Circuits
TCSU ENGR 150

A. Description
An introductory course in the analysis of linear circuits containing resistors, inductors, capacitors, independent and dependent voltage, and current sources. Analysis techniques are developed from Kirchhoff’s network theorems. There include node and loop methods, superposition and source transformations. Thevenin’s and Norton’s theorems are applied to DC and AC circuits. Differential equations are used to find transient response. Periodic waveform analysis includes evaluation of average and rms values. AC analysis techniques include sinusoids and phasors, the concept of impedance, frequency response, and resonance. Additional topics may include use of simulation software, real and imaginary power in AC circuits, operational amplifiers, approximations at high and low frequencies, impedance matching, correction of power factor, three-phase circuits, digital building blocks, and semiconductor devices.

B. Prerequisites
Single Variable Calculus - 2nd Semester and Physics - Calculus Base II

C. Minimum Unit Requirement
3 units

D. Course Topics
1. Circuit Variables and Elements
2. Kirchhoff’s Laws
3. Simple Resistive Circuits
4. Mesh-current and Node-voltage Analysis
5. Thevenin's and Norton's Theorem
6. Maximum Power Transfer Theorem
7. Superposition Principle
8. Capacitor, Inductor, Power and Energy
9. Response of first order RL & RC circuits
10. Natural and step response of RLC circuits
11. Sinusoidal Steady-State Analysis
12. Equivalence circuits, Mesh-Current and Node-voltage methods
13. Sinusoidal Steady-State power calculations
14. Operational Amplifier Circuits (optional)

E. Student Learning Outcomes
Objectives:
1. Teach students how to analyze DC and AC circuits;
2. Introduce a wide variety of electrical and electronic circuits;
3. Build the theoretical foundation for advanced studies of electronic systems; and
4. Prepare students to pass the electrical part of the FE exam.

Outcomes:
1. Steady state voltages, currents, and power for DC and AC circuits
2. Thevenin and Norton equivalent of circuits with independent sources
3. Rise time and fall time, of R-C circuits
4. Frequency response of high-pass, low-pass and resonant circuits

Recommended Outcome:
1. Output voltage of an Op-Amp when used as amplifier, summer, or integrator

F. **CAN Equivalent**
 CAN ENGR 12 (Equivalency ends Fall 2010)