IV-2
 Hemorrhoids ... IV-3
 Ulcerative Colitis .. IV-3
 Irritable Bowel Syndrome IV-6
 Peptic Ulcers ... IV-8
 Hepatitis ... IV-10
 Symptomatic Gallstones ... IV-14

CHAPTER V: **Hematology** .. V-1
 Iron-Deficiency Anemia ... V-2
 Thalassemia ... V-3
 Bleeding Disorders/Anticoagulants V-3

CHAPTER VI: **Oncology** ... VI-1
 Evaluation of a Candidate with a History of Tumor or Malignancy ... VI-2
LIST OF TABLES

BACKGROUND INFORMATION

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Patrol Officer Training Periods and Tenure Rates from 1980 - 1991</td>
<td>21</td>
</tr>
<tr>
<td>Table 2</td>
<td>Patrol Officer Duties and Task Groups (1979)</td>
<td>33</td>
</tr>
<tr>
<td>Table 3</td>
<td>Patrol Officer Physical Job Demands (1985)</td>
<td>36</td>
</tr>
<tr>
<td>Table 4</td>
<td>Patrol Officer Rates of Critical Physical Activities by Type of Activity (1992)</td>
<td>37</td>
</tr>
<tr>
<td>Table 5</td>
<td>Environmental Factors and Working Conditions That Can Be Associated With Patrol Officer Job Duties</td>
<td>38</td>
</tr>
<tr>
<td>Table 6</td>
<td>Role of the Physician and the Employer in the Medical Screening Process</td>
<td>42</td>
</tr>
</tbody>
</table>

MEDICAL EXAMINATION AND EVALUATION PROTOCOLS

CHAPTER I: Cardiovascular System

Table I-1	New York Heart Association Cardiovascular Classification System, Functional Classification	I-4
Table I-2	New York Heart Association Cardiovascular Classification System, Therapeutic Classification	I-4
Table I-3	Relationship of METS and Functional Class According to 5 Treadmill Protocols	I-7

CHAPTER II: Dermatology

| Table II-1 | Description of Primary Skin Lesions | II-3 |

Revised 4/96
CHAPTER III: Endocrine System

Table III-1 Studies of the Incidence of Hypoglycemia in Persons with Diabetes III-5
Table III-2 Insulin Infusion Test Protocol III-12
Table III-3 Assessment of Cognitive and Behavioral Functioning During Insulin Infusion Testing III-13

CHAPTER IV: Gastrointestinal System

Table IV-1 Liver Histology in 91 Asymptomatic HBsAg-Positive Individuals With Elevated Serum Aminotransferase Levels IV-11
Table IV-2 Biochemical Findings at Presentation that Reflect Disease Severity IV-12
Table IV-3 Risk Assessment for Gallstone Colic IV-15

CHAPTER VI: Oncology

Table VI-1 Toxicity of Anticancer Drugs and Hormones VI-4
Table VI-2 Recommendations for Supplemental Testing of Candidates Who Are at Risk of Delayed Toxicity from Selected Anticancer Drugs VI-6
Table VI-3 Five-Year Survival Rates for Selected Sites VI-7

CHAPTER VII: Infectious Diseases

Table VII-1 1992 Revised CDC HIV Classification System and Expanded AIDS Surveillance Definition for Adolescents and Adults VII-6
Table VII-2 Recent Studies of Survival After Diagnosis of AIDS VII-7

Revised 4/96
Table VII-3	Risk of Hepatitis B Infection After Exposure to HBeAg+/HBeAb- Blood Without Post-Exposure Prophylaxis	VII-12
Table VII-4	Assessment of the Maximal Annual Risk of Substantial Harm to a Suspect Due to the Employment of an Applicant Who is a Chronic HBV or HCV Carrier	VII-13
Table VII-5	Rate of HBV Infection Following HBIG Post-Exposure Prophylaxis	VII-14

CHAPTER VIII: **Musculoskeletal System**

Table VIII-1	Post-Operative Complaints in Patients Who Are Treated by Meniscectomy	VIII-21
Table VIII-2	Specific Task Performance (Percentage) in ACL-Disrupted Patients, 5 Years Since Injury	VIII-30
Table VIII-3	Pain, Swelling, and Giving Way in Chronic ACL Patients During Activities of Daily Living	VIII-31
Table VIII-4	Sports Activity in Patients with Nonoperative Treatment of Isolated ACL Injuries	VIII-32
Table VIII-5	Summary of ACL Repair Studies	VIII-34
Table VIII-6	Use of >5 mm Side-to-Side Difference on KT-1000 to Distinguish Between "Copers" and "Non-Copers" Following ACL Rupture (20 lb. Force)	VIII-40
Table VIII-7	Use of >7.5 mm Side-to-Side Difference on KT-1000 to Distinguish Between "Copers" and "Non-Copers" Following ACL Rupture (Maximum Manual Force)	VIII-40
Table VIII-8	Limb Symmetry in One-Legged Hop Testing of Normal Patients	VIII-42
Table VIII-9	Development of Instability vs. Time	VIII-43
Table VIII-10	Partial ACL Tears	VIII-45

Revised 4/96
SUPERCEDED BY HR/Appointment 2005-02
and by HR 2002-23

Table VIII-11 Classification of Acromioclavicular Injuries VIII-48

Table VIII-12 Percent of Patients Who Experience at Least
One Recurrence of Anterior Dislocation by
Age and Years of Follow-Up VIII-51

Table VIII-13 Percent of Patients Who Experience at Least
One Recurrence of Anterior Dislocation or
Subjective Instability by Age and Years of
Follow-Up VIII-52

Table VIII-14 Percent of Patients With No Dislocation
Recurrence at Two Years of Follow-Up
Who Experience at Least One Recurrence
After Three Additional Years of Follow-Up VIII-52

CHAPTER IX: Neurology

Table IX-1 Classification of Epileptic Seizures IX-5

Table IX-2 Annual Probability of Seizure Recurrence
After a Single Unprovoked Seizure IX-8

Table IX-3 Annual Risk of Seizure Recurrence in Newly
Diagnosed Epileptic Patients on Medication
by Period of Remission After Initiation
of Medication IX-9

Table IX-4 Mean Annual Risk of Seizure Recurrence 0-15
Years After Achieving a Five-Year Remission ... IX-10

Table IX-5 Annual Risk of Seizure Recurrence After Drug
Withdrawal IX-11

Table IX-6 Annual Risk of Seizure Recurrence as a
Function of Time Since Drug Withdrawal
and EEG Status IX-12

Table IX-7 Estimated Risk of Recurrence After a Single
Late Post-Traumatic Seizure IX-13

Table IX-8 Estimated Risk of Recurrence When a Seizure
Occurs Within the First Week After a Mild
Head Injury IX-13

Revised 4/96

xvi
LIST OF FIGURES

MEDICAL EXAMINATION AND EVALUATION PROTOCOLS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III: Endocrinology</td>
<td>III-1</td>
<td>Sample Pre-Placement Agreement for Patrol Officers Using Insulin</td>
<td>III-15</td>
</tr>
<tr>
<td>IV: Gastrointestinal System</td>
<td>IV-1</td>
<td>Histologic Patterns of Liver Inflammation and Necrosis and their Prognostic Implications</td>
<td>IV-12</td>
</tr>
<tr>
<td>VI: Oncology</td>
<td>VI-1</td>
<td>Survival Curves for Squamous Cell Carcinoma of the Lung by Clinical Diagnostic Stage</td>
<td>VI-19</td>
</tr>
<tr>
<td>VIII: Musculoskeletal System</td>
<td>VIII-1</td>
<td>Horizontal Displacement Greater than 3.5 mm of One Vertebra in Relation to an Adjacent Vertebra</td>
<td>VIII-6</td>
</tr>
<tr>
<td></td>
<td>VIII-2</td>
<td>Rotational Difference Between Adjacent Vertebra</td>
<td>VIII-7</td>
</tr>
<tr>
<td></td>
<td>VIII-3</td>
<td>McMurray’s Test</td>
<td>VIII-19</td>
</tr>
<tr>
<td></td>
<td>VIII-4</td>
<td>The Q Angle Imposes a Lateral Vector on the Terminal Degrees of Extensor Movement</td>
<td>VIII-23</td>
</tr>
<tr>
<td></td>
<td>VIII-5</td>
<td>Measurement of Congruence Angle</td>
<td>VIII-26</td>
</tr>
<tr>
<td></td>
<td>VIII-6</td>
<td>Lateral Patellofemoral Angle</td>
<td>VIII-26</td>
</tr>
<tr>
<td></td>
<td>VIII-7</td>
<td>Patellar CT Measurement of Congruence Angles in Subluxers and Controls</td>
<td>VIII-27</td>
</tr>
</tbody>
</table>
SUPERCEDED BY HR/Appointment 2005-02 and by HR 2002-23

Figure VIII-8 Extra-Articular Anterior Cruciate Ligament Reconstruction, Using the Arnold-Coker Lliotibial Band Technique VIII-33

Figure VIII-9 Intra-Articular Reconstruction After Anterior Cruciate Ligament Injury VIII-33

Figure VIII-10 The Lachman Test VIII-35

Figure VIII-11 Flexion-Rotation Drawer Test VIII-36

Figure VIII-12 KT-1000 Test VIII-37

Figure VIII-13 KT-1000 Measurements VIII-39

CHAPTER IX: Neurology

Figure IX-1 Evaluation Protocol for Individuals with Seizure Disorders IX-4

Figure IX-2 The Continuum of Benign Recurring Headache IX-24

Figure IX-3 Times of Occurrence of Cluster Attacks in 180 Patients IX-30

CHAPTER XI: Vision Guidelines

Figure XI-1 "Shoot-No-Shoot" Error Rates of Police Officers Tested at 20 Feet in Dim Light XI-9

Figure XI-2 Average Correct Responses for Object Detection and Weapon Identification as a Function of Visual Acuity XI-10

Figure XI-3 Sample Pre-Placement Agreement Involved Use of Soft Contact Lenses XI-28

Figure XI-4 Non-Compliance of LAPD Officers with Soft Contact Lenses Based on Time Since Hire XI-29

Figure XI-5 Reasons for Discontinuing Contact Lens Wear XI-29

Revised 4/96
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI-6</td>
<td>Sample Soft Contact Lens Examination Form</td>
<td>XI-37</td>
</tr>
<tr>
<td>XI-7 - XI-13</td>
<td>Normal and Color Defective Response</td>
<td>XI-56</td>
</tr>
<tr>
<td>XI-7 - XI-13</td>
<td>Patterns on the Farnsworth D-15</td>
<td>XI-56</td>
</tr>
</tbody>
</table>
2) **Examination:** The physical examination may reveal skin changes requiring additional history to clarify the significance of the condition. The skin should be examined for lesions to determine their type, distribution, shape, and arrangement. Table II-1 provides descriptions of primary skin lesions.

3) **Routine testing:** No routine testing is generally required of candidates.

<table>
<thead>
<tr>
<th>Table II-1</th>
<th>Description of Primary Skin Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Macule:</td>
<td>A flat, colored lesion, <2 cm in diameter, not raised above the surface of the surrounding skin. A "freckle," or ephelid, is a prototype pigmented macule.</td>
</tr>
<tr>
<td>2 Patch:</td>
<td>A large (>2 cm), flat lesion with a color different from surrounding skin. This differs from a macule only in size.</td>
</tr>
<tr>
<td>3 Papule:</td>
<td>A small, solid lesion, <1 cm in diameter, that is raised above the surface of the surrounding skin and hence palpable (e.g., inflammatory lesion of acne or small wart).</td>
</tr>
<tr>
<td>4 Nodule:</td>
<td>A larger (1-5 cm), firm lesion raised above the surface of the surrounding skin. This differs from a papule only in size (e.g., dermal nevus).</td>
</tr>
<tr>
<td>5 Tumor:</td>
<td>Palpable masses of variable size and consistency (e.g., basal or squamous-cell carcinomas).</td>
</tr>
<tr>
<td>6 Plaque:</td>
<td>A large (>1 cm) flat-topped raised lesion; edges may either be distinct (e.g., in psoriasis) or gradually blend with surrounding skin (e.g., in eczematous dermatitis).</td>
</tr>
<tr>
<td>7 Vesicle:</td>
<td>A small, fluid-filled lesion <1 cm in diameter that is raised above the plane of surrounding skin. Fluid is often visible, and the lesions are often translucent [e.g., vesicles in allergic contact dermatitis caused by Rhus (poison oak)].</td>
</tr>
<tr>
<td>8 Pustule:</td>
<td>A vesicle filled with leukocytes. Note: The presence of pustules does not necessarily signify the existence of an infection.</td>
</tr>
<tr>
<td>9 Bulla:</td>
<td>A fluid-filled, raised, often translucent lesion >1 cm in diameter.</td>
</tr>
<tr>
<td>10 Cyst:</td>
<td>A soft, raised, encapsulated lesion filled with semisolid or liquid contents.</td>
</tr>
<tr>
<td>11 Wheal:</td>
<td>A raised, erythematous papule or plaque, usually representing short-lived dermal edema.</td>
</tr>
<tr>
<td>12 Telangiectasia:</td>
<td>Dilated, superficial blood vessels.</td>
</tr>
</tbody>
</table>

B. EVALUATION OF COMMON CLINICAL SYNDROMES

1) **Undiagnosed Skin Disorders:** Should be evaluated and treated prior to determination of fitness for duty. Chronic or recurrent skin conditions should be evaluated by a dermatologist.

2) **Minor Skin Conditions:** Minor skin conditions can usually be treated successfully such that performance of patrol officer duties will not be adversely affected. Candidates with treated skin conditions that will not be worsened by the environmental conditions of the job or by performing essential job duties are medically qualified.

3) **Treated Skin Conditions that Require Control of the Environment and/or Job Duties:** If it is determined that the conditions and/or demands of the job will result in a relapse or worsening of the skin condition to a point where the candidate could not perform the essential functions of the job, or would pose a direct threat of harm to self or others, the individual is unsuitable for patrol officer work. However, this determination should not be made before considering possible work restrictions, controls, or other methods by which the individual could be accommodated to enable him/her to perform the job without a direct threat of harm.

4) **Skin Conditions that Cannot be Effectively Treated to Maintain an Intact Barrier to Infection or Injury:** Environmental conditions and exposure to emergency situations (e.g., administering first aid, subduing combative subjects) may present a direct threat of harm to the individual due to the risk of infection. Candidates with these types of skin conditions who are unable to work effectively and safely in emergency situations (even with reasonable accommodation) are unsuitable for patrol officer work.

REFERENCES

ENOCRINE SYSTEM¹

I. INTRODUCTION

A. OUTLINE OF HIGHLIGHTED CONDITIONS

1) Diabetes Mellitus
2) Parathyroid Disorders
3) Thyroid Disorders
4) Adrenal Disorders

B. IMPLICATIONS FOR JOB PERFORMANCE

The patrol officer position includes a variety of physically and emotionally demanding job duties that require proper endocrine function, such as:

- Running distances up to 500 yards at full speed;
- Subduing combative subjects after pursuit running;
- Immediate responses to life threatening situations;
- Prolonged surveillance and requirements for heightened vigilance;
- Visually demanding job situations such as high speed pursuit driving, firing weapons, clocking the speed of vehicles, and the identification and detection of evidence and suspects.

¹Author: Stephen G. Weyers, M.D.
 Diabetes Specialist Review Panel: Kenneth Feingold, M.D.; Lois Jovanovic-Peterson, M.D.; Sherman Holvey, M.D.

Revised 4/96
II. MEDICAL EXAMINATION AND EVALUATION GUIDELINES

A. GENERAL SCREENING RECOMMENDATIONS

1) History: See Medical History Statement.

2) Examination: The physical exam should include evaluation of the head, eyes, neck, skin and nail beds for evidence of endocrine dysfunction.

3) Routine Tests: A chemistry panel measuring calcium, phosphorous and glucose should be performed. Urinalysis is required to check for sugar, ketones and protein.

B. EVALUATION OF COMMON CLINICAL SYNDROMES

1) DIABETES MELLITUS

a. GENERAL CONSIDERATIONS:

Classification:

Recent changes have been proposed in the classification and terminology used to describe diabetes (Abourizk & Dunn, 1990). For the purpose of work capacity evaluation, persons with insulin-dependent diabetes mellitus (IDDM) are those who must use insulin to control their blood glucose, with small changes in insulin possibly resulting in dramatic changes in control. Persons with non insulin-dependent diabetes mellitus (NIDDM) are those who do not absolutely require insulin, but at times may benefit from its use (Abourizk & Dunn, 1990).

Control:

Blood glucose level depends on a number of factors, such as food intake, stress, activity and medication. Individuals with NIDDM can sometimes control blood sugar by diet modification alone. When this is not effective, oral medication and/or insulin can be used in addition to diet. Activity is encouraged as an adjunct to diet and/or drug therapy to improve glycemic control, reduce cardiovascular risk factors and improve well-being (American Diabetes Association, 1991).

Insulin regimens may involve conventional treatment with morning and evening injections of insulin, or intensive treatment with multiple doses of insulin each day, and frequent monitoring of blood sugar to determine the amount of
insulin required at the next injection. These types of treatments involve taking
a baseline amount of intermediate acting insulin and smaller amounts of
shorter acting regular insulin. Insulin can also be used as an adjunct to
treatment with oral agents for improved blood glucose control.

Regardless of the regimen used, if too much insulin is injected, or if too much
oral agent is taken, blood sugar may fall below normal, resulting in
hypoglycemia. Hypoglycemia can cause cognitive impairment, which may
progress to confusion and coma. When insufficient insulin is injected, blood
sugar levels exceed normal which may result in diabetic damage to the eyes,
kidneys, nervous system and blood vessels. Hyperglycemia can also be
associated with depression, urinary urgency, cognitive changes and fluctuating

Several large cooperative studies have investigated the need to meticulously
control blood sugar to delay the onset of end organ damage from diabetes
(DCCT Research Group, 1987, 1990, 1991; Krog, 1984). However, the risk
of hypoglycemia increases as meticulous control is approached, which may
limit the ability of some individuals to maintain adequate control (DCCT
Research Group, 1991). Maintaining adequate control may also be more
difficult for individuals who have nearly normal glycosylated hemoglobin, due
to CNS tolerance to hypoglycemia that serves to reduce the responses of
counter regulatory hormones and can result in unawareness of hypoglycemia
(Boyle, et al., 1995).

Blood glucose control is affected by diet, medication, and activity. Most
individuals with diabetes follow a prescribed diabetic diet. Typically, daily
calories are divided into three meals, with one or two small snacks. Regularity
of food intake is important. If more calories are eaten, then more activity
and/or more insulin is needed. If fewer calories are eaten, less activity and/or
medication is needed. Insulin should be injected at least 30 minutes prior to
eating (American Diabetes Association, 1991). The site of the injection can be
rotated; however, the rate of absorption of insulin and its effect may depend
on the site of injection.

Activity should be planned. Vigorous activity, such as running 100 yards,
enhances glucose utilization because muscle uptake of glucose increases 7-20
times over baseline during physical exertion. Enhanced glucose utilization may
continue for several hours after activity ceases and evening exercise may
cause nocturnal hypoglycemia (American Diabetes Association, 1991). When
activity is unplanned or cannot be anticipated, glucose regulation becomes
very complex.
There are counter regulatory mechanisms in the body to prevent hypoglycemia; however, these can be compromised in persons with diabetes. When blood sugar falls, the body normally shuts off insulin secretion and releases the hormone glucagon which enhances liver production of sugar. However, an individual with IDDM cannot shut off insulin secretion and must instead rely on glucose intake or hepatic glucose production to maintain serum glucose levels. Up to 24 hours is required to replenish liver carbohydrate stores once they have been exhausted. A second bout of strenuous activity during this period of time would significantly increase the risk of hypoglycemia.

Hypoglycemia also causes epinephrine release, which promotes a counter regulatory response. Cognitive dysfunction and personality change may occur prior to epinephrine release and therefore may not be recognized by the individual. Unfortunately, IDDM individuals often become under-responsive or non-responsive to the hypoglycemic stimulus. This leads to a diminished ability to identify a hypoglycemic situation, and increases the risk of a severe reaction and coma (Amiel, et al., 1988).

Several studies have shown that severe hypoglycemia reactions are common (Table III-1) and that mild and moderate insulin reactions occur in almost all IDDM individuals. Hypoglycemic reactions also occur in NIDDM individuals on oral medication. The unplanned and emergency nature of the patrol officer position compounds the difficulty of diabetic control.

There are a variety of job demands and realities of police work that can limit the ability to control one’s diet, activity, and medication, thereby increasing one’s susceptibility to hypoglycemic reactions. Examples include:

- inability to always control mealtimes and diet;
- changing and protracted work shifts;
- varying, unpredictable degrees of physical activity;
- wide-ranging, often high degrees of physical and psychological stress.

In addition, time-critical emergency situations encountered in police work can be at odds with the time interval required for blood testing, medication (e.g., insulin injections) or for food supplements to take effect in averting a diabetic reaction. For example, the risk of hypoglycemia is obvious for an IDDM officer who has been sedentary the first half of his/her work shift, injects insulin 30 minutes prior to lunch, and then is called to an emergency that requires his/her full attention prior to eating lunch.
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Population</th>
<th>Definition of Hypoglycemia</th>
<th>Incidence of Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arias, et al., 1985</td>
<td>19 IDDM patients: 10 CSII, 9 intensified conventional tx 24-hour continuous blood glucose monitoring</td>
<td>Hypoglycemia: blood glucose ≤ 50 mg/dl for at least 3 minutes</td>
<td>9/10 CSII and 5/9 ICT patients with hypoglycemic episodes 25% of episodes detected by CSII patients 75% of episodes detected by ICT patients</td>
</tr>
<tr>
<td>Basdevant, et al., 1982</td>
<td>147 IDDM patients: 64 f/u by GP, 83 f/u by diabetic unit 31% of hospital group take 2 or 3 insulin injections/d 42% of GP group take 1 insulin injection/d</td>
<td>Severe hypoglycemia (broad def): coma, need for glucagon injection, emergency hospitalization or need for assistance</td>
<td>31% of hospital group ≥ 1 episode of severe hypoglycemia in past year 27% of GP group ≥ 1 episode of severe hypoglycemia in past year</td>
</tr>
<tr>
<td>Bielefeldt & Reis, 1990</td>
<td>Type II diabetes patients: 55 insulin-treated and 83 oral agent treated</td>
<td>Severe hypoglycemia (narrow def): loss of consciousness or need for injections of glucose</td>
<td>16% of insulin-treated and 1.2% of oral agent-treated had severe hypoglycemia during a 1-year period</td>
</tr>
<tr>
<td>Caspari & Elving, 1985</td>
<td>400 insulin-treated diabetes patients (50% with Type I)</td>
<td>Severe hypoglycemia (narrow def): need for another person to inject glucagon or glucose, or hospital admission</td>
<td>8.5% of IDDM patients and 4.5% of non-IDDM patients had severe hypoglycemia during a 1-year period</td>
</tr>
<tr>
<td>Clarke, et al., 1980</td>
<td>157 Type 1 patients</td>
<td>Hypoglycemia: symptoms</td>
<td>38% of patients had experienced hypoglycemia while driving (time period not specified)</td>
</tr>
<tr>
<td>DCCT Research Group, 1987</td>
<td>132 Type I patients on experimental regimen 146 Type I patients on standard treatment</td>
<td>Severe hypoglycemia (narrow def): seizure, coma, hospitalization, or need for intravenous glucose or glucagon</td>
<td>26 and 9.8% of experimental and standard groups, respectively, had severe hypoglycemia during 1-year period</td>
</tr>
<tr>
<td>DCCT Research Group, 1991</td>
<td>817 IDDM patients: 424 experimental intensive tx patients (i.e., ≥ 3 daily insulin injections/d), 393 standard patients who had ≥ 2 hypoglycemic seizures/coma in past 2 years, ≥ 1 episode of neurologic impairment without warning sxs of hypoglycemia were excluded from the study</td>
<td>Severe hypoglycemia = event consistent with hypoglycemia requiring another person’s assistance and assoc with a BS < 50 mg/dl, or prompt recovery after oral CHO, IV glucose or glucagon administration</td>
<td>26% reported severe hypoglycemia episode (77% from expt group) 43% of severe hypoglycemia episodes occurred 1200-0800. For severe hypoglycemia episodes during waking hours, 36% could not recall warning sxs (37% in expt group, 31% in std group) Summary: in the expt group, incidence of severe hypoglycemia ranged from 2-6 times that observed with the conventional group 6.5% all DM patients ≥ 1 severe hypoglycemia (8% patient-year incidence) 22% with cause unknown for severe hypoglycemia (all Type I patients)</td>
</tr>
<tr>
<td>DCCT Research Group, 1995</td>
<td>1441 IDDM patients: followed for average of 6.5 years Intensive treatment group compared with standard treatment group</td>
<td>Severe hypoglycemia: as above in DCCT 1987</td>
<td>Major risk of intensive treatment is a three-fold increase in risk of severe hypoglycemia</td>
</tr>
</tbody>
</table>

Revised 4/96
<table>
<thead>
<tr>
<th>Authors</th>
<th>Type of Patients</th>
<th>Hypoglycemia Definition</th>
<th>Frequency of Hypoglycemia</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frier, et al., 1980</td>
<td>250 Type I patients</td>
<td>Significant hypoglycemia (broad def): coma, severe or frequent moderate hypoglycemic reactions</td>
<td>34% had severe or frequent hypoglycemia during a 6-month period</td>
<td></td>
</tr>
<tr>
<td>Goldwicht, et al., 1983</td>
<td>172 Type I patients</td>
<td>Severe = all insulin reactions that result in hospitalization or need external help. All other reactions = "Mild"</td>
<td>58% x 1 mild episode/month, 26% x 1 severe episode in past year, 42% x 1 severe episode in past 5 years, 11% of subjects without explanation for episodes, 3% never aware of any hypoglycemic symptoms, 14% reported emotional factors as a cause</td>
<td></td>
</tr>
<tr>
<td>MacLeod, et al., 1993</td>
<td>600 Type I IDDM patients 75.7% using conventional insulin tx</td>
<td>Severe hypoglycemia = episode which required the assistance of another person to promote recovery</td>
<td>29% with severe hypoglycemic episode in past year (1.6 episodes/patient/year), 29% Type II patients with severe hypoglycemic episode (0.73 episodes/patient/year), Removal of Type II patients gives an incidence for Type I patients for severe hypoglycemia = 29.6% or 1.7 episodes/patient/year</td>
<td></td>
</tr>
<tr>
<td>Muhlhauser, et al., 1985</td>
<td>434 IDDM patients (50 on CSII)</td>
<td>Severe hypoglycemia = Loss of consciousness followed by administration of glucagon by relatives, friends, assistance by MD or hospitalization</td>
<td>30% of all patients with 10% incidence of severe hypoglycemia 50 CSII patients with 9% incidence of severe hypoglycemia</td>
<td></td>
</tr>
<tr>
<td>Nilsson, et al., 1988</td>
<td>46 patients admitted to ER in 1-year period for severe hypoglycemia</td>
<td>Severe hypoglycemia = an episode of hypoglycemia demanding parenteral tx promptly resolving the sx</td>
<td>7% patient-year incidence, 78% admitting to > 1 severe hypoglycemia in past year, 5.1% could not ID the cause for severe hypoglycemia, 27% ID decreased food intake as cause, 25% ID increased physical activity as cause</td>
<td></td>
</tr>
<tr>
<td>Pramming, et al., 1991</td>
<td>411 Type I IDDM patients (78% take 2 insulin injections/d (mixture of regular and intermediate), 12% take 3 injections/d)</td>
<td>"Mild" = episode requiring immediate intake of glucose or food, managed by the patient. Severe hypoglycemia = episode in which patient is unable to take action by himself and is dependent on help from others</td>
<td>Mild hypoglycemia = 1.8 episodes/patient/week, Severe hypoglycemia = 0.027 episodes/patient/week, 27% with severe hypoglycemia and without warning sx, 73% stated that sx became weaker with time</td>
<td></td>
</tr>
<tr>
<td>Ward, et al., 1990</td>
<td>158 IDDM patients (78% with conventional insulin therapy and 22% with intensive insulin therapy (≥ 3 injections/d))</td>
<td>Severe hypoglycemia = episodes requiring assistance from someone else, incl hospitalization or LOC with spontaneous recovery. All other episodes defined as "Mild"</td>
<td>17% with severe hypoglycemia in past year (7% > 5 in past year), Mild hypoglycemia common: 73% reporting mild hypo at least monthly and 15% most days, 5% without warning symptoms on a regular basis, 48% with warning symptoms before every episode</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced in part from Williams, A. 1991. Table 1: Studies of the incidence of hypoglycemia in persons with diabetes. Comments on Qualifications of Drivers: Diabetes. FHWA Doc. No. MC-87-17, with permission.
b. RECOMMENDED EVALUATION PROTOCOL:

History:

All candidates should be questioned regarding the onset of diabetes, history of ketoacidosis, medication(s), diet, and activity regimen followed to maintain blood glucose levels. The circumstances and outcomes surrounding all episodes of hypoglycemia in the last 5 years should be obtained. A blood glucose diary should be kept and reviewed, along with the results of lab testing performed in the past, to determine level of glucose control. History of complications from diabetes and symptoms such as early satiety, bloating and paresthesia should be fully evaluated. The results of any special testing, such as c-peptide values or islet cell antibody testing, should be considered.

Examination:

Eyes: All candidates with diabetes mellitus should have a complete eye examination by an ophthalmologist, documenting the absence of clinically significant eye disease. The eye examination should assess visual acuity, ocular tensions, and presence of lenticular opacities, and include careful examination of the retina for evidence of any diabetic retinopathy or macular edema. Color vision testing\(^3\) for these candidates should include use of the Farnsworth D-15 or other test which specifically assesses the presence of blue-yellow color vision deficiency, in addition to any pseudochromatic plate test that primarily assesses red-green deficiency (e.g., Ishihara).

Neurological and Cardiovascular: Neurosensory function testing with a tuning fork, light touch and nylon monofilament\(^3\) should rule out significant sensory neuropathy. Check for vascular insufficiency, bruits, and dependent extremity color changes. Orthostatic blood pressure changes may relate to autonomic dysfunction.

Routine Testing:

Proteinuria should be evaluated with a 24-hour creatinine clearance and protein determination. Hemoglobin A-1C should be measured. Values more than 4 standard deviations above the mean are an indication of poorly controlled diabetes.

\(^3\)Color vision screening guidelines can be found in Section XI-6 of this manual.

\(^3\)See Caputo, G.M., Cavanagh, P.R., et al., Assessment and Management of Foot Disease in Patients with Diabetes, NEJM Sept. 29, 1994; 331: 854-860 for a description the monofilament testing process.
GROUP I: INDIVIDUALS WITH NIDDM WHO DO NOT TAKE INSULIN

Level 1: Diabetes controlled by diet alone:

No work restrictions are necessary.

The presence of microaneurysm, exudates, or other findings of background retinopathy during the eye examination is not, in and of itself, sufficient grounds for disqualification unless visual acuity is affected and prevents the candidate from meeting current agency vision standards. However, individuals with active proliferative retinopathy, vitreous hemorrhages or macular edema of pre-proliferative retinopathy should not be medically cleared until the condition has stabilized.

If hemoglobin A-1C levels are found to be abnormal, the candidate should be deferred until evaluation, treatment, and control of diabetes can be documented for at least 6 months. (Note: Candidate's status may change to Level 2 or Group II.)

Level 2: Diabetes controlled by diet and oral medication:

Blood glucose levels should be monitored and documented 4 times per day (before breakfast and one hour after each meal) for a minimum of 3 times per week for at least three months, using a One-Touch II blood glucose monitoring device or testing device that is equally efficient with memory and printout capability. The candidate must agree to maintain testing at least 1 time per week during employment. If test results are satisfactory and the candidate agrees to ongoing testing, the candidate can be cleared for patrol officer duties.

The presence of microaneurysm, exudates, or other findings of background retinopathy during the eye examination is not, in and of itself, sufficient grounds for disqualification unless visual acuity is affected and prevents the candidate from meeting current agency vision standards. However, individuals with active proliferative retinopathy, vitreous hemorrhages or macular edema of pre-proliferative retinopathy should not be medically cleared until the condition has stabilized.

If hemoglobin A-1C levels are found to be abnormal, the candidate should be deferred until evaluation, treatment and control of diabetes can be documented for at least 6 months.

Candidates who either have experienced serious episodes of hypoglycemia (i.e., requiring the assistance of others), within approximately the past five years, or who present indications of
autonomic dysfunction can be considered to constitute a "direct threat" if positioned as a patrol officer, and therefore should be disqualified from further consideration. (Note: A recent study (DeFronzo, et al., 1995) of IDDM individuals found that the incidence of symptoms compatible with hypoglycemia was 2% for those who took metformin alone, 3% for those who took only glyburide, and 18% for those given both metformin and glyburide in combination.)

GROUP II: INDIVIDUALS WITH IDDM AND THOSE TAKING INSULIN

It is imperative that individuals with IDDM keep their blood glucose levels in the normal range to limit the long term consequences of the disease. However, incidence of hypoglycemia may be made considerably more frequent by the significant and often unpredictable physical and mental job demands associated with the patrol officer position. As a result, the need for tight control can often be incompatible with these unpredictable, strenuous job demands. Therefore, given the consequences of poor or failed job performance on public health and safety, officers who use insulin can pose a direct threat unless they can demonstrate considerable experience and the ability to control their blood glucose levels even under adverse circumstances.

Any individuals with diabetes who require insulin are at a significant risk for hypoglycemic episodes (see Table III-1). Therefore, the screening protocol described below applies to individuals with IDDM as well as those with NIDDM who take insulin to control their diabetes.

Phase I - Initial Screening

A. Review of Medical Status/History: All candidates should supply the following information to ensure that they can maintain adequate blood sugar control in even unpredictable, emergency situations:

- Medical records documenting medical care over the past five years. The insulin requirements of individuals with newly-diagnosed IDDM may dramatically change for up to 18-24 months after diagnosis. Therefore, although these individuals do not have a five-year history of IDDM to review, they should be observed over a period sufficient to eliminate unrealistic expectations of easy control.
✓ Verification from candidate's physician that there have been no serious episodes of hypoglycemia over the past five years (i.e., episodes requiring the assistance of others). The physician should also be questioned regarding the existence of other indication(s) of problems or poor control that may not have been reflected in the written history. The physician may also be asked to approve the candidate to perform any agency-specific job demands, such as working swing shifts, night shifts, or being on-call for extended (e.g., 24 hour) time periods.

✓ Medical records should also indicate that the candidate is free of any autonomic dysfunction (i.e., normal neurologic exam results, normal R-R variation on EKG with valsalva; any indication of significant sensory neuropathy based on sensory testing using nylon monofilament should be carefully evaluated). If this information is not available from records, the applicant will need to obtain this information by referral from his/her treating physician.

Candidates who have experienced any serious hypoglycemic episodes (i.e., requiring the assistance of others) within approximately the past five years, or who present indications of autonomic dysfunction can be considered to constitute a "direct threat" if positioned as a patrol officer, and therefore should be disqualified from further consideration.

B. Vision Testing.

✓ A vision examination by an ophthalmologist documenting the absence of clinically significant eye disease should be required of all candidates. Examination and evaluation procedures are the same as those discussed for individuals with NIDDM who do not take insulin (see Group I, Levels 1 and 2). As discussed in those sections, the presence of microaneurysm, exudates, or other findings of background retinopathy, by themselves, are not sufficient grounds for disqualification unless visual acuity is affected and prevents the candidate from meeting current agency vision standards. However, individuals with active proliferative retinopathy, vitreous hemorrhages or macular edema of pre-proliferative retinopathy should not be medically cleared until the condition has stabilized.

4 Or throughout the course of the individual's history of IDDM, for those who have been diagnosed with the condition for less than five years.

5 See Caputo, G.M, Cavanagh, P.R., et al., Assessment and Management of Foot Disease in Patients with Diabetes, NEJM Sept. 29, 1994; 331: 854-860 for a description the monofilament testing process.
✓ Significantly higher incidence of blue-yellow color vision deficiency have been found in IDDM individuals (Hardy, et al., 1992; Utku & Atmaca, 1992). Therefore, color vision testing⁶ for these candidates should include use of the Farnsworth D-15 or other test which specifically assesses the presence of blue-yellow color vision deficiency, in addition to any pseudochromatic plate test that primarily assesses red-green deficiency (e.g., Ishihara).

Phase II - Blood Glucose Control

✓ Candidates who successfully complete Phase I should maintain continuous diary listings of their blood glucose levels for a period of at least six months.⁷ Blood glucose levels should be measured by a One-Touch II blood glucose device or another testing device with equivalent efficiency, memory, and printout capability. Blood sugar levels should be determined frequently during this time (4 times per day--before each meal and at bedtime--and as needed). In addition to blood glucose measurements, candidates should also record other relevant information, such as medications taken, dietary intake out of the ordinary, descriptions of the type and amount of activity, as well as any unusual conditions affecting blood glucose control.

Only candidates whose diaries indicate adequate blood glucose compliance and control--defined as maintaining blood glucose levels between 100-300, with no instances of serious hypoglycemia or other behavioral/cognitive impairment--should continue on in the medical evaluation process.

Note: Candidates who use an insulin pump should be outfitted with a departmental uniform, including all required equipment (e.g., belts, bullet-proof shield, etc.) to ensure that the pump's effectiveness is not compromised. However, any problems encountered will likely lead to relocation of the entrance point on the body, or a change in equipment, rather than in summary disqualification.

Phase III - Insulin Infusion Testing

✓ Insulin infusion testing is an effective means of assessing the candidate's behavioral response to hypoglycemia. The insulin infusion test should only be conducted at a university or specialty

⁶Color vision screening guidelines can be found in Section XI-6 of this manual.

⁷Retrospective diaries that meet the criteria stipulated here may be accepted in lieu of prospective record-keeping.

Revised 4/96
laboratory by an endocrinologist experienced with this testing procedure. The testing should be conducted using an accepted protocol, such as described in Table III-2. Assessments of cognitive functioning and related physical symptoms, as well as awareness of one’s blood glucose level, should be conducted when blood glucose level descends below 100. Table III-3 provides behavioral assessment criteria for use during testing. The specific blood level corresponding to onset of impairment should also be noted, as well as the candidate’s glucagon and epinephrine response to hypoglycemia.

Only candidates whose test results indicate a normal glucose response and an appropriate epinephrine secretory response and no evidence of cognitive impairment when glucose is above 60 should continue in the medical evaluation process.

TABLE III-2
Insulin Infusion Test Protocol

The test should be conducted after an overnight fast and with the candidate in a supine position throughout. Candidates should not receive any intermediate-acting insulin for at least 24 hours and no short-acting subcutaneous insulin for at least 12 hours before the test. Insulin infusion levels should begin at 40 mU per kilogram of body weight per hour and should continue for 100 minutes. Human regular insulin should be diluted in 0.9% saline to a concentration appropriate for the particular infusion rate (8-12 ml per hour). Blood samples should be removed through an indwelling intravenous line at -20, -10, and 0 minutes and at 10-minute intervals during the insulin infusion test and until test conclusion. Testing should continue for 180 minutes. All specimens should be tested for glucose. The specimens at 0 minutes and 180 minutes should be tested for epinephrine and glucagon. Symptoms reported during testing and the results of glucose testing should be used to define which specimens require additional testing.

*If glucose response is normal, measurement of epinephrine is not necessary.
TABLE III-3
Assessment of Cognitive and Behavioral Functioning During Insulin Infusion Testing

Directions: The following questions are for use in documenting candidates' cognitive and behavioral reactions during the insulin infusion test.

Indicate the candidate's BG level when s/he began to experience each of the following symptoms, and whether the candidate was aware that s/he was experiencing these reactions:

<table>
<thead>
<tr>
<th></th>
<th>BG Level</th>
<th>Self Aware? (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coordination Problems (for example, have candidate thread a needle, write his/her name, flip a coin, walk a straight line, or do jumping jacks).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Cognitive Impairment (for example, have candidate perform simple arithmetic or related task).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Visual Disturbances (for example, have the candidate read something at close proximity and at a distance).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Trembling, sweating, light-headedness, and/or other related symptoms. Describe:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase IV - Job Related Testing.

✓ In order to ensure that the individual is able to withstand the physical and psychological demands of the patrol officer job, the candidate should participate in a job related test conducted by the agency's screening physician or agent. This test can be conducted during one 8-hour time period, or it may be administered over several days to better simulate the specific working conditions faced at that agency (e.g., shift work) or to assess the candidate under a greater variety of situations (e.g., interruption of meal on one day but not others).

The candidate should be informed that the test will involve being asked to run on a treadmill for seven minutes (two minutes to accelerate pulse and five minutes of exercising at a pulse of between 75%-90% x 220 - age) at random intervals throughout the day. No forewarning and no time to ingest any substance during the seven minutes of running is provided. After the run,
the candidate will be required to walk for 25-30 minutes, during which time s/he is allowed to ingest Lifesavers or other substance as desired, that an officer could be expected to easily carry on oneself while on duty.

Candidates should be informed that the purpose of this test is to ensure that they can maintain their blood glucose levels within 100-300 throughout all phases of testing. Candidates should be required to bring their personal reflectance meter and reagent strips (One Touch II or equivalent device), medication and any food desired during the testing period. They should be informed that periodic glucose measurements will be taken by the test administrator and that these readings will be sent to a laboratory for analysis; therefore, it would be prudent to ensure that their personal reflectance meter is properly calibrated.

The candidates’ blood glucose levels and visual acuity levels should be measured at the beginning of the test and several times throughout the 8-hour testing process. Any blood glucose reading that is below 60, or any reading over 350 indicates that the candidate could demonstrate insufficient blood glucose control during critical patrol officer circumstances and events, and is therefore a failed test. Successful completion of this test also requires that the individual’s visual acuity remain within agency standards at all times during testing.

Maintenance Requirements:

If approved for duty, the candidate must agree to remain under an endocrinologist’s care, maintaining quarterly scheduled appointments. Regular, ongoing blood glucose monitoring should involve, at a minimum, use of a One-Touch II or equivalent device within 1/2 hour prior to assuming work duties, and approximately every 2 hours while on pay status. Blood glucose levels outside of the 100-300 range requires notification of one’s supervisor and cessation of all work duties that have public health and safety implications.

In order to formalize their obligation to comply with these maintenance procedures, it is recommended that candidates sign a pre-placement agreement. A sample pre-placement agreement for IDDM candidates can be found in Figure III-1).

Testing should be conducted for signs of the onset of autonomic neuropathy prior to the end of the probationary period, at five year intervals thereafter for officers who have had diabetes for ten years or less, and at 2 year intervals for those who have had over ten years of experience with the condition.
SAMPLE

PRE-EMPLOYMENT NOTICE OF REASONABLE ACCOMMODATION REQUIREMENTS

Name: ___________________________ Date of Hire: ___________________________

Medical Condition: Diabetes treated with insulin.

I acknowledge that the medical condition noted above was present at the time that the (name of law enforcement agency) offered me employment. I affirm that I am currently using insulin for control of diabetes. I understand that my use of insulin is permitted as a reasonable accommodation for my medical condition and that failure to properly maintain my blood sugar is cause for dismissal.

I understand that my ability to safely perform the duties assigned to me as a full-duty patrol officer is contingent upon my ability to successfully maintain my blood sugar between 100-300 at all times, and I shall do so whenever I am on pay status. I will measure my blood glucose using a recording device immediately prior to beginning work and at least every 2 hours while on pay status. When my blood glucose falls outside the range of 100-300, I will notify my supervisor and cease all work duties that have public health and safety implications.

I understand that the repeated inability to maintain my blood glucose between 100-300 may be cause for termination of my employment. I also understand that my condition requires periodic medical testing for autonomic neuropathy, eye disease and other complications of diabetes.

I agree to notify my employer if I develop hypoglycemia that requires assistance while on or off duty.
I agree to provide medical records to my employer on a regular basis.
I agree to allow my employer to review the historical test results stored in my glucometer recording device.
I agree to undergo periodic medical testing to determine whether I have developed damage to my nervous system or eyes.

By my signature below, I acknowledge that I have read and accept the conditions of this Notice.

_________________________ ___________________________
SIGNATURE DATE
Officers should have annual ophthalmological examinations to check for the onset of clinically significant eye disease, color vision deficiency and acuity change as discussed earlier.

Officers who during their tenure as a patrol officer develop IDDM, or who require insulin for control, should be evaluated using this protocol to determine fitness for duty.

2) **PARATHYROID DISORDERS**

Asymptomatic hypercalcemia is usually caused by primary hyperparathyroidism. Depending on the degree of elevation, excess calcium may cause fatigue, depression, mental confusion, anorexia, nausea, vomiting, constipation, or cardiac arrhythmias. Kidney stones may be associated with hypercalcemia, and the possibility of an underlying malignancy causing hypercalcemia should be considered.

Undiagnosed abnormalities in calcium levels require evaluation, diagnosis, and treatment before medical clearance. Calcium and phosphorous levels should be in an acceptable range based on two testings conducted at least one month apart.

3) **HYPER AND HYPOTHYROIDISM**

Hyperthyroidism commonly causes nervousness, emotional lability, inability to sleep, tremors, frequent bowel movements, excessive sweating and heat intolerance. Muscle weakness and weight loss may progress to the point where stair climbing is difficult. Cardiovascular disorders, such as atrial fibrillation or congestive heart failure, may occur. Hypothyroidism often has an insidious onset and includes symptoms such as lethargy, constipation, stiffness or cramping of muscles, or carpal tunnel syndrome. Intellectual activity slows, hair loss may occur, and the voice may become hoarse.

Thyroid abnormalities require evaluation, diagnosis, and treatment prior to medical clearance. Stable thyroid levels (Free T4, & TSH) in the normal range should be obtained from two testings conducted at least one month apart. Candidates on thyroid replacement should be asymptomatic and have normal or low TSH levels.
4) **ADRENAL DISORDERS**

The adrenal glands produce corticosteroids that affect metabolism and sodium-potassium balance in the body, catecholamines that regulate heart rate, blood pressure and sweating, and other body responses. Corticosteroid insufficiency is characterized by fatigability, weakness, anorexia, nausea, vomiting, hypotension, or hypoglycemia. Excess corticosteroids may cause hypertension, glucose intolerance, psychologic conditions and gastrointestinal problems.

Adrenal abnormalities require evaluation, diagnosis, and treatment before medical clearance. No cardiac arrhythmia or hypertension should be present. Sodium and potassium should be in normal range. Candidates with hypoadrenalism should document their ability to perform vigorous physical activity under stress and adverse environmental conditions without weakness or compromised function. Acceptable documentation may include review of current job duties, work attendance records, medical records and recreational activities.
REFERENCES

Revised 4/96

III-18

4) **BINOCULAR FUSION DEFICIENCY**

a. **GENERAL CONSIDERATIONS**

Normal binocular vision requires that both eyes be focused or fused on the same point in space. A strabismus is said to exist when the eyes are directed at different points. The resulting diplopia and visual confusion become the stimuli for suppression of the deviated eye, and if not treated at a young age, can result in permanent loss of vision in the deviated eye (amblyopia). The eye may be intermittently or constantly turned inward (esotropia), outward (exotropia), or even vertically deviated (hypertropia). Strabismus is observed in about 6-7% of children.

Stereopsis, which is a component of binocular fusion, is necessary for depth perception—an important visual ability for patrol officers (Table XI-1). Job-related tasks that involve stereopsis can include subduing combative suspects, driving, weapon loading under emergency conditions, and other tasks requiring judgement of the relative depth and location of objects, especially objects situated within 20 feet of the officer. It should be noted, however, that depth perception is possible using monocular cues only (Von Noorden, 1990). These cues include motion parallax (further objects move more than closer objects with head or eye motion), linear perspective (distant objects are smaller), the overlay of contours, the distribution of highlights and shadows, and the size of known objects (bigger means closer). What is not known, however, is the effectiveness of these cues in stressful situations. Using monocular cues involves judgement based on experience, and the cues must be present in abundance. Consequently, errors are possible.

Experimental studies involving individuals tested with one eye occluded have also found that adequate binocular fusion provides a "binocular summation" advantage for performing a number of tasks relevant to police work. For example, Jones and Lee (1981) found that detecting a camouflaged object required 55% longer when one eye was occluded. Tracking a moving target was 22% more efficient with both eyes open. Lack of balance, as measured by body sway when one foot is placed in front of another, was 38% greater with one eye closed. Jones and Lee also found that monocular impairment was somewhat greater in dim light. This latter finding is consistent with a study by Groome and Johnson (1993) who observed that individuals could detect an approaching pedestrian in simulated fog conditions 12% more quickly with both eyes open, and especially by Rabin (1994) who found that binocular summation provides an increase in contrast sensitivity of approximately 40%.

There are no functional studies involving individuals with permanent loss of binocular fusion; therefore, the question of the degree to which experience can compensate for this visual defect remains largely unanswered. Sheedy, et al. (1986) addressed this issue experimentally by having individuals with normal
stereopsis undergo binocular occlusion for a period of five days. He found that monocular performance of three visual-motor tasks (placing pointers into straws, needle-threading, and card filing) significantly improved with practice over the five day period; the binocular advantage in performing these tasks decreased from an average of 18% to 12.4% by the end of the five-day period for the pointers and straws and the needle-threading tasks. However, binocular performance remained better than monocular performance throughout the duration of the study.

SUMMARY: Loss of binocular fusion could potentially impair the performance of essential patrol officer duties, although it is not entirely clear to what extent persons with long-standing loss of fusion can compensate for this impairment. Therefore, although further research is needed, there appears to be evidence for requiring candidates to have a minimum degree of binocular fusion and stereopsis of approximately 40 seconds of arc.

b. RECOMMENDED EVALUATION PROTOCOL

Normal binocular vision is considered 20 seconds of arc or better, which corresponds to achieving correct responses on all 9 Titmus Stereo Test targets. However, given the uncertainty regarding compensatory mechanisms in individuals with binocular fusion deficiencies, the recommended criterion for passing is 40 seconds of arc, or dot #6.

Candidates who initially test at less than 40 seconds of arc should be evaluated by their private vision specialist to establish the reason for the deficit if it is not readily apparent. In some cases, correction of near vision may enable the candidate to pass the Titmus test. However, it is not uncommon for a candidate to test poorly for no apparent reason (i.e., no amblyopia, strabismus, or phoria). In these cases, it is recommended that judgment be used in the interpretation of Titmus test results.
APPENDIX B
PARTICIPATING MEDICAL SPECIALISTS

CARDBIOVASCULAR

Panel Meeting/Activities:
Fall, 1991

Author:
Stephen G. Weyers, M.D.

Specialist Review Panel:
Lee Cady, M.D.
County of Los Angeles

Robert Holly, Ph.D.
U.C. Davis Medical Center

Tissa Kappagoda, M.D.
U.C. Davis Medical Center

John Rutledge, M.D.
U.C. Davis Medical Center

Jeffrey Tanji, M.D.
U.C. Davis Medical Center

ENDOCRINOLOGY

Panel Meeting/Activities:
Winter, 1991; Fall, 1995

Author:
Stephen G. Weyers, M.D.

Specialist Review Panel:
Kenneth Feingold, M.D.
VA Medical Center, San Francisco

Lois Jovanovic-Peterson, M.D.
Sansum Medical Research Foundation
Santa Barbara

Sherman Holvey, M.D.
Private Practice, Los Angeles

GASTROINTESTINAL

Panel Meeting/Activities:
Fall, 1991

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Craig Johanson, M.D.
Private Practice, San Francisco

Ralph Koldinger, M.D.
Sacramento Gastroenterology

Michael Lawson, M.D.
Kaiser Permanente, Sacramento

DERMATOLOGY*

Panel Meeting/Activities:
Fall, 1992

Author:
Stephen G. Weyers, M.D.

Specialist Review Panel:
Tim Berger, M.D.
San Francisco General Hospital

Robert Adams, M.D.
Stanford University

Nikolajs Lapins, M.D.
Private Practice, San Francisco

Gerald Gellin, M.D.
Private Practice, San Francisco

1 Both oversight physicians -- Drs. R. Leonard Goldberg and Stephen Weyers -- participated in all meetings, as did the project manager, Shelley Spilberg, Ph.D.

*Review of this chapter was performed independently.

Revised 4/96

B-1
SUPERCEDED BY HR/Appointment 2005-02 and by HR 2002-23

HEMATOLOGY/ONCOLOGY
Panel Meeting/Activities:
Summer, 1992

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Solomon I. Hamburg, M.D.
Tower Hematology/Oncology Medical Group, Los Angeles

Howard Liebman, M.D.
University of Southern California

Eileen Weitz, M.D.
UCLA

INFECTIONOUS DISEASE
Panel Meeting/Activities:
Summer, 1992

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Ronelle Campbell, D.O.
Department of Corrections

Julie Gerberding, M.D.
San Francisco General Hospital

Karen Lindsay, M.D.
USC Ambulatory Health Center

MUSCULOSKELETAL - KNEE
Panel Meeting/Activities:
Winter, 1992

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Dale Daniel, M.D.
Kaiser Permanente, San Diego

James Garrick, M.D.
Center for Sports Medicine
St. Francis Mem. Hosp., S.F.

James Stark, M.D.
Center for Sports Medicine
St. Francis Mem. Hosp., S.F.

MUSCULOSKELETAL - BACK
Panel Meeting/Activities:
Winter, 1992

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Stanley Bigos, M.D.
University of Washington Medical Center
Seattle, WA

James Stark, M.D.
Center for Sports Medicine
St. Francis Mem. Hosp., S.F.

Vert Mooney, M.D.
UCSD Medical Center

MUSCULOSKELETAL - UPPER/LOWER EXTREMITIES
Panel Meeting/Activities:
Winter, 1992

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
David Levine, M.D.
La Cienega Medical Industrial
Los Angeles

Phillip Sobol, M.D.
Neurological Orthopedic Assoc.
Los Angeles

NEUROLOGY
Panel Meeting/Activities:
Spring, 1992

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Steven Holtz, M.D.
Neurology Medical Group
Walnut Creek

Lee Kudrow, M.D.
California Medical Clinic for Headache
Encino

Richard Riemer, M.D.
Private Practice, Sacramento

Revised 4/96
RESPIRATORY

Panel Meeting/Activities:
Summer, 1991

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
James R. Dexter, M.D.
Beaver Clinic, Redlands

Philip Harber, M.D.
University of CA, L.A.

William G. Hughson, M.D.
University of CA, San Diego

VISION GUIDELINES

Panel Meeting/Activities:
Summer, 1993

Author:
R. Leonard Goldberg, M.D.

Specialist Review Panel:
Chris Johnson, Ph.D.
Department of Ophthalmology
UC Davis

James Bailey, O.D.
Southern California College of Optometry
Fullerton

James Sheedy, O.D.
Private Practice, Walnut Creek

Ian Bailey, O.D.
School of Optometry
University of California/Berkeley

Michael Gordon, M.D.
Private Practice, San Diego

Revised 4/98
TO: Chief Executive

SUBJECT: PROCEDURES FOR OBTAINING THE NEW POST ENTRY-LEVEL DISPATCHER SELECTION TEST BATTERY

The *POST Entry-Level Dispatcher Selection Test Battery* is now available to participating agencies in the POST Program. This new battery of tests was developed to provide agencies with a means of complying with new dispatcher selection standards that will take effect in July 1997 [Commission Regulation 1018(c)(4), see enclosure]. Employers who use the Battery to its full potential are expected to realize substantial gains in employee productivity and retention. The purpose of this memo is to assist agencies that wish to begin using the tests.

Overview of Testing Program. The tests are being distributed by Cooperative Personnel Services (CPS) under the auspices of POST. Authorized agencies may obtain the testing materials from CPS, after completing a *Test Use and Security Agreement,* in accordance with the enclosed schedule of fees. An optional test proctoring service is available from CPS. Immediately following each test administration, all test answer sheets will be forwarded to POST for scoring. Agencies have the option of receiving test results by FAX or courier delivery and the results may be requested on paper or computer media.

Required Proctor Training. The testing process is somewhat involved and requires preparation on the part of proctors in order to ensure a successful test administration. Accordingly, POST requires that prior to administering the Battery, agency staff attend a brief (1/2 day) training session to become familiar with testing and security procedures and instructions to examinees. Agencies using the optional proctoring service are not required to send staff to the proctor training.

To Get Started. To learn more about the tests, and to receive a *Test Use and Security Agreement,* please contact the POST Dispatcher Testing Coordinator at (916) 227-4834 [FAX (916) 227-3895]. The POST Coordinator is also available to answer any questions you may have about the testing program or the validity evidence for the tests.

NORMAN C. BOEHM
Executive Director

Enclosures
Copy: Communication Center Manager
<table>
<thead>
<tr>
<th>Fees</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4.95</td>
<td>per test package used (includes 5 test booklets and answer sheet in sealed envelope)</td>
</tr>
<tr>
<td>$1.15</td>
<td>per test package returned unopened</td>
</tr>
<tr>
<td>$145.00</td>
<td>base charge per testing session (includes scheduling, shipping, handling, proctor materials, tapes, and Control Sheet)</td>
</tr>
<tr>
<td>$135.00</td>
<td>optional proctor service (includes one lead proctor for 6 hours, travel up to 50 miles; additional proctor time and travel billed at $12.15/hour and $0.29/mile)</td>
</tr>
<tr>
<td>$25.00</td>
<td>per inspection set of test materials (includes handling and one-way shipping charges for one specimen test package with audio tapes; must be returned within 30 days)</td>
</tr>
</tbody>
</table>

A new schedule of fees will be distributed by July 1, 1996 if these rates change.
REGULATION 1018(c), effective July 1, 1997
(underlining indicates new text not currently in POST Administrative Manual)

1018. Public Safety Dispatcher Programs.

(a-b continued)

(c) Minimum Selection Standards for Public Safety Dispatchers.

Every public safety dispatcher candidate shall be subject to the following requirements:

(1-3 continued)

(4) Verbal, Reasoning, Memory, and Perceptual Abilities Assessment (as defined in section (A)(1)-4 below): These abilities shall be evaluated before hire to assure the presence of ability levels commensurate with the performance of dispatcher duties, as measured by the POST Entry-Level Dispatcher Selection Test Battery or alternative job-related tests of these abilities.

(A) Ability Definitions:

1. Verbal ability includes written and oral comprehension (the ability to read passages and listen to orally imparted information and retrieve facts, draw conclusions, and derive meaning), and written expression (the ability to use language to convey information clearly in writing).

2. Reasoning ability includes at least one of the following: (1) deductive reasoning (the ability to apply general rules to specific problems to attain logical answers); or (2) information ordering (the ability to correctly follow a given rule or set of rules to arrange things or actions in a certain order).

3. Memory ability includes the capacity to store and retrieve facts, details, and other information.

4. Perceptual ability includes speed and accuracy (the ability to quickly and accurately compare letters and numbers presented orally and in written form), and time sharing (the ability to shift back and forth between two or more sources of information, both written and orally imparted, in performing a task or set of tasks).

(B) Exemption. Any candidate who has (1) successfully completed the Public Safety Dispatchers' Basic Course or passed the POST Basic Dispatcher Training Equivalency Examination (Commission Procedure F-5); and (2) completed probation as a dispatcher during previous employment shall be exempt from the requirements set forth in section 1018(c)(4).