Development of a hybrid anaerobic digestion-microbial fuel cell system for treating winery wastewater

Gabriel Sacher1, John Kozlowski1, Elianna Sternfeld1, David W. Simpson2, Igor Goryanin2, Michael Cohen1,2

1Department of Biology, Sonoma State University
2Biological Systems Unit, Okinawa Institute of Science and Technology

Introduction

Wastewater treatment is an expensive proposition for many businesses, often the most cost effective solution is to ship all waste offsite for treatment. The most energy-intensive portion of the treatment process is aerating the wastewater to facilitate microbial oxidation of organic compounds. Microbial Fuel Cells have been emerging in recent years as an energy-saving substitute for wastewater aeration. We have partnered with a local winery in Santa Rosa and have deployed a pilot system that combines anaerobic digestion (AD) with microbial fuel cell (MFC) technology for the treatment of wine waste onsite. Results gathered from the testing and optimization of this system will inform the development of full-scale AD-MFC-based systems to treat winery wastewater to a level suitable for irrigation while producing energy.

Methods

AD-MFC (Anaerobic Digester Microbial Fuel Cell): A 50-L custom acrylic cylinder was used as our digester. The cylinder contained a rubber spiral in order to create a channel where the waste must flow to ensure maximum retention time. The waste was fed into the cylinder by a peristaltic pump at 8.8 ml/min. This produced a retention time of around 5 days. The electrodes were made of carbon fiber for its corrosion resistant and conductive properties. The anodes were placed one in each quadrant horizontally across the entire cylinder. The anodes were constructed like a bristle brush in order to achieve maximum surface area. There was also a hollow chamber horizontally through the entire cylinder which had walls made of impermeable carbon fiber which was used as a cathode.

Waste: We used wine waste from a local wine to feed the MFC. The waste was stored in a 350 gal “pH stabilization tank” from which our pump could draw feed directly. The feed was centrifuged in order to separate solids from the effluent. The pH of the effluent also remained stable.

Data collection: Voltage was tracked using an off the shelf voltage logger. The logger collected an instantaneous voltage reading each hour. We had a unique device that would open the circuit and allow voltage potential to build up.

COD Removal (Chemical Oxygen Demand) was tracked using mail order kits. Samples were collected directly from the effluent and influent lines. The difference in the COD readings determines the COD removal. Samples were analyzed in a spectrophotometer for absorbance at 600 nm and compared to known standards. Both soluble and total COD removal were calculated. Total COD removal was determined using unmodified samples. Soluble COD was determined by centrifuging both influent and effluent samples for 5 min at 2000 g.

Daily data pH and temperature data were collected via a Mettler-Toledo GmbH handheld probe. The gas sample was analyzed by a local lab (Analytical Science in Petaluma, CA,) via gas chromatography. The gas was gathered by feeding our gas escape line directly into a gas sample collection bag.

Results

• Passage of wastewater through the AD-MFC resulted in a significant COD removal. The percent removal increased as the system matured. This trend continued until the system crashed and COD removal stopped.
• The voltage increased with the COD removal until simultaneous freeze-related clogging of the biogas and liquid effluent resulted in system collapse and the COD removal stopped. The voltage also dropped, but then recovered while the COD removal did not.
• Because the voltage was not linked to the COD removal, electrogenic bacteria MFCs may not be the true source of COD removal; the system may be acting primarily as a AD digester.
• While running normally, pH was raised drastically.

Fig. 1. The system handled the changing temperature well. Even during low temperatures approaching 6⁰C the system removed over 90% of the COD. The pH of the effluent also remained stable.

Conclusions and Future Prospects

• The system displayed COD removal efficiency close to that of full-scale high-efficiency anaerobic digesters. However, our system ran at ambient temperatures with the only energy input being that of the pump.
• Gas production is similar to that of anaerobic digesters. The tubular shape of the enclosed system allows for easy harvesting of the biogas.
• The AD-MFC technology may only utilize the AD process for COD removal. Further trials will be needed to compare similar systems while controlling for electrode presence.
• The system should be able to run with minimal supervision in a field application.
• Biogas is produced with methane concentrations similar to standard AD systems.

Acknowledgements

We are grateful to the staff and Ray D’Argenzio owner of D’Argenzio winery in Santa Rosa for his donation of facilities and the provision of the wine waste. Many Sonoma State students were critical to the development and testing of small scale prototypes and developing the monitoring system.

We also extend our gratitude to the SOURCE and WATERS programs for their generous grants used to fund student participation and the development of a field trial.