Campus: CSU Long Beach -- December 17, 2004

Boeing Donates 5 Patents Worth $2.4 Million to Cal State Long Beach

In a move that adds to California State University, Long Beach's increasing visibility and high standing among educational institutions, The Boeing Company has agreed to donate five patents to the university with a fair market value of $2.4 million, it was announced by President Robert C. Maxson.

"We are certainly excited about this donation because of the near- and long-term ramifications it can have for Cal State Long Beach," Maxson said. "It shows the extreme confidence that Boeing has in the programs and professors at this university and I share that confidence."

The donation of the patents from the Irvine-based Intellectual Property Division of The Boeing Company to CSULB marks an important next step in the university's evolution as both a "campus of choice" for future scholars, but also as a center for applied research in Southern California. In addition, the donation of these intellectual properties will continue to expand an already unique and highly successful partnership between CSULB and The Boeing Company.

"Boeing continues to be a tremendous partner for our university," said Aristide Collins, Vice President for University Relations and Development. "This particular gift speaks volumes and shows great trust in our research capabilities."

While CSULB has taken on a lot more research over the past decade, according to Elizabeth Ambos, associate vice president for research and external support, the donation of these patents is a clear indication of Boeing's confidence in the university, based not only on the proposal submitted, but also on CSULB's successful commitment to past projects.

"This donation came to us because, in my opinion, we have reached a certain level of recognition and depth in our research programs, particularly in engineering and science, the areas for which the patents apply," said Ambos. She noted the main application for these particular patents is in the applied physics program in the College of Natural Sciences and Mathematics and materials engineering in the College of Engineering. "It's because our university is at a certain stage in our research program development that we were considered. We had to show a match between faculty research areas and the patents offered to us and we did that with our development plan."

The list of patents donated and a brief description of each are as follows:

U.S. Patent No. 6,320,375
Method for detection of rare earth metal oxide inclusions in titanium and other non-magnetic metal alloy castings
Brief description: A method and apparatus for detection of rare earth metal oxide inclusions in non-magnetic metal. The method utilizes a D.C. magnetic search field coupled with a magnetic field sensor for detecting the response of a rare earth metal oxide casting fragment inclusion through the bending and amplification of the ambient magnetic field at the defect location.

U.S. Patent No. 5,766,764
Nanoscale amorphous magnetic metals
Brief description: Sonochemistry permits extremely rapid cooling to form nanoscale amorphous metal particles. If magnetic, these particles are valuable for magnetic recording media, manufacture of permanent magnets, and other uses. The nanoscale particles agglomerate, however, which limits their utility for these magnetic applications. To keep the particles isolated, we extract the particles from the n-alkane reaction solvent in a polar solvent and cast the extracted particles with a polymer, such as polyvenylpyrrolidone.

U.S. Patent No. 5,534,468
Ceramic oxide compounds
Brief description: A La.sub.1-x Sr.sub.x Cr.sub.1-y Mn.sub.y. O.sub.3 ceramic oxide gel obtainable by a process comprising the following steps: (a) providing a colloidal solution of polyhydroxy organic chelating agents selected from the group consisting of ethylene glycol and citric acid and metal salts selected from the group consisting of lanthanum, strontium, chromium, and manganese, each salt being present in an amount necessary to provide the stoichiometric amount of metal ions required in the ceramic oxide gel (b) heating the colloidal solution to hydrolyze and polymerize the metal ions in the solution to a mixed metal oxide precursor of the ceramic oxide gel (c) adding organic acid, water, or both to the precursor of the ceramic oxide gel to peptize the metal ions, and, (d) heating the peptized precursor to evaporate solvent to form a thick, viscous, flexible, ductile, handleable gel that can be cast, extruded, or drawn; wherein x and y are independently 0 or 1.

U.S. Patent No. 5,520,717
Isolating nanophase amorphous magnetic metals
Brief Description: Sonochemistry permits extremely rapid cooling from the melt which is necessary for forming amorphous metals. Sonochemistry also functions at an extremely small scale to produce nanophase particles. If magnetic, these particles are valuable for magnetic recording media, manufacture of permanent magnetics, and other uses. The nanophase particles agglomerate, however, which limits their utility for these magnetic applications. To keep the particles isolated, we extract the particles from the n-alkane reaction solvent in a polar solvent and cast the extracted particles with a polymer, such as polyvinylpyrrolidone.

U.S. Patent No. 5,393,604
Production of silica "green" tape and co-fired silica substrates
Brief description: Production of silica "green" tapes employed in fabrication of multilayer circuit boards, by mixing silica powder comprised of spherical substantially uniform particles ranging in size from 0.1 to 2 microns, e.g. 0.7 micron, with a liquid medium containing a vinyl acetate -- acrylic copolymer emulsion as binder, polyethylene glycol as plasticizer and dispersant, and preferably also including a small amount of boron, in the form of boric acid or boric oxide. The resulting slip is case on a substrate, such as polymer tape and dried to produce a crack-free tape. The resulting silica "green" tape is cut into individual tapes, a predetermined circuit pattern is screened onto each tape, preferably employing gold or copper conductors, and the polyester backing is removed from the tapes. The screened silica "green" tapes are then collated and registered to form a stack of layers, and the layers are laminated under pressure and at elevated temperature into a monolithic unit. Such monolithic unit is then fired at a temperature of the order of about 1050 C into a multi-layer circuit board formed of silica having a low dielectric constant and capable of operating efficiently at high frequencies.

Media Contacts:
Rick Gloady, (562) 985-5454, rgloady@csulb.edu
Shayne Schroeder, (562) 985-1727, schroede@csulb.edu


Public Affairs Offices/Campus News
[Bakersfield] [Chancellor's Office] [Channel Islands] [Chico]
[Dominguez Hills] [East Bay] [Fresno] [Fullerton] [Humboldt] [Long Beach] [Los Angeles] [Maritime Academy] [Monterey_Bay] [Northridge] [Pomona] [Sacramento] [San Bernardino] [San Diego] [San Francisco] [San Jose] [San Luis Obispo] [San Marcos] [Sonoma] [Stanislaus]